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ON THE USE OF THE EQUILIBRIUM EQUATIONS AND
FLOW LAW IN RELATING THE SURFACE AND BED
TOPOGRAPHY OF GLACIERS AND ICE SHEETS

By L. F. CoLLins

(Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge, England)

ApsTract. In a recent paper Robin has developed a method of calculating the relation between bed and
surface topography of an ice sheet, He found that by including the effect of longitudinal strains in the
cquilibrium equation the correlation between theory and observation could be much improved. This
paper is concerned with the mathematical justification of the assumption made by Robin.

RESUME. Sur la relation entre la topographie superficielle et celle du socle rocheux d’un indlandsis. Dans une récente
publication, Robin a développé une méthode de calcul de la relation entre la topographie superficielle et
celle du socle rocheux d’un indlandsis. Il a trouvé qu’en introduisant Ieffet de deformations longitudinales
dans I'équation d’équilibre. la corrélation entre la théorie et 'observation pouvait étre bien améliorée.
Le présent rapport constitue la justification mathématique des hypothéses [aites par Robin.

ZUSAMMENFASSUNG.  Uber den Zusammenhang zwischen der Oberflichen- und Untergrundstopographie von Eis-
schilden. In einer neueren Arbeit hat Robin eine Methode zur Berechnung des Zusammenhanges zwischen
Untergrunds- und Oberflachentopographie eines Eisschildes entwickelt. Er fand, dass bei Beriicksichtigung
der Wirkung von Lingsverzerrung in der Gleichgewichtsbedingung die Ubereinstimmung zwischen Theorie
und Beobachtung stark verbessert werden kann. Diese Arbeit ist auf die mathematische Begriindung von
Robins Annahme gerichtet.

1. INTRODUCTION

This paper is complementary to a paper by Robin (1967) concerning the flow of an ice
sheet over an uneven bed, and in particular the relation between bed and surface topography.
Until recently a simple pseudo-hydrostatic theory due to Nye (1952) has been in sufficient
agreement with observation as not to warrant any refinement in the theory. However, recent
improvements in observational precision using continuous radio-ccho sounding techniques
have shown discrepancies between observation and this theory. Similar discrepancies have
been previously noted by Lliboutry (1958, 1964-65) from data obtained on the Mer de Glace.

In his paper Robin shows that by taking into account the “longitudinal stresses’ set up by
the flow of ice over protuberances on the bed, the correlation between theory and observation
can be much improved. The present paper is concerned with the mathematical justification
of Robin’s approach.

In section 2 an exact statement of the quasi-static equilibrium of the ice is derived in an
integrated form. T'wo related assumptions are then made to reduce the problem to a readily
tractable one-dimensional one. The relation between longitudinal stress (which is given a
precise meaning) and strain-rate is derived in section 3, and the validity of the assumptions
made is discussed in section 4.

2. TueE Quasi-sTATE EQuILIBRIUM OF AN IcE SHEET

Consider the two-dimensional (plane-strain) flow of ice over an uneven bed (Fig. 1).
Take orthogonal cartesian axes Ox, Oy in the horizontal and vertical directions, Ox being an
arbitrarily chosen horizontal datum line. (An alternative scheme would be to take local
orthogonal axes with one axis in the local direction of the bed or surface. The resulting
integrated form of the equilibrium equations are then symbolically simpler, but have the
disadvantage of being referred to axes which are curvilinear and may be initially unknown.)
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Fig. 2. Infinitesimal triangle in the surface

The differential forms of the equilibrium equations (neglecting inertia) are, in the x and y
directions respectively,
bogy  Orzy
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where o4, o, are the normal components and 74y the shear component of stress and p the
density of ice (assumed uniform).

The shear stress on the bed we shall denote by 7. On the surface the normal and shear
tractions are both zero; it is convenient to express these conditions in terms of the stress
components referred to the (x, ») coordinate system. Consider the equilibrium of the infinitesi-
mal triangle PoRr shown in Figure 2, pQ lies in the surface and is hence stress free. Resolving in
the x and y directions we obtain

0z PR+T2y QR = O, Oy QR+Tzy PR = 0O,
but PR/QR = tan o = —dhs/dx = —hyg,
therefore o = Taylhs oy = Tay hg (3)

where Ay is the vertical height of the surface above the datum and « the inclination of the
surface to the horizontal.

An integrated form of one of the equilibrium equations can be obtained by considering the
equilibrium of the region ABcp in Figure 1. Resolving parallel to the bed so as to avoid the
large, unknown normal traction of the bed,
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hi h]
0 0 '
T sec B—pghsin B = cosﬁa oz dy—sinﬁaf Tzy dy (4)

Fm hn
where B is the slope of the bed, hy, ks are the heights of the bed and surface above the datum
and h = hy—hyp is the vertical ice thickness.

It is reasonably well established (e.g. Nye, 1959) that the flow of ice is not affected by
hydrostatic pressure, and hence in any flow law the normal strain-rates must be related to the
deviatoric components of normal stress (i.e. normal stress less the hydrostatic stress). We
cannot then relate o5 as it occurs in Equation (4) to the strain-rates, but must first eliminate
the hydrostatic component. This is done below by using the vertical equilibrium equation to

ks

0 -
exXpress = f oy dx in terms of the shear stress and boundary tractions, and then combining

ho
this with Equation (4) so that the right-hand side is replaced by terms independent of the
hydrostatic pressure.

Consider
hs he

7 3 Bruy ? ) )
ﬁf)’"’zy dy = aj‘)’ T d)""a [As b g T:cyls—hb Ay Ta:y|b]
hy o
performing the first differentiation with respect to x (the suffixes “s” and “b” signify that the
stress component is evaluated on the surface and bed respectively). Substituting for &r,,/0x

from the second equilibrium equation and making use of the surface boundary conditions (3),
hs hs

al

01 ’ do i
5 [t = £ [3pei—h) — [ 52t o=l
hn hy r
and, using the formula for integration by parts,

'h!
0 0 . .
= f oy dy+=—[pg(hs—hi) —hn by T2y[v+-hs oy s].
hn
Hence combining this with Equation (4) we obtain
hy ts

2 2
T sce fpghsinf — cos 5 [ (o—a) dy-oosfis [ yry dr—
5 hs hb P hn (5)*
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This equation is exact, depending only on the quasi-static equilibrium of the ice sheet.

We now make two related approximations (a) 8 the bed slope, and hence « the surface
slope, is small, so that we can replace sin 8 by 8, etc., and (b) the shear stress component 7,
is small compared with o, —oy at least when averaged throughout the thickness of the ice.

Equation (5) now reduces to
ke

d d
T—pghf = o f (e2—0v) dy—- [hpg(Bi—H3) -y oy o] (6)
hn
The approximation (b) is in fact over-restrictive for the validity of Equation (6), it being
only necessary for 72y to be such that the second term on the right-hand side of Equation (5)

* This way of expressing the equilibrium equation was suggested to the author by Dr R. Hill, who had
obtained the corresponding equation for a plane inclined bed (unpublished) using a general technique described
in Hill (1963).
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be small in comparison with the first. However it is shown later that to relate the stresses
with strain-rates calculable from known accumulation data it is necessary to make the stronger
approximation made here.

From Equations (2) and (3) we see that the neglect of the 7, term implies that —o,, is
equal to the weight of overlying ice. In particular on the bed oylp = —pgh = —pglhs—hy).
This can be seen directly by considering the vertical equilibrium of the ice column aBcp in
Figure 1. Since we are neglecting the shear stresses on AB and c¢p, the normal force on the
bed balances the weight of the ice column. Thus the vertical normal stress component is the
same as if the ice were stagnant (to the approximations of the present theory). This is not
true of the horizontal normal stress component.

Combining the last term on the right-hand side with that on the left we have finally

hs
c oF
T—pghoc ——?; (O’g;*ﬂy) dy == (H_'x (7)
he b
where == f (oz—oy) dy = h(G2—Ty) (8)

hy
(bars denoting quantities averaged throughout the ice thickness). Notice that the slope
occurring in Equation (7) is the surface and not the bed slope. The argument presented
above shows that this fact can be attributed to the need to eliminate hydrostatic pressure
from Equation (4), and it would not follow if ice were a compressible material.
If further we assume o,— 0y is negligible, so that both o, and ¢, are equal to the hydro-
static stress, then we have Nye’s pseudo-hydrostatic theory

T = poha. (9)
If we can assume 7 is constant along the bed, then the ice thickness is inversely proportional
to the surface slope (Nye, 1952). Alternatively we could use the law of sliding, in which the
longitudinal velocity u is assumed constant with depth, and is related to the shear stress on
the bed by a power law (Weertman, 1957; Nye, 1959)

u= (T/B)m (10)
where B, m are constants, m = (n+1)/2 where n is the power in Glen’s law. The relation
between ice thickness and surface slope based on Equations (g) and (10) 1s derived by Nye
(1959)-

The present theory differs from Nye’s in the inclusion of the “longitudinal force” ¥ in the
equilibrium equation (7). The importance of this effect was first noted by Orowan (1949)
who, however, only considered the basic equilibrium equation (4). In his analysis of Vallot’s
data from the Mer de Glace, Lliboutry did in fact use Equation (7); he did not, however,
prove this equation rigorously or investigate the conditions for its validity.

In order to relate this additional force with the longitudinal strain-rate, use must be made
of the flow law.

3. Usk or THE FLow Law
Nye’s generalization of Glen’s law can be written (as in Nye, 1957)
#={sl)» (1)
where A, n are constants, n = 4 and ¢, 7 are the second invariants of the strain-rate and
stress-deviator tensors respectively, defined by

& = (é2—éy)*+4€2y (12)
and 7 = (oz—0y) +475y (13)
The individual tensor components are related by

€x = Aoz, €y = Aoy, €zy = Arzy (14)

https://doi.org/10.3189/50022143000030999 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000030999

RELATION BETWEEN SURFACE AND BED TOPOGRAPHY 204

where a4, oy are the normal stress deviators and A = 7#="/4% for consistency with Equation
(11). The normal strain-rate components also satisfy the incompressibility conditions
értéy =0 (r5)
We now make the assumption that the shear components of strain-rate are small in
comparison with the normal strain-rates when averaged throughout the thickness of the ice
(more precisely du/oy, dv/ex <€ ufox, cv[cy). This is the same as assumption (b) in section 2.
In which case Equations (12) and (13) reduce (when averaged) to:

€ = Ex—éy, T=O0z—0y
Thus from Equations (11) and (15)
€z = —€y = }[(52—Ty)/A]" (16)
where we have further assumed that = or equivalently €, = cu/dx is constant with depth so
that we can equate 7" with 7#. This follows from our neglect of shear strain-rate, for if
ou/0y = o everywhere then &*u/cxdy = o, i.e. @€;/0y = 0. The value of €, can then be
expressed in terms of accumulation distribution and surface velocity by considering the
conservation of mass in arcp (Fig. 1)
hs s
0 ou
— Hd = .,—d —-—uh'—u ﬁ’:a
tij 4 Rl s b s—ulp Ay
hn hn
where & is the accumulation rate. Again invoking the assumption that fu/dy = o so that
u|s = ulyp, we have

€r — % (a—uh") (17)

From estimated values of @ and x and measured values of h and /', €, is given by Equation
(17) and hence o;—o, from Equation (16), F from Equation (8) and the necessary modifica-
tion to the surface slope from Equation (7). For details of the calculations the reader is
referred to Robin’s paper (1967).

4. SUMMARY

The two approximations necessary for the application of Robin’s method are as stated
in section 2:

(a) the bed slope £ is small,

(b) the shear stress component 7., is small compared with the normal stress difference
when averaged throughout the ice thickness.

Assumption (b) is a sufficient condition for the use of the approximate equilibrium
equation (7). It is both necessary and sufficient for the application of the flow law in the
simplified form of Equation (16). This approximation will hold if the motion of the ice
consists entirely of basal slip, the longitudinal velocity being constant with depth, and the
only internal deformation occurring being longitudinal straining. This is the assumption
Nye makes in his sliding model of glacier motion. However, it is not justified to neglect the
9F/@x term in the equilibrium equation, as Nye (1959) does, if this term is comparable with T,
the relative importance of these two terms must be estimated in each case considered.

The effect of making approximations (a) and (b) is to reduce the problem to an essentially
one-dimensional one. 1f these approximations are relaxed it becomes necessary to solve a
two-dimensional boundary-value problem. This latter problem is considerably more difficult
and laborious to solve.
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