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Abstract

Miller's group of order 64 is a smallest example of a nonabelian group with an abelian automorphism
group, and is the first in an infinite family of such groups formed by taking the semidirect product of
a cyclic group of order 2m (m > 3) with a dihedral group of order 8. This paper gives a method for
constructing further examples of non abelian 2-groups which! have abelian automorphism groups. Such
a 2-group is the semidirect product of a cyclic group and a special 2-group (satisfying certain
conditions). The automorphism group of this semidirect product is shown to be isomorphic to the
central automorphism group of the corresponding direct product. The conditions satisfied by the
special 2-group are determined by establishing when this direct product has an abelian central
automorphism group.

1980 Mathematics subject classification (Amer. Math. Soc): 20 F 28.

1. Introduction

Any group G mentioned in this paper is finite. An automorphism <f> of G is
central if <$> commutes with every inner automorphism of G, or equivalently if
g~xg* lies in the centre Z(G) of G for all g e G . The central automorphisms
form a normal subgroup, denoted AutcG, of the full automorphism group Aut G.
If H is a subgroup of G, we let Aut(G : H) = {<j> <= AutG|#* = H).

Struik [8] showed that Miller's group [6] of order 64 constitutes the first in an
infinite family M = (a,b,c\a2m = bA = c1 = 1, ab = a1 + 2"~\ bc = b~\ ac = a),
m > 3, of nonabelian 2-groups having abelian automorphism groups. M is a
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semidirect product of a cyclic group A = (a) of order 2m by N = (b, c) ~ D4,
the dihedral group of order 8. This paper provides a method of constructing M
and similar semidirect product groups with abelian automorphism groups. In
Section 4 we prove:

THEOREM. Let N be a nonabelian special 2-group with a subgroup J of index 2
such that (i) Z(J) = Z(N); (ii) A u t ^ : J) = AutcN. If G = AN is the semidirect
product of a cyclic group A of order 2m and a group N such that a" = a if n G J and

- ' then Aut G is abelian.

Section 2 gives preliminary results and Section 3 gives a criterion for Aut c G to
be abelian when G is a />-group with an abelian direct factor.

2. Automorphisms of semidirect products

Let G = AN be a semidirect product of a group A by a group N, with
multiplication given by (a, n)(a1,nl) = (aa" \nnx), where a, al G A and n,nl

G N. We denote by iA and t^ the inclusion maps from A and TV, respectively,
into G, and by irA and ir^ the projection maps from G to A and TV, respectively.
For (/> G EndG = Hom(G,G), we put a = iA<j>irA, P = iA<j>irN, y = IN^>'TA and
8 = t ^ T v Then P e Hom(,4, TV) and 8 e End TV.

If <f> also satisfies (a) [ ^ , ^ ] = 1 = [TVY, TV], then a G End A, y e Hom(TV, ^ )
and (a, w)* = (aawY, a^ns), where a e ^4, « G TV. If every <J> G EndG satisfies (a)
arid (b) [/I", TVY] = 1 = [A&, TV*], and if & denotes the matrix semigroup

G End A, P G Hom(A, TV), [A", Ny] = 1

G Hom(TV, A), 8 G End TV, [ ^ ^ ; T V * ] =

then / : End G -» ^ defined by /(^>) = (" «) is a monomorphism.
In particular, if G = yl X TV, then every </> G End G satisfies (a) and (b) above.

Conversely, if (£ f) e # and <J>: G -> G is defined by (a, n)* = (aanY, n^n8),
where a G v4, « G TV, then </> G EndG. We thus have

LEMMA 2.1. IfG = A X TV, then EndG « @.

For convenience let

°^= ( I " s i r e A u t i ' v e Hom(TV,Z(^)), S G Aut TV | ,

y 8] y G Hom(TV,^), 5 G AutTV / '
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and let JS?C and J^c be the corresponding sets of matrices, where a e AulcA
and 5 e AutcN.

The following two lemmas, whose proofs are straightforward, are used in
Section 3.

LEMMA 2.2. Let G = A X N. Then

(ii)Autt(G:y4)= {<J> e AutcG|^* = A} «-S?f;
(iii) Aut(G: N) and Autc(G: N) are isomorphic to analogous groups of upper

triangular matrices.

LEMMA 2.3. Let G - A X N, where A is abelian. If there is a characteristic
subgroup C of G such that N > C > Z(N), then f: AutG - > / / j a monomor-
phism.

The next two results are used in Section 4.

THEOREM 2.4. Let G = AN be a semidirect product, where
(i) A is abelian, N' > Z(N) and [Z(N), A] = 1;
(ii) for all <J> e AutG, A* < Z{N) and [N\ N] = 1.

Then / : Aut G -* JF is a monomorphism.

PROOF. From (i) and (ii), every </> e Aut G satisfies (a) and (b) above. Further,
if {a, 1)* = (1, n), where a & A, n e N, then ap = n e Z(N) < N'. But N' is
characteristic in G, since [Ny, N] = 1. Thus (1, n)* ' = (a, 1) implies that a — n
= 1, so a G Aut A and 8 e Aut N.

THEOREM 2.5. Let G = A X N, where A is abelian andN' > Z(N). Then
(i) Aut G ~Jf, and

PROOF, (i) The conditions of Theorem 2.4 hold, so / |AutG: AutG -»Jf is a
monomorphism. Conversely, if >̂ = (" §) G ^ T , then, by (2.1), <> G EndG and
f(<t>) = >̂. Further, if (a, «)* = (1,1), where a ^ A, n e N, then (aanY, a^ns) =
(1,1). Thus ( c r 1 ) ^ " ' G Z(N) < N' < kery, so that n7 = 1. Hence a = n = 1,
and <> G Aut G. Thus / is an isomorphism.

(ii) <f> e AutcG ~ (a, /i)-1(a, /i)* e A X Z(#) «> n"1/!* G Z(N) » 5 G
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COROLLARY 2.6. If G = AN satisfies the hypotheses of Theorem 2.4, then Aut G
is isomorphic to a subgroup of Aut( A X N).

3. Central automorphisms of groups with abelian direct factors

The following theorem is a modification of a result of Earnley (Theorem 2.3 in
[3]), but the proof is given for convenience.

THEOREM 3.1. Let G = A X N be a p-group, where 1 ¥= A is abelian, and where
1 =£ N is purely nonabelian {i.e. N has no non-trivial abelian direct factor). Then
Autc G is abelian if and only if A and N satisfy

(i) A is cyclic of order 2m, m > 2;
(ii) N is a 2-group with Autc N abelian;
(iii) $(iV) = N'> Z(N), andZ(N) has exponent 2.

PROOF. Suppose AutcG is abelian. Then Aut^l and AutcAf, being subgroups
of AutcG, are abelian. In particular, A is cyclic. (See 3.12 in [2].) If A = (a),
define r e Aut ,4 by aT = a"1. Thus, by Lemma 2.2, if y e Y = Hom(N, A),
and if x e X= Hom(,4, Z(iV)), then {y \) and (\ \) are in AutcG and so
commute. Hence xy = 0 = yx and TX = x. Now X # 0 since A and Z(N) are
non-trivial /^-groups. Thus \A\ ¥= 2, for otherwise there is an epimorphism y e Y,
and the condition yx = 0 implies that x = 0 for all x e X. Further, TX = x
implies that Ax has exponent dividing 2, so either p = 2, or, again, x = 0 for all

Therefore \A\ = 2m, m > 2, and Z(N) has exponent 2. Hence Z(N)
for otherwise there exists nl e Z(JV)\$(A^) of order 2 such that {nl,...,n,},
t > 2, is a minimal generating set for iV. But then JV = («j) X (« 2 , . . . , n,), a
contradiction.

Similarly, the commutativity of (l
y °) and (5 i) gives yr = y, and hence Ny has

exponent dividing 2. Since ̂ 4 has exponent greater than 2, N/N' has exponent 2.
Thus $(N) = N\ and .4 and JV satisfy the given conditions.

Conversely, suppose that A and N satisfy (i), (ii) and (iii). Then, by Theorem
2.5, AutcG = Jfc. In fact, if </> e AutcG and A = (a), then A1* < Z(7V) < N' <
kery, and Â T < (a2""') < (a1) < ker/?. Thus ( ^ / ) and ( ^ / ' ) in 3fc will
commute, provided that (1) aft' + 08' = a'0 + fi'8 and (2) yo' + 8y' = y'a +
S'y hold.

Now a" = a', j odd, so a"^ = a&, since Z{N) has exponent 2; moreover
aps' = ap, since 8', being central, fixes N' > Z(N). Thus a/8' + 08' = 0' + fi =
a'fi + P'S, so (1) holds. If n e AT, then /i1"1' = ny, since |iVy| < 2, and so Â Y is
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fixed by a'; moreover, nSy = ny, since 8 is central, and since Z(N) < leery'.
Thus ya' + Sy' = y + y' = y'a + S'y, so (2) holds. Hence AutcG is abelian.

EXAMPLE 3.2. The dihedral group N of order 2"+1, n > 2, in which AaicN is
the Klein 4-group, satisfies conditions (i) and (iii) of Theorem 3.1.

COROLLARY 3.3. If A is cyclic of order 2m, m > 2, and ifN is a special 2-group,
then Autc(v4 X N) is abelian.

PROOF. Autf N fixes N' = Z(N) pointwise and so is abelian.

THEOREM 3.4. Let G = A X N, where A is abelian (and where N is arbitrary). If
there is a characteristic subgroup C of G such that N > C > Z(N), then
AutG/AutcG « AutAyAutcJV.

PROOF. Let TG: AutG -> Aut(G/Z(G)) take <J> to 4>, where 4> is the automor-
phism induced on G/Z(G) by <j>. Then TG is a homomorphism with kernel AutcG
and image Imr 6 « AutG/AutcG. If TN is defined similarly, we shall show that
Im Tc ~ Im TN.

From Lemma 2.3, / : AutG -^3? taking >̂ to ( ? / ) is a monomorphism, and
8 e Aut N. Thus, define h: Im Tc -» Im 7^ taking ^ to 8. If /' denotes the obvious
isomorphism from G/Z(G) to N/Z(N), then /S = ^i, so h is well defined and
injective. Further, h is a surjective homomorphism, and so the result follows.

EXAMPLE 3.5. Theorem 3.4 generalizes the example of [1], which shows that
there are nonabelian /7-groups with nonabelian automorphism groups in which
every automorphism is central.

Let G = A X M, where 1 =£ A is an elementary abelian 2-group, and where M
is the generalized Miller group of Section 1. For p odd, let G = A X N, where
1 # A is any abelian /?-group, and where N is the special />-group of Jonah and
Konvisser [5]. Then by Theorem 3.4, taking C = 4>(G) = 4>(M) = Z(M) in the
first case and C = G' = N' = Z(N) in the second, we obtain AutcG = AutG.
But by Theorem 3.1, AutG is nonabelian.

4. Semidirect products with abelian automorphism groups

Throughout this section let A = (a) be a cyclic group of order 2m, m > 3. If
G = AN is a nontrivial semidirect product, then any automorphism of A can be
extended to an automorphism of G which acts trivially on N. Thus, if Aut G is
abelian and <(>: a -* a3, then <j> e AutcG, so a2 e Z(G) and is fixed by the action
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of N. Hence N has a subgroup J of index 2 such that

(*) an = a if n<BJ and a" = al+2m~l if n<=N\J.

Conversely, suppose for the remainder of the section that N is a nonabelian
special 2-group with a subgroup J of index 2 and that G is the semidirect product
defined by (*). Then Theorem 4.2 gives conditions for Aut G to be abelian, but
first we establish some properties of G.

LEMMA 4.1. If G = AN is defined as above, then
(i) Z(N) < J;
(ii) for <f>e AutG,[N\N] = 1;
(iii)Aut(JV:/)^ AutcG;
(iv) A X J is characteristic in G.

PROOF, (iii) follows from (i), which is obvious.
(ii) Any element in G of the form a2i+1n, n e N, has order 2m. Thus

Ny < (a2) , since N has exponent 4.
(iv) CG(a) = A X J, so a has 2 conjugates. If <f> e AutG and a* = a2i+1n,

n G N, then CN(n)^ J, since a* must also have 2 conjugates. Thus « G Z(J),
and so ^ ( 0 * ) = A X 7.

THEOREM 4.2. If G = /liV w defined as above, and if
(i) A X Z(N) is characteristics in G, and
(ii)Aut(N:J) = AutcN,

then Aut G is abelian.

PROOF. AutG is isomorphic to a subgroup of Aut(̂ 4 X N) by Corollary 2.6,
since the conditions of Theorem 2.4 follow from (i) and from Lemma 4.1. But if
4> e AutG, then S G AutcN, for otherwise, by (ii), there is some j G / with
j s € J. Thus (1, j)* = (jy, j*) <£ A XJ, contradicting Lemma 4.1(iv). Hence, by
Theorem 2.5(ii), AutG is isomorphic to a subgroup of Autc(A X N), which is
abelian by Corollary 3.3. (In fact from Sanders' order formula [7], |Autc.G| =
\Autc(A X N)\, so AutG = Autc(,4 X N).)

EXAMPLE 4.3. Let M = AN be the generalized Miller group of Section 1. Then
A X J = (a, b2, c) is characteristic in G, and (a, b) is also, since it is the only
subgroup of index 2 in M which is of type (x, y\xim = yA = 1, xy = x1 + 2" ' ) .
Thus A X Z(N) = (a, b2) = (a, b2, c) n (a, b) is characteristic in M. Further,
AutcAf = InniV is of index 2 in Aut AT = D4, and since J is not characteristic,
Aut( N: J) = Autc N. Thus Aut M is abehan (which is the result of [8]).
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COROLLARY 4.4. IfG = AN is defined as above, and if
(i) Z(J) = Z(N), and
(ii)Aut(N:J) = AutcN,

then Aut G is abelian.

PROOF. AS in Lemma 4.1(iv), if c/> e AutG and a* = a2i+1n, n e N, then
CN(n) > J, so CN(n) = J or (^(n) = N. In either case, « e Z(CN(n)) = Z(N).
So A& < Z(N), and condition (i) of Theorem 4.2 follows.

EXAMPLES 4.5. We use the notation of the Hall and Senior tables [4], in which
the index |Aut N: AutciV| is denoted t3. Aut N/AutcN acts on the subgroups Q
of index 2 in N, and if the orbit of J e 8 has length t3, then Aut(JV: / ) = AutcN.
In particular, this holds if t3 is prime and / is not characteristic.

The families 32 F4 and 64 r9 of the tables are nonabelian special 2-groups (of
orders 32 and 64, respectively). Further, if N lies in either of these families, then
any non-characteristic subgroup / of index 2 is of type T2, and so Z(J) = Z(N).
The table below lists the group N, the parameter t3, and the choice for / (up to
isomorphism) which yields a group G = AN with Aut G abelian. Further exam-
ples can be found in the families 64F10 and 64FU.

N type F4

h
J type F2

W type F9

h
J type F2

* i

2

* i

2

b2

2
cltc2

b4

2
h,c2

ci

2
cvc2

c
3

C1'C2

4
Cl

d,
2

h,c1

c3

4
c2

d7

2
h

d
3

cvc2
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