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A KNESER THEOREM FOR HIGHER ORDER 
ELLIPTIC EQUATIONS 

BY 

W. ALLEGRETTO 

The problem of establishing oscillation and non-oscillation criteria for 
elliptic equations has recently been considered by several authors. Exten
sive bibliographies may be found in the books by C. A. Swanson, [7], and by K. 
Kreith, [3]. 

Most of the interest has so far centered on equations of second order with 
some results also established for fourth order equations. Non-oscillation 
theorems for higher order equations have recently been established by the 
author, [1], and by Noussair and Yoshida, [5]. In particular, both in [1] and [5], 
Kneser-type theorems were established for classes of higher order elliptic 
equations. However, these results become vacuous in the case where the 
dimension of the underlying Euclidean space is even and not larger than the 
order of the operator in question. The establishment of a Kneser-type theorem 
for such a case is mentioned in [1] as an open question. It is the purpose of this 
paper to establish a Kneser-type theorem which gives a non-vacuous result for 
this case. Our theorem is obtained by extending the estimates given in [1]. 

Let ft be an unbounded domain of m-dimensional Euclidean space Em . 
Points of Em are denoted by x = {xu..., xm) and differentiation with respect 
to xt by Dh i = 1 , . . . , m. We consider the differential expression L formally 
given in the standard multi-index notation by: 

Lw = ( - l ) n £ Da(aafiD
fiu)-aooU, aafi = apa. 

\*\-\fi\-n 

The coefficients of L are defined in ft, real, and sufficiently regular so that all 
derivatives involved in L exist and are at least continuous in Ct-R for some 
sphere R. 

As in [1], we term L non-oscillatory iff L has no nodal domains in ft-JR for 
some sphere R. We assume that there exists an elliptic expression Z0, given by: 

ZoK = (-Dn I Da(ba^u), 
|a|-|0l-" 

with constant coefficients and ellipticity constant JH0 such that the inequality: 

I I a^(x)Da(j)Dp(l>dx> J X KpD^D^dx, 
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holds for all <j> e Co(ft A{|JC| > r}). It then follows from the results of [1], that for 
L to be non-oscillatory in ft it is sufficient that the expression: 

hu - (~l)nAnw - aooj^o1 w 
be non-oscillatory in ft. In the sequel, we therefore obtain explicitly our results 
only for the expression lx. 

It is clear from the nature of the problem that it is sufficient to consider 
only subdomains of ft which are in the complement of a sufficiently large 
sphere in Em. Consequently, without loss of generality and without further 
mention we shall always assume that any function </> e Co(ft) considered in the 
sequel has support in { x | | x | > r } where r is chosen for convenience and 
sufficiently large. 

We begin by stating the following results whose proofs can be found, in 
particular, in [1] and which will be useful in the sequel. 

LEMMA 0. (1) Let t be a positive (non-negative, respectively) integer, m>4f, 
(m>4f + 2 respectively) then for all (/)GCo(ft) the following inequalities hold: 

f ( A » 2 ^ 4 - 2 t 2 n ( m + 4 / - 4 r ) 2 [ </>2|xr4', 
JEm i = 0 JEm 

£ [ A ( A » ] 2 > 4 - ( 2 « + 1 ) r i ( m + 4 i - 4 ( - 2 ) 2 4>2 \x\~4'-2; 
Em i = l i = 0 JBm 

(2) If m = 2, then: 

f IVD^f^W <t>2(\x\\n\x\y2 dx. 
JE2 i = i 4 JE2 

COROLLARY 0. Assume that q^O, / > 0 , j3<0, j3 + / > 0 and let he 
Co((l,°°)). Then the following inequality is valid: 

(r3(ln r)p (D2h)2 + (D1h)2r(ln rf \q+^~ \\ dr> 
i I L lnrJJ J 

f°°fi2(lnr)p 

i r 

2/o n\2 (1)„ ((1 - /3)2(1 + q) „_ _,_2 , (j3 + 0(2 - j3)2 „_ _,_3 , ( 1 - J 8 ) 2 ( 3 - / 3 ) 2 ^ r ) _ 4 | 
(In r ) " 2 + — — - A — — (In r)" 3+- ^ — — (In r)"4 [ dr. 

4 v ' 4 v ' 16 

Proof. The standard substitution r = e' reduces the left hand side of (1) to: 

( 2 ) f f[D2hfdt+\ [D1h]2{(l + q)t' ,+(/3 + /) tp-1}dt 
Jo Jo 

Estimating each part of (2) by means of Lemma 2 and 3 of [1] we find that (2) 
is at least equal to: 

and the result follows. 
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The next Lemma is an extension of some of the results of [1] (where only the 
case j3 = 0 was considered) and [6] (where only the case a = /3 = 0 was 
considered). Since the proof parallels that given in [1], [6], and in view of the 
lengthy calculations involved, the proof is only sketched. 

LEMMA 1. Let a,/3 be non-positive scalars. Then for all ^ e Co(H) the 
following inequality holds: 

I ra(ln rf{^f dx > | <£V"4(ln rfF{a, ft r) dx 
]Em JEm 

where 

4 

F(o,j8,r) = I K,0n r)"', 
i = 0 

and 

\2 
(4-a-mf 

16 ke{0,l,...} 
Ko(a) = "' " '"' ( m - a ) 2 + inf [r(a, k)], 

m2 —4m + 4 a - a 2 | 

2 J 
r(a, fc) = k(k + m-2)jk 2 + (m-2)k + 

Jidta, |3) = - ^ [ ( 4 - a - m ) ( a 2 + 2 m - a m - 2 a ) + 4(a-2)k1(k1 + m-2)], 

fci(ki + m-2) „2, , (4 -a -m) |3 ( /3 - l ) (m-a) 
A2(a, j8) = (l-]8 ) + 

+ o [8 + a 2 + m 2 - 4 a - 4 m ] , 8 

K3(a,j3) = | (2 - j3 ) 2 (a -2 ) , 

(l-/3)2(3-/3)2 

K4(a, j3) = — , 

where, for /3^0 (/3 = 0, respectively), kx denotes the largest {smallest, respec
tively) non-negative integer at which the infimum of r(a, •) is achieved. 

Proof. Let 4> e Co(ft). Introducing polar coordinates, we obtain: 

I ra(lnr)p(A<M2dx = \ \ (A<£)2 dwra+m-\\nrY dr, 
JEm Jo J<ï> 

where <I> denotes the full range of the angular variables and dw denotes the 
angular component of the volume element. Let {YfKlo denote a complete 
orthonormal system of spherical harmonics and let the order of Yt be k = k(i). 
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It follows that: 

(3) I rtt(lnr)p(A<fr)2dx = £ f ra+m-\\n 
JBm 0 Jo 

rY D%+(JHZHD% 

k(k + m-2),]2
 J 

3 M dr' 

where /; = J* Y^ dw. Motivated by the discussion preceding Theorem 1 of [6, 
p. 93], we introduce the change of variable f, = ryht with y = ( 4 - a — m)/2, and 
integrate by parts repeatedly to reduce the right hand side of (3) to: 

(4) Ef'Un; 
o Jo I 

rf(D2Jlj)
2 + a>1/li)

2r(lnr)'3 2? -2y + a-\— . 
In r J 

(y2(y-l)2 + ay2 + c) + hfr~1(lnrf 

+—(-2y2(y-l)p + y2b + d-yap + y(y-l)p) 
In r 

^5<e-r6/3 + Y ( 7 - l ) 0 - l ) P + 7fc)]}dr 
(In 

where, for convenience we have introduced the following terms: 

a = ( m - l ) ( l - a ) + 2k(k + m-2) , 

b = - j 3 ( m - l ) , 

c = k2(k + m -2) 2 + k(k + m -2)(a + m - 4 ) ( 2 - a), 

d = k(k +m-2) j3 (6 -2a -m) , 

e = - k ( k + m - 2 ) 0 ( 0 - 1 ) . 

Next, we assume that r is sufficiently large so that the coefficient of (D1^)2 is 
non-negative and estimate the terms in (4) which involve derivatives of ht by 
means of Corollary 0. It follows that (4) is at least equal to: 

OO P OO 

(5) I h2r-1(lnr) /3{[7
2(7-l)2-fay2 + c] + ( lnrr 1 [ -27 2 (7- l ) i8 + 72b + d 

o h 

- ya0 + y(y -1)0] 4- (In r)~2[e - yb0 + 4~1(1 - 0)2(1 + q) 

+ y(y - 1)130 - 1) + yb] + (In ff3A'\fi + J)(2 - 0)2 

4- (In r)-44"2(l - 0)2(3 - 0)2} dr 

where 

/= - 0 ( m - l + 2y) 

q = 2y 2 -2y + a. 

We observe that c is the only term in (5) which grows as a quartic in k, and that 
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the term multiplying h2r -1(ln r)**"1 in (5) is a quadratic in k which is monotoni-
cally decreasing in k for k non-negative and jS^O. Consequently, if we let ki 
be the largest non-negative integer at which infke{0,i,...}[y2(y-l)2 + ay2 + c] is 
assumed, it follows that for r sufficiently large, each term of the sum in (5) 
multiplying hf is at least as large as the term in the case k — k\. Estimating 
each term of (5) by this lower bound shows that (5) is not less than: 

oo Too 

I hfr\ln rfF(a, ft r) dr. 
o Jo 

An identical argument shows this result for /3 = 0. 
Finally, we conclude that: 

J* oo /• oo 

r"(ln rfiAj,)2 dx > £ fir'5+a+m(ln rfF(a, ft r) dr 
E m 0 JO 

4>V-4(ln rfF{a, ft r)dx •i 
and the statement of the Lemma follows. 

We observe that unlike previous results, the factor F(a, j8, r) in (6) is always 
positive for r large, regardless of the choices of a, j3, and m which will arise. 
Specifically we find by direct calculation the following results: 

COROLLARY 1. Let R+ denote the set of non-negative integers. Then: 
(i) if (4-a-m)/2fÉR+ and 0 = 0 , then F(a, 0, r )>K 0 (o : )>0; 

(ii) if ( 4 - a - m)/2 e JR+ then kx = ( 4 - a - m)/2, K0 = Xi = 0, and 

F ( a f f t r ) > ^ ^ = [ ( 2 - a ) 2 ( l - p ) 2 + ( 4 - a - m ) p ( p - l ) 
(In r) 1 

x ( m - a ) ] - 4(ln rf ' 

We next adopt the convention that a repeated product in which the index 

runs from a subscript to a smaller superscript has value 1. 

COROLLARY 2. For all <\>e Co(fî) we have: 
(i) if m =4i, tfien: 

(4p>m) f ( A p ^ ) 2 > f n (2/ + 2 ) 2 ] { f f x 2 ( 4 - m - 4 7 , - 2 / ) ] 

•L 2
r~*P(\r, , \ 2 ( ' - P - D . V"4p(ln r) 

(4p + 2 > m) f £ {D,[A<>]}2 s f I f (2/ +1)2}{fi K2(2 - m -4/ , -2/)} 

•i 2 - 4 p - 2 / 1 r l ^2<-p+i - l ) . </>2r-4p-2(ln r)-8 

E m 
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(ii) j / m = 4 i + 2, m ¥" 2, tfien: 

(4p>m) [ (Ap
<A)2sfn(2; + l ) 2 } r n 1 K 2 ( - m + 2-4 / , -2; )} 

• f r4p(ln r)2°-pV2; 

(4p + 2 s m) f £ {A[AP4-]}2s f f f (2/ + 2 ) 2 }{n K2(4- m - 4 / , -2/)} 

•[ 
4 p - 2 n n r^c-p-D^ 2 . '(In r) ^ ; 

(iii) if m = 2, then: 

JE2 É { I > J [ A ^ ] } 2 S ^ { Ï Ï K 2 ( - 2 - 4 / , - 2 - 2 / ) } - ^ r2-4p(ln r)-2-2^2 . 

Proof. We only give a short proof of the first part of (i), since the other parts 
of the Corollary are established in a similar fashion from Lemma 0 and 1. We 
note that: 

f (Ap4>)2=[ 
JEm

 JE 

( A i - 1 [ A p - i + w _ 

Since 4 ( i - l )<m, we employ Lemma 0 to conclude: 

f 2i~3 f 
(Ap</))2>n (2/ + 2)2 ( A p - i + » V - m 

JEm j = 0 JEm 

Next, by part (ii) of Corollary 1, it follows that: 

f (A p - i + >)V- m >K 2 (4-m,0) f (Ap->)Vm(ln r) 
JEm JEm 

Continuing by iteration, we find 

| ( A p - i + » 2 r 4 - - { f i X2(4- m -4 / , -2;)} J 
2r~4pnn A^-P-V (/> V4 p(ln r) 

The proof now follows by combining the above results. 
We can now state our Kneser-type theorem: 

THEOREM 1. Assume 2n>m with m even. A sufficient condition for the 
expression lx to be non-oscillatory is given by: 

(i) (m = 4i, 2n = 4p) 

lim sup {aoo^ô1 W2n(ln |x|)(2n~m+4)/2}< f f f (2/ + 2)2) • f R K2(4- m -4 / , -2 / )}; 
|x|-*oo ly = 0 J l / = 0 J 
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(ii) (m = 4i, 2n = 4p + 2) 

lim sup {aoo^ô1 W2n(ln |x|)(2n"m+2)/2}< ( 1 Ï (2/ +1)2} • ff i ' K2(2- m - 4 / , - 2 / ) } ; 

(iii) (m = 4i + 2, 2n = 4p) 

lim sup {aoofxë1 |*|2n(ln |x | ) ( 2 w-+ 2 ) / 2}< f"ff (2/ +1)2} 

•{"H K2(-m + 2-4/,-2/)}; 

(iv) (m = 4J + 2, 2n = 4p + 2) 

lim sup {aoo/iô1 |x|2"(ln |x|) (2"-"+4)/2}< f I f (2/ + 2)2} • f f i K2(4-m-4j, - 2 / ) ) ; 

(v) (m = 2, 2n = 4p + 2) 

lim sup {aoo/itô1 |x|2"(ln | * | ) n + 1 } < 7 J n X 2 ( - 2 - 4 / , - 2 - 2 / ) } . 

Proof. Again we prove only (i), the other parts being similar. If we assume 
that h is oscillatory then given any sphere S, there exists a bounded domain 
Fez ft-S and a function ueHl(F) such that: 

(u, l1u) = (u,(-l)nAnu)-(a00iJLÔ1u, w) = 0. 

Since by a simple limit argument we conclude that the estimates of Corollary 
2 are also valid for u, we can use the Corollary to estimate the inner product 
(u, ( - l )nAnu). This leads to the desired contradiction. 

We illustrate the above results by considering the special case of the fourth 
order expression: 

Azu a00 = 0 , 

in the complement of a sphere in E2 and in E4, In this case we find that the 
expression is non-oscillatory if: 

lim sup [aoofiô1 \x\4(\n \x\)2]< 1 
|X|-*°C 

both in E2 and E4. 
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