PRINCIPAL POLARIZATIONS OF ABELIAN SURFACES OVER FINITE FIELDS

STUART TURNER

In § 1 of this note we construct abelian varieties of dimension two defined over $F_{p^{n}}, n$ odd, which admit infinitely many distinct principal polarizations. These polarizations determine an infinite family of geometrically non-isomorphic complete singular curves defined and irreducible over $\boldsymbol{F}_{p^{n}}$ which have isomorphic Jacobian varieties. In § 2 we calculate the zeta function of these curves.
§ 1.
Let $q=p^{n}, n$ odd, and $\pi=q^{1 / 2}$. Then $\{ \pm \pi\}$ is a conjugacy class of Weil numbers for q which corresponds to an isogeny class of simple abelian varieties defined over $\boldsymbol{F}_{q}([1],[5])$. Let A be a member of this isogeny class, $\operatorname{End}(A)$ be the ring of \boldsymbol{F}_{q}-endomorphisms of A and $E=\operatorname{End}(A) \otimes \boldsymbol{Q} . \quad E$ is a division algebra with center $\Phi=\boldsymbol{Q}(\pi) . \quad E$ has invariant $1 / 2$ at each of the real places of Φ, invariant zero at each finite place of Φ prime to p, and invariant

$$
\operatorname{ord}_{v}(\pi) \cdot\left[\Phi_{v}: \boldsymbol{Q}_{p}\right] / \operatorname{ord}_{v}(q) \quad(\bmod 1)
$$

at the one place v of Φ which lies over $p ; v$ is ramified so this last invariant is zero. Finally, $2 \operatorname{dim} A=[E: \Phi]^{1 / 2}[\Phi: Q]$, ([5], [6], [8]). Since $[E: \Phi]^{1 / 2}$ is the least common multiple of the denominators of the invariants, $\operatorname{dim} A=2$.

End (A) contains π ([7], Prop. 3.5), so $Z\left[p^{1 / 2}\right] \subset \operatorname{End}(A) . \quad Z\left[p^{1 / 2}\right]$ is an order in Φ (the maximal order if $p \equiv 2,3(\bmod 4)$), so by Dirichlet's theorem, the units in $Z\left[p^{1 / 2}\right]$ form a group isomorphic to $\{ \pm 1\} \times Z$. Hence Aut A, the group of \boldsymbol{F}_{q}-automorphisms of A, contains an element of infinite order.
$A \times \operatorname{Spec} \boldsymbol{F}_{q^{2}}$ has Weil number $\pi^{2}=q$. Using the theorem of Tate cited above one sees that the isogeny class of simple abelian varieties

[^0]defined over $\boldsymbol{F}_{q^{2}}$ with Weil number q consists of elliptic curves. Since their endomorphism algebra is a quaternion algebra over \boldsymbol{Q} with invariants $1 / 2$ at the real place of \boldsymbol{Q} and at the p-adic place, they are supersingular curves ([4], p. 217). So $A \times \operatorname{Spec} \boldsymbol{F}_{q^{2}}$ is $\boldsymbol{F}_{q^{2}}$-isogenous to a product of isomorphic supersingular elliptic curves. Let E be a curve in this isogeny class. The Frobenius automorphism $F \in \operatorname{Gal}\left(\boldsymbol{F}_{q^{2}} / \boldsymbol{F}_{q}\right)$ transforms E into an elliptic curve $E^{(q)}$ and there is a canonical purely inseparable isogeny $i: E \rightarrow E^{(q)} . \quad E \times E^{(q)}$ is $\boldsymbol{F}_{q^{2}}$-isogenous to $A \times \operatorname{Spec} \boldsymbol{F}_{q^{2}}$.

Let 0 (resp. 0^{\prime}) be a rational point on E (resp. $E^{(q)}$). Define a group law on E (resp. $E^{(q)}$) such that 0 (resp. 0^{\prime}) is the identity for this addition. Let $X=E \times\left\{0^{\prime}\right\}+\{0\} \times E^{(q)}$. X is a divisor on $E \times E^{(q)}$, rational over $\boldsymbol{F}_{q^{2}}$. $\quad X$ determines a principal polarization $\mathscr{C}(X)$ on $E \times E^{(q)}$.

Proposition. F_{q} is a field of definition for the principally polarized abelian variety $\left(E \times E^{(q)}, \mathscr{C}(X)\right)$.

Proof. The proposition asserts the existence of an abelian variety B defined over \boldsymbol{F}_{q}, of a \boldsymbol{F}_{q}-rational divisor Y on B, and of a $\boldsymbol{F}_{q^{2}}$-isomorphism $\psi: B \times \operatorname{Spec} \boldsymbol{F}_{q^{2}} \rightarrow E \times E^{(q)}$ such that $\psi\left(Y \times \boldsymbol{F}_{q^{2}}\right)=X$. To show that this descent is possible it suffices to construct a cocycle $h \in Z^{1}\left(G\right.$, $\left.\operatorname{Aut}\left(E \times E^{(q)}\right)\right)$ and an F_{q}-isomorphism $\phi: h_{F}\left(E \times E^{(q)}\right) \rightarrow\left(E \times E^{(q)}\right)^{F}$ such that $\phi\left(h_{F}(X)\right)$. $=X^{F}$.

Let e be the identity of G and h_{e} be identity automorphism of $E \times E^{(q)}$. Let $h_{F}: E \times E^{(q)} \rightarrow E^{(q)} \times E$ be the automorphism which interchanges the factors of the product. One verifies immediately that h is a cocycle. Let

$$
\phi: E^{(q)} \times E \rightarrow\left(E \times E^{(q)}\right)^{F}=E^{(q)} \times E
$$

be the identity morphism;

$$
\phi\left(h_{F}(X)\right)=\{0\} \times E^{(q)}+E \times\left\{0^{\prime}\right\}=X^{F}
$$

Corollary. B is a \boldsymbol{F}_{q}-simple abelian variety and Y is a curve of genus two, irreducible over \boldsymbol{F}_{q}.

Proof. B has Weil numbers $\pm q^{1 / 2}$ and is therefore \boldsymbol{F}_{q}-isogenous to A, hence \boldsymbol{F}_{q}-simple. Y is an \boldsymbol{F}_{q}-irreducible curve on B because the action of h_{F} on $E \times E^{(q)}$ interchanges the two components of X and Y is the quotient of X by this action. Y has genus two because $Y \times F_{q^{2}} \cong X$.

Theorem 1. B admits infinitely many distinct principal polarizations defined over \boldsymbol{F}_{q}.

Proof. For any $a \in$ Aut B, the group of F_{q}-automorphisms of B, the \boldsymbol{F}_{q}-rational divisor $a^{-1}(Y)$ determines a principal polarization of B ([4], p. 63). The group of automorphisms of a polarized abelian variety is finite ([3], Proposition 8, p. 194), so there are only finitely many $b \in \operatorname{Aut} B$ such that $\mathscr{C}\left(b^{-1}(Y)\right)=\mathscr{C}\left(a^{-1}(Y)\right)$. On the other hand, B has Weil numbers $\pm q^{1 / 2}$ so Aut B contains an element of infinite order and the theorem follows.

Theorem 2. For any $a \in \operatorname{Aut} B, a^{-1}(Y)$ is a curve of genus two, irreducible over $\boldsymbol{F}_{q} . \quad$ Let $b \in$ Aut B such that $\mathscr{C}\left(a^{-1}(Y)\right) \neq \mathscr{C}\left(b^{-1}(Y)\right)$, then $a^{-1}(Y)$ and $b^{-1}(Y)$ are geometrically non-isomorphic.

Proof. $\quad a^{-1}(Y) \times F_{q^{2}}=a^{-1}(X)=a^{-1}\left(E \times\left\{0^{\prime}\right\}\right)+a^{-1}\left(\{0\} \times E^{(q)}\right) . \quad E \times\left\{0^{\prime}\right\}$ and $\{0\} \times E^{(q)}$ are abelian subvarieties of B so the two components of $a^{-1}(X)$ are abelian subvarieties of $B \times \boldsymbol{F}_{q^{2}}$. However, B is a $\boldsymbol{F}_{q^{\prime}}$-simple abelian variety so neither of these components can be defined over \boldsymbol{F}_{q}. Hence $a^{-1}(Y)$ is F_{q}-irreducible and is clearly of genus two. The second assertion follows immediately from Theorem 1 of [2].

§ 2.

Let $B\left(\boldsymbol{F}_{q^{m}}\right)$ denote the group of $\boldsymbol{F}_{q^{m}}$-rational points of B. Each $a \in$ Aut B determines an isomorphism $a: B\left(\boldsymbol{F}_{q^{m}}\right) \rightarrow B\left(\boldsymbol{F}_{q^{m}}\right)$ for each m. Hence the singular curves Y and $a(Y)$ have the same zeta function. Y has only one \boldsymbol{F}_{q}-rational point, the one point of X which is fixed under the action of h_{F}. This is the identity of B and is the unique singular point of Y. This same point is the unique singular point of $a(Y)$.

Let \tilde{Y} be the F_{q}-normalization of Y and $p: \tilde{Y} \rightarrow Y$ be the canonical projection. $\quad \tilde{Y}$ is a complete, non-singular curve of genus two defined and irreducible over $\boldsymbol{F}_{q} . \quad \tilde{Y}$ is geometrically disconnected because $Y \times \boldsymbol{F}_{q^{2}}$ $=E \times\left\{0^{\prime}\right\}+\{0\} \times E^{(q)}$, so $\tilde{Y} \times \boldsymbol{F}_{q^{2}}=E \times\left\{0^{\prime}\right\} \Perp\{0\} \times E^{(q)}$. \tilde{Y} can be recovered from $\tilde{Y} \times F_{q^{2}}$ by a descent similar to the one used in the proof of the proposition. The action of G on $\tilde{Y} \times \boldsymbol{F}_{q^{2}}$ has no fixed points so \tilde{Y} has no \boldsymbol{F}_{q}-rational points; the singular point of Y blows up to two $\boldsymbol{F}_{q^{2}}$ rational points on \tilde{Y}. Let ζ_{Y} denote the zeta function of Y. Then $\zeta_{\tilde{Y}}(T)$ $=\zeta_{Y}(T)(1-T) /\left(1-T^{2}\right)$.
E has Weil number q, so $\zeta_{E}(T)=(q T-1)^{2} /(1-T)\left(1-q^{2} T\right)$. Since \tilde{Y} has no $F_{q^{r}}$-rational point for odd $r, \zeta_{\tilde{Y}}(T)=\zeta_{E}\left(T^{2}\right)$. Finally, $\zeta_{Y}(T)$ $=\left(q T^{2}-1\right)^{2} /(1+T)\left(1-T^{2}\right)\left(1-q^{2} T^{2}\right)$.

References

[1] Honda, T., Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan 20 (1968), 83-95.
[2] Hoyt, W. L., On products and algebraic families of Jacobian varieties, Ann. of Math. 77 (1963), 415-423.
[3] Lang, S., Abelian Varieties, Interscience, New York, 1959.
[4] Mumford, D., Abelian Varieties, Oxford University Press, London, 1970.
[5] Tate, J., Classes d’isogénie des variétés abéliennes sur un corps fini, Sem. Bourbaki 21 (1968/69), no. 352.
[6] Tate, J., Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134-144.
[7] Waterhouse, W., Abelian varieties over finite fields, Ann. scient. Éc. Norm. Sup. 4, t. 2 (1969), 521-560.
[8] Waterhouse W. and Milne, J. S., Abelian varieties over finite fields, in Proc. Symp. Pure Math. XX, American Mathematical Society, Providence, (1971), 53-64.

Pontificia Universidade Católica
do Rio de Janeiro

[^0]: Received February 24, 1978.

