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In this work, an exact Euler solution is derived under the fundamental contingencies
of axisymmetric, steady, rotational, incompressible, single-phase, non-reactive and
inviscid fluid, which also stand behind the ubiquitously used mean flow profile
named ‘Taylor–Culick.’ In comparison with the latter, which proves to be complex
lamellar, the present model is derived in the context of a Trkalian flow field, and
hence is capable of generating a non-zero swirl component that increases linearly
in the streamwise direction. This enables us to provide an essential mathematical
representation that is appropriate for flow configurations where the bulk gaseous
motion is driven to swirl. From a procedural standpoint, the new Trkalian solution
is deduced directly from the Bragg–Hawthorne equation, which has been repeatedly
shown to possess sufficient latitude to reproduce several existing profiles such as
Taylor–Culick’s as special cases. Throughout this study, the fundamental properties
of the present model are considered and discussed in the light of existing flow
approximations. Consistent with the original Taylor–Culick mean flow motion, the
Trkalian velocity is seen to exhibit both axial and tangential components that increase
linearly with the distance from the headwall, and a radial component that remains
axially invariant. Furthermore, the Trkalian model is shown to form a subset of the
Beltramian class of solutions for which the velocity and vorticity vectors are not only
parallel but also directly proportional. This characteristic feature is interesting, as it
stands in sharp contrast to the complex-lamellar nature of the Taylor–Culick motion,
where the velocity and vorticity vectors remain orthogonal. By way of verification,
a numerical simulation is carried out using a finite-volume solver, thus leading to a
favourable agreement between theoretical and numerical predictions.

Key words: mathematical foundations, rotating flows, vortex dynamics

1. Introduction
The inviscid Taylor–Culick profile has long been viewed as a suitable approximation

for the internal flow field in solid rocket motors (SRMs). In practice, it stands at
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266 A. Fist and J. Majdalani

the foundation of a variety of phenomenological problems that continue to challenge
propulsion and aeroacoustic engineers. In relation to acoustic instability prediction
and mitigation, successive efforts by Griffond, Casalis & Pineau (2000), Majdalani,
Flandro & Roh (2000), Chedevergne, Casalis & Féraille (2006), Abu-Irshaid,
Majdalani & Casalis (2007) and Chedevergne, Casalis & Majdalani (2012) have
shown that the Taylor–Culick model is capable of providing an adequate mean flow
velocity to which small-amplitude oscillations may be superimposed (Majdalani 2001a;
Majdalani & Flandro 2002). In modelling the effects of metallized particle loading
and particle–mean flow interactions, this particular motion has fallen at the epicentre
of hydrodynamic stability investigations, as evidenced in the works of Beddini &
Roberts (1988), Ugurtas et al. (2000), Griffond & Casalis (2001), Féraille, Casalis
& Dupays (2002), Griffond (2002), Fabignon et al. (2003) and Féraille & Casalis
(2003). The latter, for instance, has been effective at elucidating the strong connection
between surface receptivity and acoustic resonance in idealized rocket chambers with
sidewall injection. Along similar lines, the use of the Taylor–Culick profile to estimate
bulk kinematic speeds and particle accelerations has become commonplace, especially
in large-scale Navier–Stokes solvers that entail both fluid and particle–structure
interactions. One may refer in this regard to the work of Balachandar, Buckmaster &
Short (2001), Jackson, Najjar & Buckmaster (2005), Najjar et al. (2006), Haselbacher
et al. (2010), as well as others. In reactive flow simulations, the Taylor–Culick
model has proven to be so valuable in mimicking the bulk gaseous motion that it
has been either programmed directly into simulation codes or judiciously employed
as a limiting process verification tool. Few relevant investigations may be cited in
this regard, and these include Chu, Yang and Majdalani’s premixed propane–air
simulations of internally burning solid propellants (Chu, Yang & Majdalani 2003),
Venugopal, Moser and Najjar’s compressible Navier–Stokes computations of the
injection-driven motion in SRMs with homogeneous grains (Venugopal, Moser &
Najjar 2008) and Chedevergne, Casalis and Majdalani’s direct numerical simulations
of both mean and unsteady flow structures evolving in SRMs (Chedevergne et al.
2012).

The traditional Taylor–Culick (TC) model may be categorized as being steady,
rotational, axisymmetric, inviscid and incompressible (Culick 1966). Simply stated,
it represents an exact solution of Euler’s equations, which is driven by pressure
forces in a frictionless environment, where a carefully posed wall-normal injection
requirement leads to a vanishing axial velocity at the porous sidewall. Furthermore,
recognizing that the TC velocity and vorticity fields remain strictly orthogonal, the
corresponding solution may be classified as being complex lamellar (Majdalani 2012).
By way of improvement, it has been modified by Majdalani, Vyas & Flandro (2002,
2009), Majdalani & Akiki (2010) and Xu et al. (2010) to account for viscous shear
and regressing wall boundaries, by Kurdyumov (2006) to predict the deviations
caused by non-circular cross-sections, by Majdalani (2007b) and Maicke & Majdalani
(2008) to assimilate the effects of fluid dilatation, by Majdalani & Saad (2007) to
permit the imposition of variable headwall injection and by Bouyges, Chedevergne
& Casalis (2016) to capture the flow deviations associated with star-shaped grains.
Granted that sidewall injection constitutes the primary driver in this idealized rocket
chamber, the modified TC approximation has been tuned into a suitable model for
hybrid rocket flow fields through the imposition of high-speed injection at the forward
end (Majdalani 2007a). An integral formulation of this problem under compressible
flow conditions has also been advanced by a variety of research groups in the
context of elongated porous chambers with both uniform and non-uniform wall fluxes
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Swirling motion in rockets 267

(Traineau, Hervat & Kuentzmann 1986; Balakrishnan, Liñan & Williams 1992; Akiki
& Majdalani 2012, 2016).

Clearly, the TC profile stands as one of the most frequently cited cold flow
approximations for cylindrically shaped rocket motors (Kuentzmann 1991). This
is especially true in applications that benefit from the use of closed-form mean
flow representations (Yamada, Goto & Ishikawa 1976; Dunlap et al. 1990; Casalis,
Avalon & Pineau 1998; Avalon & Josset 2006). Among relevant applications, one
may bring into perspective those concerned with combustion instability (Flandro
& Majdalani 2003; Majdalani, Fischbach & Flandro 2006; Flandro, Fischbach &
Majdalani 2007) and vortico-acoustic wave propagation (Majdalani & Roh 2000, 2001;
Majdalani 2001b, 2009), as well as those devoted to hydrodynamic stability analyses
in porous chambers both with and without particle interactions (Féraille & Casalis
2003; Chedevergne et al. 2006; Abu-Irshaid et al. 2007; Chedevergne et al. 2012).
Using variational calculus, the Lagrangian optimization principle is further extended
to this problem where two types of continual spectra of quantum-like energy states of
the TC solution are identified, and these have been essentially shown to evolve
from a purely irrotational Hart–McClure mean flow motion (with least kinetic
energy) to a fully rotational profile requiring the most energy to excite (Saad &
Majdalani 2010). In all cases considered, simple sinusoidal approximations are
obtained assuming sufficiently long chambers. These solutions are subsequently
verified and discussed in light of Kelvin’s minimum energy theorem as well as the
entropy maximization principle.

In the spirit of verification, a collective body of research seems to have examined
the TC shape and spatial development in a series of dedicated investigations. These
start with the classical laboratory measurements acquired by Taylor (1956) and evolve
through a plethora of computational (Dunlap, Willoughby & Hermsen 1974; Baum,
Levine & Lovine 1988; Sabnis, Gibeling & McDonald 1989; Apte & Yang 2000),
experimental (Yamada et al. 1976; Dunlap et al. 1990; Casalis et al. 1998; Avalon
& Josset 2006) and theoretical studies (Clayton 1996; Barron, Van Moorhem &
Majdalani 2000; Majdalani & Roh 2000; Majdalani & Van Moorhem 2001; Zhou
& Majdalani 2002) for both cylindrically shaped and planar rocket configurations.
Most of these endeavours tend to confirm the suitability of the TC model in
approximating the bulk flow in a simulated SRM (Kuentzmann 1991), although
many seem to recognize the natural tendency of the flow to develop a non-zero swirl
component, and, hence, axial vorticity, in a sufficiently long chamber with circular
cross-section (Dunlap et al. 1990; Balachandar et al. 2001; Najjar et al. 2006).
The reader may be referred in this regard to the classic cold flow simulations of
SRMs by Dunlap et al. (1990), which for many years have provided the propulsion
community with invaluable measurements of mean and oscillatory flow fields in
cylindrical cavities with transpiring walls. Accordingly, the experimentally observed
mean flow is shown to exhibit a tangential component of motion, as depicted in
figure 1 (Dunlap et al. 1974).

Besides its relevance in propulsion, the TC solution has proven to be surprisingly
accurate in modelling the drainage mechanism associated with watery suspensions
through porous sheets. It has also been effectively employed in the treatment of
surface ablation and sweat cooling (Yuan 1959; Peng & Yuan 1965).

Among the theoretical studies that address the TC problem, and that specifically
explain the tendency of the TC profile to develop axial vorticity, one of the most
relevant to the present work consists of a dedicated article by Balachandar et al.
(2001). The latter may be perceived as one of the earliest to address the natural
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268 A. Fist and J. Majdalani

FIGURE 1. Schematic of a swirling rocket flow according to the dedicated laboratory
experiments by Dunlap et al. (1974). Here r and z denote the radial and axial coordinates,
respectively, and the overbar denotes a dimensional quantity.

evolution of swirl within the core of a simulated SRM, thus helping to explain the
existence of swirl in Dunlap’s experiments. Accordingly, by modelling the motor
as a cylindrical tube that is driven by sidewall mass addition, swirl is introduced
either as a small perturbation to the radial injection velocity or as a small fluctuation
in the radial location of the wall injection condition. To overcome the attendant
singularity that occurs at the centreline, which is manifested in the form of an
unbounded tangential velocity at r→ 0, the governing equations are regularized by
accounting for small viscous effects. Subsequently, a small viscous patch, which may
be constructed asymptotically, is developed near the centreline.

In this study, we discuss how the TC mean flow may be identically recovered from
a partial solution of the Bragg–Hawthorne equation (BHE). The latter represents a
reduced form of Euler’s equation, which arises in the context of steady, inviscid and
generally axisymmetric motions. We also show that its physicality may be intimately
connected to its character being of the complex-lamellar type. We also show that
the same BHE may be used to extract another partial solution under somewhat
similar conditions, namely conditions that involve a swirling flow field. This new
solution proves to be of the Trkalian type, thus exhibiting velocities and vorticities
that are globally parallel. In comparison to the original TC streamfunction, which
is sinusoidal in nature, the new model leads to a Bessel function representation that
will be systematically examined and discussed.

2. Formulation
2.1. Geometric configuration

As schematically illustrated in figure 2, a typical SRM may be idealized as a
right-cylindrical enclosure of porous length L0 and radius a, with either a reactive
or a non-reactive headwall, and a nozzleless aft closure. The radial, tangential and
axial velocities may be represented by (ūr, ūθ , ūz), where overbars denote dimensional
quantities and ū represents the velocity vector. The corresponding spatial coordinates
are given by (r̄, θ, z̄), where 0 6 r̄ 6 a, 0 6 θ 6 2π and 0 6 z̄ 6 L0 define the range
over which the solution may be extended, specifically from the headwall to the
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Swirling motion in rockets 269

FIGURE 2. Schematics of a right-cylindrical internal burning rocket with an axisymmetric
headwall injection function.

typical nozzle attachment point in the chamber exit plane. As usual, the dependence
on θ may be relaxed by virtue of axisymmetry. As shown in figure 2, secondary
fluid injection may be superimposed at the headwall, where an oxidizer or gaseous
propellant stream may be allowed to enter axially at a user-defined velocity ū0(r̄).
This could be prescribed by

ū0(r̄)= ūz(r̄,0)=

{
Uc cos

(
1
2πr̄2/a2

)
, Berman’s half cosine – complex-lamellar flow,

UcJ0( j0,1r̄/a), Bessel function – Beltramian flow,
(2.1)

where j0,1 refers to the first root of the zeroth-order Bessel function of the first kind.
In the above, Uc = ūz(0, 0) stands for the centreline speed at the headwall, which
may be set equal to zero in the case of a non-reactive and non-injecting headwall.
Otherwise, the axial stream entering at z = 0 may be permitted to merge with the
laterally incoming crossflow originating at the sidewall. Practically, one may correlate
ūr(a, z̄) = −Uw to the grain regression rate and, although Uw will be considerably
smaller than Uc in hybrid rocket analysis (due to the slowly evolving pyrolysis of
inert fuels), these two parameters will be of the same order of magnitude in simulated
SRMs.

2.2. Equations and boundary conditions
We begin with Euler’s steady and incompressible equations, which consist of
continuity, ∇̄ · ū = 0, and the steady-state momentum expression, ∇̄p̄/ρ̄ = ū ×
Ω̄ − ∇̄(ū · ū)/2, where p̄, ρ̄ and Ω̄ denote the mean pressure, density and vorticity.
Our explicitly imposed conditions are simply due to axisymmetry and wall-normal
injection at both the headwall and sidewall boundaries. Consistently with the original
TC model, we also prohibit swirl at the headwall centre in the case of a non-injecting
headwall. These conditions translate into:

(i) a vanishing radial velocity along the axis of symmetry, ūr(0, z̄)= 0;
(ii) a vanishing axial velocity at the sidewall, ūz(a, z̄)= 0;

(iii) a uniform injection at the sidewall, ūr(a, z̄)=−Uw;
(iv) a prescribed injection pattern at the headwall, ūz(r̄, 0)= ū0(r̄); and
(v) a vanishing swirl velocity at the headwall centre, ūθ(0, 0)= 0.

This last condition is often overlooked, although it is essential to the proper
derivation of the TC profile, where it is implicitly applied.
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270 A. Fist and J. Majdalani

2.3. Normalization
Using the radius a and the sidewall injection speed Uw as reference values, all
recurring flow variables and operators may be re-established as

r=
r̄
a
, z=

z̄
a
, ur =

ūr

Uw
, uθ =

ūθ
Uw
, uz =

ūz

Uw
, p=

p̄
ρ̄U2

w

,

Ω =
Ω̄a
Uw
, ψ =

ψ̄

a2Uw
, ∇= a∇̄, L=

L0

a
, u0 =

ū0

Uw
, uc =

Uc

Uw
,

 (2.2)

where ψ̄ stands for the streamfunction. As we consider the basic motion to be
inviscid, rotational, incompressible, axisymmetric and steady, Euler’s normalized
momentum equation may be reduced to ∇p = u × Ω − ∇(u · u)/2. The pressure
may be conveniently eliminated by curling Euler’s equation, thus transforming it into
the steady-state vorticity transport equation (VTE), ∇ × (u × Ω) = 0. Additionally,
continuity, ∇ · u = 0, may be secured through the use of the Stokes streamfunction,
namely

ur =−
1
r
∂ψ

∂z
and uz =

1
r
∂ψ

∂r
. (2.3a,b)

Forthwith, the auxiliary conditions of the problem become

ur(0, z)= lim
r→0

1
r
∂ψ(r, z)
∂z

= 0, (2.4a)

uz(1, z)=
∂ψ(1, z)
∂r

= 0, (2.4b)

ur(1, z)=−
∂ψ(1, z)
∂z

=−1, (2.4c)

uz(r, 0)=
1
r
∂ψ(r, 0)
∂r

= u0, (2.4d)

uθ(0, 0)= 0, (2.4e)

u0(r)=


0, inert,
uc cos

(
1
2πr2

)
, uc =πuh, Berman,

ucJ0( j0,1r), uc =
uhj0,1

J1( j0,1)
, Bessel.

(2.4f )

Lastly, the limiting condition at r = 0 may be manipulated using L’Hôpital’s rule to
produce two equivalent but finite constraints,

∂ψ(0, z)
∂z

= 0 and
∂2ψ(0, z)
∂r∂z

= 0. (2.5a,b)

2.4. Traditional TC technique
The traditional vorticity–streamfunction technique used by Culick (1966) proceeds by
eliminating the pressure and velocities in favour of the vorticity and streamfunction.
After determining a generic relationship between the vorticity and the streamfunction,
which can satisfy the VTE identically, substitution into the vorticity equation leads
to a second-order partial differential equation that can be solved for ψ . As further
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confirmed in the analogous treatment of the problem with viscosity and headwall
injection (Majdalani & Akiki 2010), the VTE may be fulfilled by taking Ωθ = rΞ(ψ).
To ensure linearity of the ensuing vorticity equation, Culick (1966) then inserts
Ξ = C2ψ into the vorticity equation, Ω =∇ × u (which may be written in terms of
ψ only), to the extent of arriving at

∂2ψ

∂z2
+
∂2ψ

∂r2
−

1
r
∂ψ

∂r
+ C2r2ψ = 0. (2.6)

As usual, separation of variables may be employed in concert with a zero separation
constant to produce ψ = (c1z + c2)[c3 sin(Cr2)/2 + c4 cos(Cr2)/2]. The remaining
constants may be deduced using a straightforward application of (2.4). In the process,
(2.5a) may be used to replace the limiting constraint in (2.4). As such, (2.5b)
becomes self-satisfying. Finally, assuming a similarity-conforming injection pattern at
the headwall, i.e. u0(r)= uc cos(πr2)/2, the extended TC profile emerges in the form
of ψ = (z+ uh) sin(πr2)/2, with uh ≡ uc/π, and

Ω =π2(z+ uh)r sin
(

1
2πr2

)
eθ , u=−r−1 sin

(
1
2πr2

)
er +π(z+ uh) cos

(
1
2πr2

)
ez.

(2.7a,b)
It should be noted that (2.4), which precludes the presence of swirl, is implicitly used,
thus leading to a vanishing tangential velocity component. In what follows, it will
be shown that the above formulation is retrievable directly from the BHE, where the
relevance of the no-swirl requirement will be illuminated.

2.5. Bragg–Hawthorne technique
The BHE consists of a reduced scalar equivalent of Euler’s equation, which is
specifically realized under the auspices of flow steadiness and axisymmetry. Also
known as the Squire-Long equation, the BHE is defined by Batchelor (1967) as a
partial differential equation linking the streamfunction ψ̄ to the angular momentum
B̄= r̄ūθ and the total fluid head H̄= p̄/ρ̄+ ū · ū/2. Dimensionally, it may be given by

∂2ψ̄

∂ r̄2
−

1
r̄
∂ψ̄

∂ r̄
+
∂2ψ̄

∂ z̄2
= r̄2 dH̄

dψ̄
− B̄

dB̄
dψ̄
, (2.8)

and so, using B= B̄/(aUw) and H = H̄/U2
w, the non-dimensional BHE emerges as

∂2ψ

∂r2
−

1
r
∂ψ

∂r
+
∂2ψ

∂z2
= r2 dH

dψ
− B

dB
dψ
, (2.9)

where B = ruθ and H = p + u · u/2. In some respects, (2.9) embraces the vorticity–
streamfunction framework by incorporating its essential components into a form that
may be straightforwardly tackled to achieve a solution. For example, (2.6) used by
Culick (1966) may be directly recovered from (2.9) by implicitly assuming a constant
angular momentum and a total head that varies with ψ2. Such conditions lead to

B
dB
dψ
= 0 B(ψ)= B0 = const. or uθ =

B0

r
, (2.10a,b)

where B0 = 0 may be imposed to mitigate the development of axial swirl. Since
the requirement for a constant stagnation head along streamlines stems from the
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association of the BHE with steady, inviscid and adiabatic motion, the second
constraint enables us to specify a quadratic relation between the stagnation head and
the streamfunction that leads to an invariant stagnation head along streamlines while
linearizing the right-hand side of the BHE. This is accomplished by taking

dH
dψ
=−C2ψ or H(ψ)=− 1

2C
2ψ2
+H0, (2.11a,b)

where H0 is a constant. These expressions enable us to reduce the BHE into (2.6),
whence the classical TC solution may be readily returned. Along similar lines, it may
be instructive to note that the cyclonic model used to describe the bidirectional vortex
motion engendered in a right-cylindrical chamber may be equivalently restored from
(2.9) under the same assumptions and a non-vanishing B0 = 1. The resulting profile
may be traced back to Vyas & Majdalani (2006), who produced a strikingly similar
solution to the TC flow velocity, namely

ψ = κz sin(πr2), Ω = 4π2rz sin(πr2)eθ ,
u=−κr−1 sin(πr2)er + r−1eθ + 2πκz cos(πr2)ez.

}
(2.12)

In comparison to the TC solution, which remains swirl and parameter free,
(2.12) comprises a non-zero swirl component and an off-swirl Ekman number,
κ = a/(2πσL0), where σ stands for the swirl number.

3. Exact Trkalian mean flow
3.1. Bragg–Hawthorne representation

In seeking a possible alternative to the TC mean flow for a swirling flow field, the
versatility of the BHE framework may be favourably tested. In fact, a viable set of
assumptions that are frequently used in the modelling of helical flows includes a
globally constant stagnation head, i.e.

dH
dψ
= 0 or H(ψ)=H0 = const. (3.1a,b)

To justify the use of a constant stagnation head, the flow is assumed to be homenergic.
The simplifying stagnation head expression may then be implemented in conjunction
with an angular momentum rate that obeys

B
dB
dψ
= C2ψ, B2

= C2ψ2
+D or uθ =

√
C2ψ2 +D

r
, (3.2a−c)

where the non-dimensional forms of C and D correspond to

C = C̄a and D=
D̄

U2
wa2

. (3.3a,b)

In the foregoing, C and D may be defined as the rotational momentum and headwall
parameters, respectively. Since C provides the connection between the tangential
velocity and the streamfunction to secure a rotational flow field, it may be specified
in such a manner as to produce uz(1, z)= 0 by suppressing the axial velocity at the
sidewall; this requirement will be fulfilled through (3.8) below. As for D, it will be
later specified by the boundary condition imposed on uθ , namely through uθ(0, 0)= 0,
which compels the tangential velocity to vanish at the headwall centre. Finally, in
compliance with (3.1) and (3.2), (2.9) collapses into

∂2ψ

∂r2
−

1
r
∂ψ

∂r
+
∂2ψ

∂z2
+ C2ψ = 0. (3.4)
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3.2. General and partial solutions
Guided by the linearity of (3.4), a product solution of the form ψ(r, z)= f (r)g(z) may
be attempted. We obtain

−
g̈(z)
g(z)
=

1
f

(
f ′′ −

1
r

f ′ + C2f
)
=


0 (type 0),
+υ2 (type I),
−υ2 (type II),

(3.5)

where υ is the separation constant. For each of the three possible separation outcomes,
we get

ψ(r, z)

=


r(c1z+ c2)[c3J1(Cr)+ c4Y1(Cr)] (type 0),

r[c1 sin(υz)+ c2 cos(υz)]
[
c3J1(r

√
C2 − υ2)+ c4Y1(r

√
C2 − υ2)

]
(type I),

r[c1 sinh(υz)+ c2 cosh(υz)]
[
c3J1(r

√
C2 + υ2)+ c4Y1(r

√
C2 + υ2)

]
(type II),

(3.6)

where J1(x) and Y1(x) represent the Bessel functions of the first and second kinds,
respectively. In seeking a simple outcome, our main attention will be initially turned
to partial solutions of type 0, as these stand to produce compact expressions that
could be compared with those attributed to Culick (1966), Vyas & Majdalani (2006)
and Majdalani (2012). It should also be indicated that the product solution assumed
here has been shown to deteriorate in the neighbourhood of the headwall, where
a singularity arises due to the radial injection at the corner of the chamber, which
sweeps across the headwall. Such a singularity may be treated using a judicious
boundary layer analysis, as described by Chedevergne et al. (2006, 2012).

In all cases considered, one must set c4= 0 to suppress the singularity that arises at
r=0, and hence satisfy (2.4), so long as the centreline continues to belong to the fluid
domain. With no loss of generality, one may proceed by taking c3= 1 and writing, for
the type 0 motion,

ψ(r, z)= r(c1z+ c2)J1(Cr). (3.7)

At this juncture, suppression of the axial velocity at the sidewall may be used to
retrieve

uz(1, z)= C(c1z+ c2)J0(C)= 0; ∀z or J0(C)= 0. (3.8)

The eigencondition for this problem is hence identified, with the roots being the zeros
of the zeroth-order Bessel function of the first kind, C= j0,m={2.4048,5.5201,8.6537,
. . .}; m ∈ N∗. To make further headway, the partial solution that we seek may be
associated with the first zero only, specifically C = j0,1= 2.4048, which is comparable
to the corresponding TC constant of π= 3.1416. Higher zeros will not be considered
here as they lead to recirculatory regions that do not apply to the problem at hand.
For simplicity, the first eigenvalue will be referred to as λ1 ≡ j0,1.

Having determined C, the second constraint at the sidewall may be imposed on the
radial velocity via

ur(1, z)=−c1J1(λ1)=−1; ∀z or c1 = J−1
1 (λ1)≈ 1.9262, (3.9)

which leaves us with ψ = r[z + c2J1(λ1)]J1(λ1r)/J1(λ1). In the absence of headwall
injection, the fourth condition may be implemented to retrieve c2= 0. More generally,
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if we were to assume a similarity-conforming Bessel function at the headwall, we
would obtain

uz(r, 0)= c2λ1J0(λ1r)= ucJ0( j0,1r); ∀r or c2 = uc/λ1 =Uc/(λ1Uw). (3.10)

The partial solution for the streamfunction can thus be rearranged into

ψ(r, z)= r(z+ uh)
J1(λ1r)
J1(λ1)

, uh≡ uc
J1(λ1)

λ1
=

uc

4q
, q≡

λ1

4J1(λ1)
≈ 1.1581, (3.11a−c)

where the headwall constant is consistent with the form of the similarity-conforming
axial injection speed imposed at the forward closure. The fifth and final condition,
which is given by (2.4e), prohibits the onset of swirl at the headwall centre. Its
fulfilment may be secured, in concert with (3.2), to deduce

uθ(0, 0)= lim
r→0

1
r

√
λ2

1

[
ruh

J1(λ1r)
J1(λ1)

]2

+D= 0 or D= 0, (3.12)

and so, for the tangential velocity, we are left with

uθ = λ1(z+ uh)
J1(λ1r)
J1(λ1)

= 4q(z+ uh)J1(λ1r)≈ 4.6323(z+ uh)J1(λ1r). (3.13)

To briefly explore the behaviour of the swirl velocity across the radius, (3.13) may be
evaluated as r→ 0 using a Maclaurin series of the form

uθ ≈ (z+ uh)

[
λ2

1

2J1(λ1)
r−

λ4
1

16J1(λ1)
r3
+ · · ·

]
≈ 2qλ1(z+ uh)r+O(r3). (3.14)

The forced vortex behaviour near the centreline, where uθ→ωf r, is therefore evident.
The solid body rotation imposed on the gases as they approach the core axis may
be estimated from ωf ≈ 5.5699 (z+ uh), which represents a linearly increasing forced
angular frequency. Furthermore, as shown in figure 3, the forced vortex behaviour –
where the tangential speed remains linearly proportional to the radial distance from the
axis of rotation – extends over a considerable portion of the chamber. Subsequently,
the speed reaches a maximum value of 2.6954(z+ uh) at a radius of r= rmax≈ 0.7656
and then diminishes to a value of λ1(z + uh) ≈ 2.4048(z + uh) at the sidewall. In
what follows, the various properties of the flow will be considered one-by-one and
discussed.

3.3. Flow properties
To better describe the motion associated with the present solution relative to its
non-swirling TC counterpart, two representative streaklines from each model are
depicted in figure 4. Therein, two orthogonal views of a simulated rocket motor
are featured using the two inviscid solutions at hand. In figure 4(a), using a top
view of the motor, we are able to confirm the inability of the helical streakline to
enter the chamber at a right angle, due to its finite swirl component at the wall.
As for figure 4(b), the spiralling paths followed by the two streaklines seem to be
consistent, albeit qualitatively only, with the flow depiction provided by Dunlap et al.
(1974) and reproduced here as figure 1. In contrast, the TC streaklines displayed in
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Forced vortex
5.570r

Wall
velocity

2.695 max

Free 
vortex

Inviscid

r r

(a) (b)

FIGURE 3. Vector plot of (a) the Trkalian swirl velocity relative to (b) a similarly inviscid
free vortex, such as the type that could have accompanied the TC profile. Comparisons
are drawn at z= 1.

(a) (b)

(c) (d)

FIGURE 4. Top and side views of (a,b) streaklines corresponding to the new inviscid
profiles and (c,d) those implied in the TC motion with no headwall injection. Animations
of the new Trkalian profile are provided as supplementary material files 1–15 using top,
side, and isometric views with two, three, four, six and eight particle streaklines available
at https://doi.org/10.1017/jfm.2017.342.

figure 4(c,d) remain swirl-free. Nonetheless, the TC axial and radial velocities remain
a better match with Dunlap’s experimental measurements, which are carried out in a
stationary chamber.

Recognizing the parental relationship between ψ(r, z) and other flow properties,
the remaining velocity components, vorticity and pressure distributions may be
straightforwardly deduced from (3.11). To start, we retrieve the radial and axial
velocities,

ur =−
J1(λ1r)
J1(λ1)

≈−1.9262J1(λ1r),

uz = λ1(z+ uh)
J0(λ1r)
J1(λ1)

≈ 4q(z+ uh)J0(λ1r)≈ 4.6323(z+ uh)J0(λ1r).
(3.15)

We immediately note the consistency between (3.15) and the traditional TC model,
where the radial speed remains axially invariant, unlike the axial speed, which
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increases linearly with the distance from the headwall. In summary, we have

u = −
J1(λ1r)
J1(λ1)

er + (z+ uh)
λ1J1(λ1r)

J1(λ1)
eθ + (z+ uh)

λ1J0(λ1r)
J1(λ1)

ez

≈ −1.9262J1(λ1r)er + 4.6323(z+ uh)J1(λ1r)eθ + 4.6323(z+ uh)J0(λ1r)ez.

(3.16)

As for the vorticity, it may be expressed as

Ω = −λ1J−1
1 (λ1)J1(λ1r)er + (z+ uh)λ

2
1J−1

1 (λ1)J1(λ1r)eθ + (z+ uh)λ
2
1J−1

1 (λ1)J0(λ1r)ez

= λ1u. (3.17)

This enables us to confirm the Beltramian character of the flow field, which is caused
by the local parallelism between the velocity and vorticity vectors. Indeed, since
‖Ω‖/‖u‖ = λ1 yields a global constant, the present model may be associated with a
subclass of Beltramian motions known as Trkalian (Majdalani 2012). Moreover, given
the helical nature of the flow field, its swirl intensity, which represents a measure
of the axial flux of tangential angular momentum relative to the axial flux of axial
momentum, may be readily evaluated using, for example, the definition provided by
Chang & Dhir (1995),

ζ =
1
4

(∫ 1

0
uzr dr

)−2 ∫ 1

0
uzuθr dr

=
1

24
λ3

1J−2
1 (λ1)pFq

[{
3
2
,

3
2

}
;

{
2, 2,

5
2

}
; −λ2

1

]
≈ 0.5281, (3.18)

where pFq stands for the generalized hypergeometric function. In the present case,
the swirl intensity is found to be axially invariant, mainly because of the equally
linear spatial dependence of both uz and uθ . Lastly, the pressure distribution may be
retrieved from Euler’s momentum equation, whose partial integration and subsequent
recombination render

1p= p− p0 =
u2

hλ
2
1 − J2

1(λ1r)− (z+ uh)
2λ2

1[J
2
0(λ1r)+ J2

1(λ1r)]
2J2

1(λ1)

≈ 1.8552{5.7832u2
h − J2

1(λ1r)− 5.7832(z+ uh)
2
[J2

0(λ1r)+ J2
1(λ1r)]},

(3.19)

where p0 ≡ p(0, 0). In the next section, these parameters will be compared with their
corresponding TC values.

3.4. Comparison with the TC and Hart–McClure mean flows
We begin by displaying the streamlines associated with the Trkalian and complex-
lamellar profiles in figures 5(a) and 5(b) for uh= 0 and 0.5, respectively. The second
case corresponds to a headwall injection speed that mimics reactive flow conditions in
a simulated SRM with a regressing propellant grain at the forward closure. In order
to produce the same mass flow rate per unit area as that occurring along the sidewall,
one can take∫ a

0
ūz(2πr̄) dr̄=πa2Uw or 2πuh

∫ 1

0
λ1J0(λ1r)J−1

1 (λ1)r dr=π. (3.20a,b)
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Taylor_Culick
Trkalianr

z

(a)

(b)

FIGURE 5. Comparison between the Trkalian streamlines and those corresponding to the
TC solution for a simulated SRM (a) without and (b) with headwall injection. The latter
mimics the case of uniform burning at the headwall.

This leaves us with uh = 0.5, the same value that permits the similarity-conforming
half cosine pattern to mimic reactive flow conditions in the TC configuration (Abu-
Irshaid et al. 2007). It should be noted that the streamtube motion that accompanies
headwall injection becomes increasingly more pronounced with successive increases
in uh. Also shown on the graph are the TC streamlines, and these are seen to exhibit
faster flow turning than the present solution. The reason for the steeper TC curvature
may be attributed to its faster axial velocity and less appreciable radial contribution
near the sidewall. These conditions lead to a delayed flow turning in the Trkalian
configuration. Naturally, the crisp similarity patterns depicted in figure 5(a) are quickly
overtaken by an essentially streamtube motion in figure 5(b). Although not shown,
values of uh ∈ [40, 100], such as those ascribed to hybrid rocket operation, give rise
to a fully developed streamtube motion that is pervasive everywhere, except for the
sidewall region.

In practice, the flow turning angle θ may be defined as the slope of the local
velocity measured from the wall-normal direction. Its geometric formulation, θ(r) =
tan−1
[−uz/(zur)], is plotted in figure 6(a) alongside the TC flow turning angle and

that of Hart–McClure. The latter corresponds to a potential mean flow profile, u =
−rer + 2zez, which has been historically adopted by Hart & McClure (1959) as well
as other researchers, to model the bulk gaseous motion in SRMs, before the advent of
the TC base flow. The reader may consult in this regard the work of McClure, Hart
& Cantrell (1963). As shown by Saad & Majdalani (2010), the Hart–McClure (HM)
profile constitutes the state of least kinetic energy, unlike the present formulation,
which possesses more energy than its TC predecessor. Starting with θ in figure 6(a),
one may infer that the flow entering the chamber has no parallel component at r= 1,
where θ = 0◦. In contrast, the onset of parallel motion at r = 0 may be deduced in
the three cases considered due to θ(0) = 90◦. As we examine the region extending
from the sidewall to the centreline, the HM motion is accompanied by the most abrupt
variation in θ . In contrast, the turn angle associated with the Trkalian model changes
relatively slowly. The smoother gradients near the sidewall signal the presence of a
more energetic motion, which is typically accompanied by a sharper radial velocity.
These trends are confirmed in figure 6(b,c), where the Trkalian flow may be seen to
exhibit the smoothest radial and axial velocities at any radial position.
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TC: Taylor_Culick
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r r
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FIGURE 6. Comparison of the Trkalian, TC and HM profiles. Results are shown for (a)
the streamline turning angle, (b) the radial velocity and (c) the axial velocity.

In figure 6(b), for example, the Trkalian ur may be seen to achieve the largest peak
velocity of 1.121 (in absolute value), which constitutes a 12.1 % overshoot relative to
the normalizing sidewall injection speed. This overshoot reaches its peak at r=0.7656,
and is required to compensate for the decreasing tubular area (2πrL), which evolves
in the normal direction to the incoming stream. Alternatively, the TC radial velocity
exhibits a 6.7 % overshoot at r = 0.861, which is approximately half as large, and
occurs at a wider radius. In contrast, by examining the HM case with least kinetic
energy, it may be realized that no overshoot may be accrued in a top-hat profile.
Instead, |ur| decreases linearly from a value of unity at the wall to a mere zero at
the centreline. This linear variation is accompanied by a uniform axial velocity, as
depicted in figure 6(c). Therein, the axial velocities of the three models in question
are compared, and these range from the steepest HM model, to the cosine-shaped TC
velocity, and, lastly, to the Bessel-smooth Trkalian profile.

As we cross beyond the TC threshold, the centreline velocity may be seen to
increase with the underlying kinetic energy, and this behaviour may be attributed to
the need for uc to evolve in compliance with mass conservation, which is simply
given by Q= 2π

∫ 1
0 uzr dr= 2πz. To this end, the centreline speed of each model must

stretch in such a manner as to preserve the total volumetric flow rate Q. While the
lowest uc appears in the spatially uniform distribution, the highest speed is realized
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FIGURE 7. Comparison between the present Trkalian solution and the TC model for
(a) the axial velocity and (b) the total vorticity for a simulated SRM with no headwall
injection. Both panels share the same legend.

with the Trkalian profile, which overshoots the HM and TC models by 2.316 and
1.474, respectively. This increase in kinetic energy, which is accompanied by an axial
increase in the swirl velocity, leads to a faster depreciation in the pressure along the
centreline.

By way of confirmation, a side-by-side comparison of the axial velocities and total
mean flow vorticities of both the Trkalian and TC models is furnished in figures 7(a)
and 7(b), respectively. These are provided at six equally spaced distances from the
headwall assuming uh=0. In both graphs, it may be seen that the Trkalian formulation
exhibits higher velocities and vorticities in the core region, but lower velocities and
vorticities near the sidewall. In contrast, the TC model appears to be virtually
irrotational in the core region, as most of its vorticity is generated at the sidewall and
then quickly attenuated as the centreline is approached. This behaviour is contrary
to that of the Trkalian vorticity, which begins with a finite value at the sidewall,
where the magnitude of Ωw = −λ1er + (z + uh)λ

2
1eθ starts at λ1[1 + (z + uh)

2λ2
1]

1/2,
and then increases to (z+ uh)λ

2
1J−1

1 (λ1) at the centreline, where the vorticity becomes
solely axial due to the non-vanishing swirl velocity gradient, Ω0= (z+ uh)λ

2
1J−1

1 (λ1)ez.
It may be instructive to note that the centreline vorticity will exceed the sidewall
vorticity as long as ‖Ω0‖> ‖Ωw‖ or (z+ uh)> J1(λ1)/[λ

2
1−λ

2
1J2

1(λ1)]
1/2. Thus, granted

that (z+ uh)> 0.252581, vorticity will asymptote to a higher value in the core region,
where its magnitude (which becomes virtually independent of the radial position) will
continue to increase in the downstream direction according to (3.17). Interestingly, in
reference to figure 7(b), a special situation arises when (z + uh) < 0.252581, as the
vorticity magnitude at the centreline will depreciate below its wall value due to the
weaker swirl contribution in the forward section of the chamber. These observations
are further confirmed in figure 8, where the isovorticity contour lines for the two
inviscid models are stacked side-by-side with and without headwall injection. In both
configurations, the trend reversal in the vorticity distributions associated with the
TC and Trkalian profiles is clearly seen and captured by the crossing angle between
their isolines. In the presence of headwall injection, the prevalent streamtube motion
affecting the streamline patterns in figure 5(b) seems to be equally mirrored in the
isovorticity lines.

As for the pressure field, its axial distribution along the centreline, which may be
determined from (3.19), is plotted in figure 9(a) alongside those of the HM and TC
profiles. The corresponding axial pressure gradient is also illustrated in figure 9(b),
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FIGURE 8. Comparison between the Trkalian isovorticity contours (full lines) and those
of the TC solution (chain lines) for a simulated SRM (a) without and (b) with headwall
injection.
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FIGURE 9. Comparison between the Trkalian pressure drop and those associated with the
TC and HM solutions for a simulated SRM with no headwall injection. We also show
in (b) the axial pressure gradients associated with the Trkalian motion at equally spaced
increments from the headwall.

where it is shown to increase both in the downstream direction and inwardly as the
centreline is approached. Compared with its preceding models, the Trkalian pressure
drop exceeds those of the HM and TC profiles at the aft end of the chamber by an
appreciable amount, namely by factors of 2.63 and 2.13, respectively. This noticeable
pressure depreciation is necessary to offset the greater increase in flow kinetic energy
in the presence of higher axial, radial and tangential velocity contributions relative to
the HM and TC formulations. It is also corroborated by industrial observations such
as those cited by Clayton (1996).

3.5. Numerical verification
The flow field described heretofore may be confirmed using a numerical simulation
of the corresponding inviscid solution and a similarity-conforming headwall injection
profile that is consistent with (3.16) and (3.19). For this purpose, a pressure-based
finite-volume solver is employed in conjunction with an axisymmetric geometric
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FIGURE 10. Graphical depiction of the structured mesh used in the finite-volume solver.

configuration that permits the evolution of swirl along a structured cylindrical mesh.
Starting with profile-conforming velocity injection functions at the headwall and
sidewall regions, as well as a solution-conforming initialization field, convergence to
the exact Trkalian mean flow is achieved across the domain with variances between
analytical and numerical predictions that do not exceed 0.4 %. In this case, a non-zero
uθ is imposed at the sidewall, consistently with the swirling Trkalian profile. Our
simulations correspond to a right-cylindrical porous tube of 1 m radius and 8 m length,
thus leading to an aspect ratio of L= 8. An extra allowance of two additional metres
downstream of the zone of interest is given to permit the flow to further develop,
thereby avoiding edge effects that can accompany a pressure outflow boundary
condition. As shown in figure 10, the mesh extends over 384 360 cells that are
distributed along a 10 m long cylindrical region that is further seeded with 113 105
equally spaced points. While the SIMPLE algorithm is relied upon to couple the
pressure and velocity fields, the Green–Gauss node-based gradient evaluation is used
for spatial discretization. Furthermore, the PRESTO pressure interpolation scheme,
which stands for ‘PREssure STaggering Option,’ is selected to better accommodate the
helical flow development by staggering the grid. Finally, a third-order MUSCL scheme,
which refers to the ‘Monotonic Upstream-Centered Scheme for Conservation Laws,’
is chosen to interpolate for the momentum and swirl velocities (van Leer 1979).

Our computations for an initial wall velocity of Uw = 1 m s−1 are presented in
figure 11, where comparisons between analytical and numerical predictions of the
three component velocities are provided at five evenly spaced axial stations spanning
the established length of the chamber. Additionally, the pressure drop is computed
along the centreline and compared with the present formulation. It is gratifying to
note the excellent agreement between theory and computations, especially in the radial
velocity estimation, which is confirmed to be axially invariant by the finite-volume
solver in figure 11(c), as well as the pressure depreciation and its spatial dependence
in figure 11(d).

4. Conclusions
In this work, an Euler solution is presented as a prospective flow candidate

for describing the internal gaseous motion in uniquely spinning rocket motors
with either a similarity-conforming headwall injection profile or a sealed headwall.
Following tradition, a perfect motor is idealized as a right-cylindrical chamber with
a permeable sidewall and either finite or infinite headwall impedance. In this study,
the BHE in cylindrical coordinates is used to establish a steady-state model for
solid and hybrid motors, where the hybrid configuration may be characterized
by a large headwall-to-sidewall injection ratio. The resulting solution may be
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FIGURE 11. Comparison of the exact Trkalian solution with inviscid computational fluid
dynamics (CFD) simulations corresponding to (a) axial, (b) tangential and (c) radial
velocity distributions at five equally spaced stations as well as (d) the centreline pressure
drop.

viewed as a theoretical complement to the frequently cited TC motion, which
stems from the virtually equivalent vorticity–streamfunction approach. Furthermore,
the swirling profile may be recognized as a natural companion to the cyclonic
mean flow known colloquially as the bidirectional vortex, which develops in the
context of a right-cylindrical chamber. Although its inception is connected with the
modelling of solid and hybrid rocket internal ballistics, particularly those exhibiting a
well-prescribed swirling motion, the basic solution that we obtain can be modified and
extended to problems involving paper manufacture, drainage of watery suspensions,
isotope separation and boundary layer control. In comparison with the TC formulation,
where the tangential motion is suppressed, the angular momentum associated with the
Trkalian model is granted the freedom to change with the streamfunction, a property
that is often imposed in deriving similarity solutions with three non-vanishing velocity
components. Compared with the TC flow structures, specific differences may be
noted in the minimum radial and maximum axial velocities, vorticities and pressure
distributions. The main distinction of the Trkalian profile may be attributed to its
higher kinetic energy and centreline speed, to its tangential velocity exhibiting a
linear dependence on the streamwise coordinate and to its finite vorticity in all three
spatial directions. In the absence of experimental data for this idealized motor, the
solution is verified numerically, using a finite-volume solver. From an academic
standpoint, it is hoped that the Trkalian model will promote further interest in the
characterization of helical flows in rocket motors, especially those of the TC type,
which have been frequently employed in modelling the internal motion associated
with non-swirling rocket chambers.
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