A CONCEPT OF SYNCHRONICITY ASSOCIATED WITH CONVEX FUNCTIONS IN LINEAR SPACES AND APPLICATIONS

S. S. DRAGOMIR

(Received 1 February 2010)

Abstract

A concept of synchronicity associated with convex functions in linear spaces and a Chebyshev type inequality are given. Applications for norms, semi-inner products and convex functions of several real variables are also given.

2000 Mathematics subject classification: primary 26D15; secondary 26D20, 46B05.
Keywords and phrases: convex functions, Gâteaux derivatives, norms, semi-inner products, synchronous sequences, Chebyshev inequality.

1. Introduction

The Jensen inequality for convex functions plays a crucial role in the theory of inequalities due to the fact that other inequalities such as the arithmetic-geometric mean inequality, Hölder and Minkowski inequalities, and Ky Fan's inequality can be obtained as particular cases of it.

Let C be a convex subset of the linear space X and f be a convex real-valued function on C. If $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ is a probability sequence and $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in$ C^{n}, then

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \leq \sum_{i=1}^{n} p_{i} f\left(x_{i}\right), \tag{1.1}
\end{equation*}
$$

is well known in the literature as Jensen's inequality.
For refinements of the Jensen inequality and applications related to Ky Fan's inequality, the arithmetic-geometric mean inequality, the generalized triangle inequality and the f-divergence measures, see [5-11, 13-16, 21].

Assume that $f: X \rightarrow \mathbb{R}$ is a convex function on the real linear space X. Since for any vectors $x, y \in X$ the function

$$
g_{x, y}: \mathbb{R} \rightarrow \mathbb{R}, \quad g_{x, y}(t):=f(x+t y)
$$

[^0]is convex, it follows that the limits
$$
\nabla_{+(-)} f(x)(y):=\lim _{t \rightarrow 0+(-)} \frac{f(x+t y)-f(x)}{t}
$$
exist and are called the right (left) Gâteaux derivatives of the function f at the point x in the direction y.

It is obvious that, for any $t>0>s$,

$$
\begin{align*}
\frac{f(x+t y)-f(x)}{t} & \geq \nabla_{+} f(x)(y)=\inf _{t>0}\left[\frac{f(x+t y)-f(x)}{t}\right] \\
& \geq \sup _{s<0}\left[\frac{f(x+s y)-f(x)}{s}\right]=\nabla_{-} f(x)(y) \tag{1.2}\\
& \geq \frac{f(x+s y)-f(x)}{s}
\end{align*}
$$

for any $x, y \in X$ and, in particular,

$$
\begin{equation*}
\nabla_{-} f(u)(u-v) \geq f(u)-f(v) \geq \nabla_{+} f(v)(u-v) \tag{1.3}
\end{equation*}
$$

for any $u, v \in X$. We call this the gradient inequality for the convex function f. It will be used frequently in the following in order to obtain various results related to Jensen's inequality.

The following properties are also of importance:

$$
\begin{equation*}
\nabla_{+} f(x)(-y)=-\nabla_{-} f(x)(y) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{+(-)} f(x)(\alpha y)=\alpha \nabla_{+(-)} f(x)(y) \tag{1.5}
\end{equation*}
$$

for any $x, y \in X$ and $\alpha \geq 0$.
The right Gâteaux derivative is subadditive while the left one is superadditive, that is,

$$
\begin{equation*}
\nabla_{+} f(x)(y+z) \leq \nabla_{+} f(x)(y)+\nabla_{+} f(x)(z) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{-} f(x)(y+z) \geq \nabla_{-} f(x)(y)+\nabla_{-} f(x)(z) \tag{1.7}
\end{equation*}
$$

for any $x, y, z \in X$. Some natural examples can be provided by the use of normed spaces.

Assume that $(X,\|\cdot\|)$ is a real normed linear space. The function $f: X \rightarrow \mathbb{R}$, $f(x):=\frac{1}{2}\|x\|^{2}$ is a convex function which generates the superior and inferior semiinner products

$$
\langle y, x\rangle_{s(i)}:=\lim _{t \rightarrow 0+(-)} \frac{\|x+t y\|^{2}-\|x\|^{2}}{t}
$$

For a comprehensive study of the properties of these mappings in the geometry of Banach spaces see the monograph [10].

For the convex function $f_{p}: X \rightarrow \mathbb{R}, f_{p}(x):=\|x\|^{p}$ with $p>1$,

$$
\nabla_{+(-)} f_{p}(x)(y)= \begin{cases}p\|x\|^{p-2}\langle y, x\rangle_{s(i)} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

for any $y \in X$. If $p=1$, then

$$
\nabla_{+(-)} f_{1}(x)(y)= \begin{cases}\|x\|^{-1}\langle y, x\rangle_{s(i)} & \text { if } x \neq 0 \\ +(-)\|y\| & \text { if } x=0\end{cases}
$$

for any $y \in X$. This class of functions will be used to illustrate the inequalities obtained in the general case of convex functions defined on an entire linear space.

In the recent paper [12] the following refinement and reverse of the Jensen inequality in terms of the gradient were obtained.

Theorem 1.1. Let $f: X \rightarrow \mathbb{R}$ be a convex function defined on a linear space X. Then for any n-tuple of vectors $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$ and any probability distribution $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{P}^{n}$ we have the inequality

$$
\begin{align*}
& \sum_{k=1}^{n} p_{k} \nabla_{-} f\left(x_{k}\right)\left(x_{k}\right)-\sum_{k=1}^{n} p_{k} \nabla_{-} f\left(x_{k}\right)\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \\
& \quad \geq \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \tag{1.8}\\
& \quad \geq \sum_{k=1}^{n} p_{k} \nabla_{+} f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)\left(x_{k}\right)-\nabla_{+} f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \geq 0 .
\end{align*}
$$

A particular case of interest is for $f(x)=\|x\|^{p}$ where $(X,\|\cdot\|)$ is a normed linear space. Then for any $p \geq 1$, for any n-tuple of vectors $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$ and any probability distribution $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{P}^{n}$ with $\sum_{i=1}^{n} p_{i} x_{i} \neq 0$ we have the inequality

$$
\begin{aligned}
& \sum_{i=1}^{n} p_{i}\left\|x_{i}\right\|^{p}-\left\|\sum_{i=1}^{n} p_{i} x_{i}\right\|^{p} \\
& \quad \geq p\left\|\sum_{i=1}^{n} p_{i} x_{i}\right\|^{p-2}\left[\sum_{k=1}^{n} p_{k}\left\langle x_{k}, \sum_{j=1}^{n} p_{j} x_{j}\right\rangle_{s}-\left\|\sum_{i=1}^{n} p_{i} x_{i}\right\|^{2}\right] \\
& \quad \geq 0 .
\end{aligned}
$$

If $p \geq 2$ the inequality holds for any n-tuple of vectors and probability distribution.
Also, for any $p \geq 1$, for any n-tuple of vectors

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in X^{n} \backslash\{(0, \ldots, 0)\}
$$

and any probability distribution $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{P}^{n}$ we have the inequality

$$
\begin{gather*}
p\left[\sum_{k=1}^{n} p_{k}\left\|x_{k}\right\|^{p}-\sum_{k=1}^{n} p_{k}\left\|x_{k}\right\|^{p-2}\left\langle\sum_{j=1}^{n} p_{j} x_{j}, x_{k}\right\rangle_{i}\right] \tag{1.10}\\
\quad \geq \sum_{i=1}^{n} p_{i}\left\|x_{i}\right\|^{p}-\left\|\sum_{i=1}^{n} p_{i} x_{i}\right\|^{p}
\end{gather*}
$$

For related inequalities for norms and inner products, see [1-4, 20, 22].
Motivated by the above results we introduce in this paper a class of sequences associated with convex functions in linear spaces and establish a Chebyshev type inequality and some new inequalities for convex functions. Applications for norms, semi-inner products and convex functions of several real variables are also given.

2. ∇f-Synchronicity

Consider $f: X \rightarrow \mathbb{R}$ a convex function on the linear space X. We also assume that $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$ are two n-tuples of vectors with $u_{i}, v_{i} \in X$, $i \in\{1, \ldots, n\}$.
Definition 2.1. We say that v is ∇f-synchronous with u if

$$
\begin{equation*}
\nabla_{-} f\left(u_{k}\right)\left(v_{k}-v_{j}\right) \geq \nabla_{+} f\left(u_{j}\right)\left(v_{k}-v_{j}\right) \tag{2.1}
\end{equation*}
$$

for any $k, j \in\{1, \ldots, n\}$. If the inequality is reversed in (2.1) for each $k, j \in$ $\{1, \ldots, n\}$, then we say that v is ∇f-asynchronous with u.

We notice that in general, if v is ∇f-asynchronous with u, this does not imply that u is ∇f-synchronous with v.

As general examples of such convex functions we can consider $f(x)=\|x\|^{p}$, $p \geq 1$, where $(X,\|\cdot\|)$ is a normed linear space. Since (see introduction)

$$
\begin{aligned}
& \nabla_{-} f(x)(y)=p\|x\|^{p-2}\langle y, x\rangle_{i} \quad \text { for } x, y \in X \text { with } x \neq 0 ; \\
& \nabla_{-} f(0)(y)=\left\{\begin{array}{ll}
0 & \text { if } p>1 \\
-\|y\| & \text { if } p=1,
\end{array} \quad \text { for } y \in X ;\right. \\
& \nabla_{+} f(x)(y)=p\|x\|^{p-2}\langle y, x\rangle_{s}
\end{aligned} \quad \text { for } x, y \in X \text { with } x \neq 0 ; ~\left\{\begin{array}{ll}
0 & \text { if } p>1 \\
\|y\| & \text { if } p=1,
\end{array} \quad \text { for } y \in X, ~ \$ \nabla_{+} f(0)(y)=1\right.
$$

where $\langle\cdot, \cdot\rangle_{s}$ is the superior semi-inner product and $\langle\cdot, \cdot\rangle_{i}$ is the inferior semi-inner product, we can define the following concepts of synchronicity for the two n-tuples of vectors $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$.

Let $p \geq 1$ and $u, v \in X^{n}$ be as above. We say that v is $p-\nabla$-synchronous with u if

$$
\begin{equation*}
\left\|u_{k}\right\|^{p-2}\left\langle v_{k}-v_{j}, u_{k}\right\rangle_{i} \geq\left\|u_{j}\right\|^{p-2}\left\langle v_{k}-v_{j}, u_{j}\right\rangle_{s} \tag{2.2}
\end{equation*}
$$

for any $k, j \in\{1, \ldots, n\}$.

We observe that for $p \in[1,2)$ we should assume that $u_{k} \neq 0$ for $k \in\{1, \ldots, n\}$. For $p=2$, the relation (2.2) reduces to

$$
\begin{equation*}
\left\langle v_{k}-v_{j}, u_{k}\right\rangle_{i} \geq\left\langle v_{k}-v_{j}, u_{j}\right\rangle_{s} \quad \text { for any } k, j \in\{1, \ldots, n\} . \tag{2.3}
\end{equation*}
$$

If $(X,\|\cdot\|)$ is a smooth normed space, meaning that the norm is Gâteaux differentiable on any $x \in X, x \neq 0$, and if we denote by $[\cdot, \cdot]$ the semi-inner product generating the norm $\|\cdot\|$ (see [10, pp. 19-20]), then the fact that v is $p-\nabla$ synchronous with u means that

$$
\begin{equation*}
\left\|u_{k}\right\|^{p-2}\left[v_{k}-v_{j}, u_{k}\right] \geq\left\|u_{j}\right\|^{p-2}\left[v_{k}-v_{j}, u_{j}\right] \tag{2.4}
\end{equation*}
$$

for any $k, j \in\{1, \ldots, n\}$. For $p=2$,

$$
\begin{equation*}
\left[v_{k}-v_{j}, u_{k}\right] \geq\left[v_{k}-v_{j}, u_{j}\right] \quad \text { for any } k, j \in\{1, \ldots, n\} . \tag{2.5}
\end{equation*}
$$

Moreover, if the norm $\|\cdot\|$ is generated by an inner product $\langle\cdot, \cdot\rangle$, then v is $p-\nabla$ synchronous with u means that

$$
\begin{equation*}
\left\langle v_{k}-v_{j},\left\|u_{k}\right\|^{p-2} u_{k}-\left\|u_{j}\right\|^{p-2} u_{j}\right\rangle \geq 0 \quad \text { for any } k, j \in\{1, \ldots, n\} \tag{2.6}
\end{equation*}
$$

while for $p=2$, it reduces to

$$
\begin{equation*}
\left\langle v_{k}-v_{j}, u_{k}-u_{j}\right\rangle \geq 0 \quad \text { for any } k, j \in\{1, \ldots, n\} \tag{2.7}
\end{equation*}
$$

which is the concept of synchronous sequences in inner product spaces that was introduced in [18]. For some inequalities for synchronous sequences in inner product spaces, see [17, 18].

As natural examples of synchronous sequences in inner product spaces, we can consider the sequences $\left\{x_{i}\right\}_{i \in \mathbb{N}}$ and $\left\{A x_{i}\right\}_{i \in \mathbb{N}}$ where $A: X \rightarrow X$ is a positive linear operator on X, that is, $\langle A x, x\rangle \geq 0$ for any $x \in \underset{\sim}{X}$.

For a convex function $f: X \rightarrow \mathbb{R}$ we define $\tilde{\nabla} f(\cdot)(\cdot)$ as

$$
\begin{equation*}
\tilde{\nabla} f(x)(y):=\frac{1}{2}\left[\nabla_{-} f(x)(y)+\nabla_{+} f(x)(y)\right], \tag{2.8}
\end{equation*}
$$

where $x, y \in X$. We observe that for f as above, we have the homogeneity property:

$$
\begin{equation*}
\tilde{\nabla} f(x)(\alpha y)=\alpha \tilde{\nabla} f(x)(y) \quad \text { for any } x, y \in X \tag{2.9}
\end{equation*}
$$

and any $\alpha \in \mathbb{R}$.
The following inequality for $\nabla-f$-synchronous sequences holds.
THEOREM 2.2. Assume that v is $\nabla-f$-synchronous with u and $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ is a probability distribution. Then

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} \tilde{\nabla} f\left(u_{i}\right)\left(v_{i}\right) \geq \sum_{i, j=1}^{n} p_{i} p_{j} \tilde{\nabla} f\left(u_{i}\right)\left(v_{j}\right) . \tag{2.10}
\end{equation*}
$$

Proof. Since $\nabla_{+}(\cdot)(\cdot)$ is subadditive in the second variable, then

$$
\begin{equation*}
\nabla_{+} f\left(u_{j}\right)\left(v_{i}-v_{j}\right) \geq \nabla_{+} f\left(u_{j}\right)\left(v_{i}\right)-\nabla_{+} f\left(u_{j}\right)\left(v_{j}\right) \tag{2.11}
\end{equation*}
$$

for any $i, j \in\{1, \ldots, n\}$. Also, by the fact that $\nabla_{-}(\cdot)(\cdot)$ is superadditive in the second variable, we have that

$$
\begin{equation*}
\nabla_{-} f\left(u_{i}\right)\left(v_{i}\right)-\nabla_{-} f\left(u_{i}\right)\left(v_{j}\right) \geq \nabla_{-} f\left(u_{i}\right)\left(v_{i}-v_{j}\right) \tag{2.12}
\end{equation*}
$$

for all $i, j \in\{1, \ldots, n\}$. Now, by (2.11), (2.12) and by the definition of $\nabla-f$ synchronicity, we deduce that

$$
\nabla_{-} f\left(u_{i}\right)\left(v_{i}\right)-\nabla_{-} f\left(u_{i}\right)\left(v_{j}\right) \geq \nabla_{+} f\left(u_{j}\right)\left(v_{i}\right)-\nabla_{+} f\left(u_{j}\right)\left(v_{j}\right)
$$

which is equivalent to

$$
\begin{equation*}
\nabla_{-} f\left(u_{i}\right)\left(v_{i}\right)+\nabla_{+} f\left(u_{j}\right)\left(v_{j}\right) \geq \nabla_{+} f\left(u_{j}\right)\left(v_{i}\right)+\nabla_{-} f\left(u_{i}\right)\left(v_{j}\right) \tag{2.13}
\end{equation*}
$$

for all $i, j \in\{1, \ldots, n\}$.
Therefore, by multiplying (2.13) with $p_{i} p_{j} \geq 0$ and summing over i and j from 1 to n, we get

$$
\begin{align*}
\sum_{i=1}^{n} & p_{i} \nabla_{-} f\left(u_{i}\right)\left(v_{i}\right)+\sum_{j=1}^{n} p_{j} \nabla_{+} f\left(u_{j}\right)\left(v_{j}\right) \\
& \geq \sum_{i, j=1}^{n} p_{i} p_{j} \nabla_{+} f\left(u_{j}\right)\left(v_{i}\right)+\sum_{i, j=1}^{n} p_{i} p_{j} \nabla_{-} f\left(u_{i}\right)\left(v_{j}\right) \tag{2.14}
\end{align*}
$$

Now, observe that

$$
\sum_{j=1}^{n} p_{j} \nabla_{+} f\left(u_{j}\right)\left(v_{j}\right)=\sum_{i=1}^{n} p_{i} \nabla_{+} f\left(u_{i}\right)\left(v_{i}\right)
$$

and

$$
\sum_{i, j=1}^{n} p_{i} p_{j} \nabla_{+} f\left(u_{j}\right)\left(v_{i}\right)=\sum_{i, j=1}^{n} p_{i} p_{j} \nabla_{+} f\left(u_{i}\right)\left(v_{j}\right)
$$

which, by (2.14) divided by 2 , provides the desired result (2.10).
COROLLARY 2.3. With the assumptions of Theorem 2.2, and if in addition $\tilde{\nabla} f\left(u_{i}\right)(\cdot)$ is additive for any $i \in\{1, \ldots, n\}$, then

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} \tilde{\nabla} f\left(u_{i}\right)\left(v_{i}\right) \geq \sum_{i=1}^{n} p_{i} \tilde{\nabla} f\left(u_{i}\right)\left(\sum_{j=1}^{n} p_{j} u_{j}\right) \tag{2.15}
\end{equation*}
$$

REMARK 2.4. If f is Gâteaux differentiable at the points $u_{i}, i \in\{1, \ldots, n\}$, then $\tilde{\nabla} f\left(u_{i}\right)(\cdot)=\nabla f\left(u_{i}\right)(\cdot)$ and is therefore linear on X. With this assumption, inequality (2.15) becomes

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} \nabla f\left(u_{i}\right)\left(v_{i}\right) \geq \sum_{i=1}^{n} p_{i} \nabla f\left(u_{i}\right)\left(\sum_{j=1}^{n} p_{j} u_{j}\right) \tag{2.16}
\end{equation*}
$$

Moreover, we note that there are examples of convex functions defined on linear spaces for which $\tilde{\nabla} f(x)(\cdot)$ is linear for any $x \neq 0$ without the function f being Gâteaux differentiable at that point (see, for instance, [10, pp. 44-45]).

Following [19], we consider the g-semi-inner product $\langle\cdot, \cdot\rangle_{g}: X \times X \rightarrow \mathbb{R}$ defined by

$$
\langle y, x\rangle_{g}:=\frac{1}{2}\left[\langle y, x\rangle_{i}+\langle y, x\rangle_{s}\right], \quad x, y \in X .
$$

Using this notation, we have the following conditional inequality for semi-inner products and norms in normed linear spaces.

Proposition 2.5. Let $(X,\|\cdot\|)$ be a normed linear space, $u=\left(u_{1}, \ldots, u_{n}\right), v=$ $\left(v_{1}, \ldots, v_{n}\right) \in X^{n}$ and $p \geq 1$. If

$$
\begin{equation*}
\left\|u_{k}\right\|^{p-2}\left\langle v_{k}-v_{j}, u_{k}\right\rangle_{i} \geq\left\|u_{j}\right\|^{p-2}\left\langle v_{k}-v_{j}, u_{j}\right\rangle_{s} \tag{2.17}
\end{equation*}
$$

for any $k, j \in\{1, \ldots, n\}$, then

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k}\left\|u_{k}\right\|^{p-2}\left\langle v_{k}, u_{k}\right\rangle_{g} \geq \sum_{k, j=1}^{n} p_{k} p_{j}\left\|u_{k}\right\|^{p-2}\left\langle v_{j}, u_{k}\right\rangle_{g} \tag{2.18}
\end{equation*}
$$

for any \mathbf{p} a probability distribution. If $p<2$, then we should have in (2.17) all $u_{k} \neq 0$. If $p=2$ and

$$
\begin{equation*}
\left\langle v_{k}-v_{j}, u_{k}\right\rangle_{i} \geq\left\langle v_{k}-v_{j}, u_{j}\right\rangle_{s} \tag{2.19}
\end{equation*}
$$

for any $k, j \in\{1, \ldots, n\}$, then

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k}\left\langle v_{k}, u_{k}\right\rangle_{g} \geq \sum_{k, j=1}^{n} p_{k} p_{j}\left\langle v_{j}, u_{k}\right\rangle_{g} \tag{2.20}
\end{equation*}
$$

for any \mathbf{p} a probability distribution.
As a particular case of interest, we state the following result that holds in inner product spaces.

Corollary 2.6. Let $(X,\langle\cdot, \cdot\rangle)$ be a real inner product space, $u=\left(u_{1}, \ldots, u_{n}\right)$, $v=\left(v_{1}, \ldots, v_{n}\right) \in X^{n}$ and $p \geq 1$. If

$$
\begin{equation*}
\left\langle v_{k}-v_{j},\left\|u_{k}\right\|^{p-2} u_{k}-\left\|u_{j}\right\|^{p-2} u_{j}\right\rangle \geq 0 \tag{2.21}
\end{equation*}
$$

for any $k, j \in\{1, \ldots, n\}$, then

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k}\left\|u_{k}\right\|^{p-2}\left\langle v_{k}, u_{k}\right\rangle \geq\left\langle\sum_{j=1}^{n} p_{j} u_{j}, \sum_{k=1}^{n} p_{k}\left\|u_{k}\right\|^{p-2} u_{k}\right\rangle \tag{2.22}
\end{equation*}
$$

for any \mathbf{p} a probability distribution.
REMARK 2.7. We observe that if the n-tuples u and v above are synchronous, that is,

$$
\begin{equation*}
\left\langle v_{k}-v_{j}, u_{k}-u_{j}\right\rangle \geq 0 \quad \text { for any } j, k \in\{1, \ldots, n\} \tag{2.23}
\end{equation*}
$$

then we have the Chebyshev type inequality

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k}\left\langle v_{k}, u_{k}\right\rangle \geq\left\langle\sum_{k=1}^{n} p_{k} v_{k}, \sum_{k=1}^{n} p_{k} u_{k}\right\rangle . \tag{2.24}
\end{equation*}
$$

This result was first obtained in [18].

3. Inequalities for convex functions

The following result for convex functions may be stated.
THEOREM 3.1. Let $f: X \rightarrow \mathbb{R}$ be a convex function on the linear space X and $x, y \in X^{n}$. Let \mathbf{p} be a probability distribution so that

$$
\sum_{i=1}^{n} p_{i} x_{i}=\sum_{i=1}^{n} p_{i} y_{i}
$$

If $x-y$ is $\nabla-f$-synchronous with y and $\tilde{\nabla} f\left(y_{i}\right)(\cdot)$ is additive for each $i \in$ $\{1, \ldots, n\}$, then

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \geq \sum_{i=1}^{n} p_{i} f\left(y_{i}\right) \tag{3.1}
\end{equation*}
$$

Proof. Since f is convex, then for any $x, y \in X$,

$$
\begin{equation*}
f(x)-f(y) \geq \nabla_{+} f(y)(x-y) \geq \tilde{\nabla} f(y)(x-y) \tag{3.2}
\end{equation*}
$$

Then from (3.2),

$$
\begin{equation*}
f\left(x_{i}\right)-f\left(y_{i}\right) \geq \tilde{\nabla} f\left(y_{i}\right)\left(x_{i}-y_{i}\right) \tag{3.3}
\end{equation*}
$$

for each $i \in\{1, \ldots, n\}$.
If we multiply (3.3) by $p_{i} \geq 0$ and then sum over i from 1 to n, we get

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-\sum_{i=1}^{n} p_{i} f\left(y_{i}\right) \geq \sum_{i=1}^{n} p_{i} \tilde{\nabla} f\left(y_{i}\right)\left(x_{i}-y_{i}\right) \tag{3.4}
\end{equation*}
$$

If we now use Corollary 2.3 for $u_{i}=y_{i}$ and $v_{i}=x_{i}-y_{i}, i \in\{1, \ldots, n\}$, we deduce the inequality

$$
\begin{align*}
\sum_{i=1}^{n} p_{i} \tilde{\nabla} f\left(y_{i}\right)\left(x_{i}-y_{i}\right) & \geq \sum_{i=1}^{n} p_{i} \tilde{\nabla} f\left(y_{i}\right)\left(\sum_{i=1}^{n} p_{i}\left(x_{i}-y_{i}\right)\right) \\
& =\sum_{i=1}^{n} p_{i} \tilde{\nabla} f\left(y_{i}\right)(0)=0 \tag{3.5}
\end{align*}
$$

Combining (3.4) with (3.5), we deduce the desired inequality (3.1).
Remark 3.2. It is clear that if f is Gâteaux differentiable at all the points y_{i}, $i \in\{1, \ldots, n\}$, then $\tilde{\nabla} f\left(y_{i}\right)(\cdot)=\nabla f\left(y_{i}\right)(\cdot), i \in\{1, \ldots, n\}$, which are linear on X and then inequality (3.1) holds true.

In the case of Gâteaux differentiable functions, we can state the following result as well.

THEOREM 3.3. Let $f: X \rightarrow \mathbb{R}$ be a convex and Gâteaux differentiable function on the linear space X. Assume that $x, y \in X^{n}$ and \mathbf{p} is a probability distribution. If $x-y$ is $\nabla-f$-synchronous with y and

$$
\sum_{i=1}^{n} p_{i} x_{i}-\sum_{i=1}^{n} p_{i} y_{i} \in \bigcap_{i=1}^{n} \operatorname{ker}\left(\nabla f\left(y_{i}\right)(\cdot)\right)
$$

then

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \geq \sum_{i=1}^{n} p_{i} f\left(y_{i}\right) \tag{3.6}
\end{equation*}
$$

The proof is as for Theorem 3.1 when in (3.5) we take into account that

$$
\nabla f\left(y_{i}\right)\left(\sum_{i=1}^{n} p_{i} x_{i}-\sum_{i=1}^{n} p_{i} y_{i}\right)=0
$$

for all $i \in\{1, \ldots, n\}$ since

$$
\sum_{i=1}^{n} p_{i} x_{i}-\sum_{i=1}^{n} p_{i} y_{i} \in \bigcap_{i=1}^{n} \operatorname{ker}\left(\nabla f\left(y_{i}\right)(\cdot)\right) .
$$

The following result in smooth normed linear spaces may be stated.
Proposition 3.4. Let $(X,\|\cdot\|)$ be a smooth normed linear space and let $[\cdot, \cdot]$ be the semi-inner product that generates its norm $\|\cdot\|$. If $x, y \in X^{n}$ and $p \geq 1$ are such that

$$
\begin{equation*}
\left\|y_{k}\right\|^{p-2}\left[x_{k}-y_{k}-x_{j}+y_{j}, y_{k}\right] \geq\left\|y_{j}\right\|^{p-2}\left[x_{k}-y_{k}-x_{j}+y_{j}, y_{j}\right] \tag{3.7}
\end{equation*}
$$

for any $k, j \in\{1, \ldots, n\}$, then, for any probability distribution \mathbf{p} with the property that

$$
\begin{equation*}
\sum_{j=1}^{n} p_{j} x_{j}=\sum_{j=1}^{n} p_{j} y_{j} \tag{3.8}
\end{equation*}
$$

we have the inequality

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k}\left\|x_{k}\right\|^{p} \geq \sum_{k=1}^{n} p_{k}\left\|y_{k}\right\|^{p} \tag{3.9}
\end{equation*}
$$

If $p \in[1,2)$ we shall assume that $y_{k} \neq 0$ for $k \in\{1, \ldots, n\}$.
If $p=2$ and

$$
\begin{equation*}
\left[x_{k}-y_{k}-x_{j}+y_{j}, y_{k}\right] \geq\left[x_{k}-y_{k}-x_{j}+y_{j}, y_{j}\right] \tag{3.10}
\end{equation*}
$$

for any $k, j \in\{1, \ldots, n\}$, then for any probability distribution \mathbf{p} satisfying (3.8),

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k}\left\|x_{k}\right\|^{2} \geq \sum_{k=1}^{n} p_{k}\left\|y_{k}\right\|^{2} \tag{3.11}
\end{equation*}
$$

The case of inner product spaces is incorporated in the following corollary.
Corollary 3.5. Let $(X ;\langle\cdot, \cdot\rangle)$ be an inner product space. If $x, y \in X^{n}$ and $p \geq 1$ are such that

$$
\begin{equation*}
\left\langle x_{k}-x_{j},\left\|y_{k}\right\|^{p-2} y_{k}-\left\|y_{j}\right\|^{p-2} y_{j}\right\rangle \geq\left\langle y_{k}-y_{j},\left\|y_{k}\right\|^{p-2} y_{k}-\left\|y_{j}\right\|^{p-2} y_{j}\right\rangle \tag{3.12}
\end{equation*}
$$

for any $k, j \in\{1, \ldots, n\}$, then for any \mathbf{p} satisfying (3.8) we have inequality (3.9).
If $p \in[1,2)$, then we shall assume that $y_{k} \neq 0, k \in\{1, \ldots, n\}$.
If $p=2$ and

$$
\begin{equation*}
\left\langle x_{k}-x_{j}, y_{k}-y_{j}\right\rangle \geq\left\|y_{k}-y_{j}\right\|^{2}, \quad \text { for any } k, j \in\{1, \ldots, n\} \tag{3.13}
\end{equation*}
$$

then for any \mathbf{p} satisfying (3.8), we have inequality (3.11).
REMARK 3.6. We notice that examples of sequences x_{k} and $y_{k}, k \in\{1, \ldots, n\}$, satisfying (3.13) can easily be provided by taking $x_{k}=A y_{k}, k \in\{1, \ldots, n\}$, where A is a selfadjoint operator on the Hilbert space H satisfying the condition $\langle A z, z\rangle \geq\|z\|^{2}$, for any $z \in H$, that is, $A \geq I$ in the operator order of the Banach algebra $B(H)$.

4. Applications for convex functions on $\mathbb{R}^{\boldsymbol{m}}$

Now consider an open and convex set C in the real linear space $\mathbb{R}^{m}, m \geq 1$. For a convex and differentiable function $f: C \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\nabla f(x)(y)=\left\langle\frac{\partial f(x)}{\partial x}, y\right\rangle, \quad x \in C, y \in \mathbb{R}^{m} \tag{4.1}
\end{equation*}
$$

where

$$
\frac{\partial f(x)}{\partial x}=\left(\frac{\partial f(x)}{\partial x^{1}}, \ldots, \frac{\partial f(x)}{\partial x^{m}}\right), \quad x=\left(x^{1}, \ldots, x^{m}\right) \in C
$$

and $\langle\cdot, \cdot \cdot\rangle$ is the usual inner product in \mathbb{R}^{m}, that is, $\langle u, v\rangle=\sum_{k=1}^{m} u^{i} \cdot v^{i}$, where $u=\left(u^{1}, \ldots, u^{m}\right)$ and $v=\left(v^{1}, \ldots, v^{m}\right) \in \mathbb{R}^{m}$.

Now, if $\mathbf{v}:=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{m}$ and $\mathbf{u}:=\left(u_{1}, \ldots, u_{n}\right) \in C^{m}$, then we say that \mathbf{v} is $\nabla-f$-synchronous with \mathbf{u} if

$$
\begin{equation*}
\left\langle\frac{\partial f\left(u_{k}\right)}{\partial x}-\frac{\partial f\left(u_{j}\right)}{\partial x}, v_{k}-v_{j}\right\rangle \geq 0 \quad \text { for any } k, j \in\{1, \ldots, n\} \tag{4.2}
\end{equation*}
$$

The following result may be stated.
Proposition 4.1. Let $f: C \rightarrow \mathbb{R}$ be a differentiable convex function on the open and convex set $C \subseteq \mathbb{R}^{m}$. If $\mathbf{v}:=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{m}$ and $\mathbf{u}:=\left(u_{1}, \ldots, u_{n}\right) \in C^{m}$ are such that \mathbf{v} is $\nabla-f$-synchronous with \mathbf{u}, then for any probability distribution $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$,

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i}\left\langle\frac{\partial f\left(u_{i}\right)}{\partial x}, v_{i}\right\rangle \geq\left\langle\sum_{i=1}^{n} p_{i} \frac{\partial f\left(u_{i}\right)}{\partial x}, \sum_{i=1}^{n} p_{i} v_{i}\right\rangle \tag{4.3}
\end{equation*}
$$

The proof is obvious by Corollary 2.3.

Now, if $u_{k}=\left(u_{k}^{1}, \ldots, u_{k}^{m}\right), k \in\{1, \ldots, n\}$, and $v_{k}=\left(v_{k}^{1}, \ldots, v_{k}^{m}\right)$, then

$$
\begin{equation*}
\left\langle\frac{\partial f\left(u_{k}\right)}{\partial x}-\frac{\partial f\left(u_{j}\right)}{\partial x}, v_{k}-v_{j}\right\rangle=\sum_{\ell=1}^{m}\left(\frac{\partial f\left(u_{k}\right)}{\partial x^{\ell}}-\frac{\partial f\left(u_{j}\right)}{\partial x^{\ell}}\right)\left(v_{k}^{\ell}-v_{j}^{\ell}\right) . \tag{4.4}
\end{equation*}
$$

REMARK 4.2. Relation (4.4) shows that a sufficient condition for \mathbf{v} to be $\nabla-f$ synchronous with \mathbf{u} is that all the sequences $\left\{\partial f\left(u_{k}\right) / \partial x^{\ell}\right\}_{k=1, \ldots, n}$ and $\left\{v_{k}^{\ell}\right\}_{k=1, \ldots, n}$ are synchronous, where $\ell \in\{1, \ldots, m\}$, that is,

$$
\begin{equation*}
\left(\frac{\partial f\left(u_{k}\right)}{\partial x^{\ell}}-\frac{\partial f\left(u_{j}\right)}{\partial x^{\ell}}\right)\left(v_{k}^{\ell}-v_{j}^{\ell}\right) \geq 0 \quad \text { for any } k, j \in\{1, \ldots, n\} \tag{4.5}
\end{equation*}
$$

and for all $\ell \in\{1, \ldots, m\}$.
The following result is an obvious consequence of Theorem 3.3.
Proposition 4.3. Let $f: C \rightarrow \mathbb{R}$ be a differentiable convex function on the open and convex set $C \subseteq \mathbb{R}^{m}$. If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{m}$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in C^{m}$ are such that

$$
\begin{equation*}
\left\langle\frac{\partial f\left(y_{k}\right)}{\partial x}-\frac{\partial f\left(y_{j}\right)}{\partial x}, x_{k}-x_{j}\right\rangle \geq\left\langle\frac{\partial f\left(y_{k}\right)}{\partial x}-\frac{\partial f\left(y_{j}\right)}{\partial x}, y_{k}-y_{j}\right\rangle, \tag{4.6}
\end{equation*}
$$

for each $k, j \in\{1, \ldots, n\}$, then for any probability distribution $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ with

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} x_{i}=\sum_{i=1}^{n} p_{i} y_{i} \tag{4.7}
\end{equation*}
$$

we have the inequality

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \geq \sum_{i=1}^{n} p_{i} f\left(y_{i}\right) \tag{4.8}
\end{equation*}
$$

REMARK 4.4. As above, a sufficient condition for (4.6) to hold is that the sequences $\left\{\partial f\left(y_{k}\right) / \partial x^{\ell}\right\}_{k=1, \ldots, n}$ and $\left\{x_{k}^{\ell}-y_{k}^{\ell}\right\}_{k=1, \ldots, n}$ are synchronous for each $\ell \in\{1, \ldots, m\}$.

References

[1] A. H. Ansari and M. S. Moslehian, 'More on reverse triangle inequality in inner product spaces', Int. J. Math. Math. Sci. 2005(18) (2005), 2883-2893.
[2] A. H. Ansari and M. S. Moslehian, 'Refinements of reverse triangle inequalities in inner product spaces', J. Inequal. Pure Appl. Math. 6(3) (2005), Article 64, 12 pp (electronic).
[3] I. Brnetić, S. S. Dragomir, R. Hoxha and J. Pečarić, 'A reverse of the triangle inequality in inner product spaces and applications for polynomials', Aust. J. Math. Anal. Appl. 3(2) (2006), Art. 9, 8 pp.
[4] Y. J. Cho, M. Matić and J. Pečarić, 'Inequalities of Hlawka's type in n-inner product spaces', Commun. Korean Math. Soc. 17(4) (2002), 583-592.
[5] S. S. Dragomir, 'An improvement of Jensen's inequality', Bull. Math. Soc. Sci. Math. Roumanie 34(82)(4) (1990), 291-296.
[6] S. S. Dragomir, ‘Some refinements of Ky Fan’s inequality’, J. Math. Anal. Appl. 163(2) (1992), 317-321.
[7] S. S. Dragomir, 'Some refinements of Jensen's inequality’, J. Math. Anal. Appl. 168(2) (1992), 518-522.
[8] S. S. Dragomir, 'A further improvement of Jensen's inequality', Tamkang J. Math. 25(1) (1994), 29-36.
[9] S. S. Dragomir, 'A new improvement of Jensen's inequality', Indian J. Pure Appl. Math. 26(10) (1995), 959-968.
[10] S. S. Dragomir, Semi-inner Products and Applications (Nova Science Publishers, New York, 2004).
[11] S. S. Dragomir, 'A new refinement of Jensen's inequality in linear spaces with applications', RGMIA Res. Rep. Coll. 12 (2009), Preprint, Supplement, Article 6. http://www.staff.vu.edu.au/RGMIA/v12(E).asp.
[12] S. S. Dragomir, 'Inequalities in terms of the Gâteaux derivatives for convex functions in linear spaces with applications', RGMIA Res. Rep. Coll. 12 (2009), Preprint, Supplement, Article 7. http://www.staff.vu.edu.au/RGMIA/v12(E).asp.
[13] S. S. Dragomir, 'A refinement of Jensen's inequality with applications for f-divergence measures', Taiwanese J. Math. 14(1) (2010), 153-164.
[14] S. S. Dragomir and C. J. Goh, 'A counterpart of Jensen's discrete inequality for differentiable convex mappings and applications in information theory', Math. Comput. Modelling 24(2) (1996), 1-11.
[15] S. S. Dragomir and N. M. Ionescu, 'Some converse of Jensen's inequality and applications', Rev. Anal. Numér. Théor. Approx. 23(1) (1994), 71-78.
[16] S. S. Dragomir, J. Pečarić and L. E. Persson, 'Properties of some functionals related to Jensen's inequality', Acta Math. Hungar. 70(1-2) (1996), 129-143.
[17] S. S. Dragomir, J. Pečarić and J. Sándor, 'The Chebyshev inequality in pre-Hilbertian spaces. II', Proceedings of the Third Symposium of Mathematics and its Applications (Timişoara, 1989) (Romanian Acad., Timişoara, 1990), pp. 75-78.
[18] S. S. Dragomir and J. Sándor, 'The Chebyshev inequality in pre-Hilbertian spaces. I', Proceedings of the Second Symposium of Mathematics and its Applications (Timişoara, 1987) (Romanian Acad., Timişoara, 1988), pp. 61-64.
[19] P. M. Miličić, 'Sur le semi-produit scalaire dans quelques espaces vectorial normés', Mat. Vesnik 8(23) (1971), 181-185.
[20] P. M. Miličić, 'Sur une inégalité complémentaire de l'inégalité triangulaire', Mat. Vesnik 41(2) (1989), 83-88.
[21] J. Pečarić and S. S. Dragomir, 'A refinements of Jensen inequality and applications', Stud. Univ. Babeş-Bolyai, Math. 24(1) (1989), 15-19.
[22] J. Pečarić and R. Rajić, 'The Dunkl-Williams inequality with n elements in normed linear spaces', Math. Inequal. Appl. 10(2) (2007), 461-470.

S. S. DRAGOMIR, Mathematics, School of Engineering and Science, Victoria University, PO Box 14428, Melbourne City, Vic 8001, Australia
and
School of Computational and Applied Mathematics, University of the Witwatersrand, Private Bag-3, Wits-2050, Johannesburg, South Africa
e-mail: sever.dragomir@vu.edu.au

[^0]: (C) 2010 Australian Mathematical Publishing Association Inc. 0004-9727/2010 \$16.00

