SUMS OF THE DIVISOR FUNCTION
B. GORDON AND K. ROGERS

1. Introduction. Shapiro and Warga (2) have proved in an elementary
way that all large integers are expressible as the sum of at most 20 primes. In
so doing, they proved that

() _ 1 p=1D(p4+2), >
v (n%:l " g p+2 I;I P’ log'x
nsqua‘re-iree

+0(log x-log log x1t) + O((log log 3u)*),
as x — =« , where # is a positive square-free integer,
r(n) = 2 1,
dln

and all the constants implied by O are absolute, here and throughout this
paper (except for dependence on ¢, when it occurs). We shall sum 7(n) itself
over the same range and derive a refined form of (1): for every ¢ > 0,

‘ ) _ 1 ( e c\/log: 3;z>
@) = n ZZA log v+ (A + B)logx + C+0 exp log log 3u
ooy

for some constant ¢ > 0, where

. (p =1 +2)
4= H;pwg ’ ’
, S logp (p — 1) log p\
@) B=Ay@v—D 422, TEEH 62, e
N cV/log 3u
¢=Cl) _O<X log10g3u>

and v denotes Euler’s constant. Note that (2) gives better error terms than
(1), for fixed u as x — =, because 4 = O(1) and B = O(log log 3u).

2. LEmMmA 1. Let
Fa(x) = Fo(x) = 2 T(n)._

n<z
(nu)=1
dln

Then for any prime p not dividing du we have, for v = 1,2, ...,
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(3) Fapr(x) = (v + 1)Fd<§> - de<1—)?,~cg> .

Proof. Since the two sides of (3) are step functions which increase only
when dp’|x, and since they are equal at x = 0, it suffices to verify that they
have the same increment at x = dp*tey, with p > 0 and p ¥ y. For p = 0, the
requirement is that

T(p-dy) = (v + Dr(dy) = 7(p*) -7(dy),
which is true. For p > 1, we require
m(dy)r(p"**) = (v + Dr(dy)7(p?) — vr(dy)r(p*Y),
ie.
v+p+1l=@+1(p+1) -,

which is true.
This formula is interesting in itself. It can also be derived by inversion of
a functional equation. We need only:

(3,) Fp12...pn2 (x> = 3Fp12..‘pn—12<%> - 2Fp12...pn_12<p_x§> (fOI‘ Dn ¥ u)
and
3" ;z T(n) = le...Pn(x) = 2Hp1...pn—1< ;:n> - le...pn—1<—Px7> .

n=0(py...pn)

By (3") we expect to obtain H,, ., in terms of II;, but all we want is an
asymptotic formula. Hence we recall that (1):

(4) Hy(x) = > r(n) = xlogx + 2y — 1)x + O(v/x),

nsT

where v is Euler's constant.

LeEmMmA 2. For square-free d,

HG) = 3 ) = [1 2252

n<e »ld b4

dln
p — 1 1 ,
.{x logx ‘I‘ x(?’y —_— | —_— 2 El A log P); 0<3 (d)/‘/x> ,

where v(d) = > 1.

pla

Proof. Tt is evident from (3'") and (4) that some formula of the type
Hy(x) = a(d)xlogx + b(d)x + Ry(x)
must hold, with R,(x) of order +/x. Substituting this in (3'’) gives: for p t d,
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a(dp)xlogx + b(dp)x + Ryp(x) = 2{a(d) Iogp + b(d) —+ Rd<p>}

{a(d) 2 10g pz + b(d) 7+ Ra( P )} .
Hence we choose a(d) and 6(d) so that a(1) = 1, (1) = 2y — 1, and

a(dp) = a(d)( 1)

p P
N | logp gpl ( )
b(dp) = a(d)) —2 SHERIOIE-
Hence,
17 221 bdp) _bd)  2(p —1) P
old) = [T =5 and 2y =) S ey
and

b(d) = (27 —1-2 2 log p>a(d)

v 2p —
When R,(x) is defined as Hy(x) — a(d)x log x — b(d)x, we get

Rop(x) = 2Rd<—j;—) - Rd<~i)’%—> .
[Ri(x)| < K- 3”“”4/d,

»(d) v(pad)
|Rep(x)| < 3-K-3 1/p =K-3 4/pd

Naturally, if the elementary O(+/x) in the divisor problem is replaced by
O(x%) for some @ < %, this improves +/(x/d) to (x/d)’. However, this will
not lead to a better result in (2) by our method.

Thus, if

it follows that

LemMA 3. For square-free u,

Fix) = 2 t(n) = (d)(u)) {x log x + x( 2y — 142 Z log P1>}

n<z piu

(n,u)=1
0( 3"@ 1/&) .
+0\ 2, i
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Proof.
Fi(x) = 2 7(n) (@)

n<z al(n,u)

= u(d) 7(n)

dlu din
n<T

.u(d){x log x + x<27 —-1-2 Z -1 log p)} 2_11_;_1
2ld -1 pld 4

af

8

by use of Lemma 2.
Now

w@) I1 = = 11 (:- 2 D11 (1’7}1) - (2’

pld ?lu plu

Thus, the coefﬁc1ent of x is the sum of 2y — 1)(¢(u)/u)? and
—1
~2 3 uldald) T S logp

_22

plu

Il

L= Tlogp 3 w(@e@)

»ld
N 2% -1 plogp-a(p) 3 w(da(®

o3 251 p.<MP_)>2

i

plu u/p
¢<u>> log p
o ,
w) Zp-i

as required. As in (2), we note that it is easy to show that

1
E| 1,-0%% < O(1) + log puw = O(log log 3u),
plu

since

logu > Z log p = (14 o(1))psw»

PP y(y)

by the prime-number theorem. We could use Tchebychef’s inequality instead.
As to the coefficient of v/x in the O-term, we have

G- () <1 0+ %)
S = = 1 1
dzlu '\/d plu + '\/P pgg(u) + \/P
oo (a2
p<(1+£1)) log « ( + \/P

log S <3 1 1
% b p<(1+;l))logu \/P ( +0( ))

Hence,
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By elementary means one can show that

1 wc)
z 75~ o2),

while the prime-number theorem gives

,,é; "\/l—P = f()g—x 1+ 0(1)).
Hence,
_ fc~/Tog 3u}>
) S = O< llog log 3u

where ¢ can be taken as 3 + o(1) for large u.

LemwMmA 4. For square-free d, we have

Fg(x) = a(d)xlog x + B(d)x + Ra(x),

where
_ amy, 3p — 2
a(d) - < u ij{% P3 ]
B8(d) = a(d){ 2y — 142 Xli 1°g1” —6 Zl; -——logp}
Plu v
and

Ry(x) = <PM) Vi S)

with S as above.

Proof. This follows the lines of Lemma 2, but (3’) replaces (3"). We find
that to get Rg(x) = 3Ry (x/p?) — 2R (x/p?) we need
a(dp) = a(d)-(3p — 2)/p?,
and

B(dp) _ Bd) _  p =
aldp) " ald) " "3p -

for p ¥ d. These give the desired values, if Lemma 3 is used for evaluating
a(1) and g(1). The estimation of R4(x) is now similar to that in Lemma 2.

log b,

3. Now the sieve process can be used to compute > 7(n).

THEOREM.

Z 7(n) = Axlogx + Bx + R(x),

n<r
(n,u)=1
n square-free
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where

R(x) = O(x%“-exp cV/log 3u 3u> ,

log log 3u
for every ¢ > 0, with A, B, and ¢ as in (2').

Proof.
2 ) = 2 r(m) 2o uls)
n<T n<z . s2|n
a1 ()=

= S;I p(s) - F(x)
(s,u)=1

= 2Z< p($){a(s)xlog x + B(s)x + R (x)}
(su)=1

=xlogx{(z;, u(s)al(s) — Z p(s)a(s)}_

o Gy
+ x{ PINTOLIOREDY mm@}
w= st )
5v(s)
+ O%S-\/x- > S g ;
o
o) = a1 _3p— 2) _ <¢(u)>2 (b —Dp+2)
L HS)als) = (D) ;Iu <1 ps | p
_ p—1* (P + 2)
Ht p+2 1—1;[ p’
= /1;
n(s)B(s)
(s,u)=1

IRFORCICHERINIED DE D » 2= L og

Il

(s,u)=1 plu P 311)

:(27_1—*_22!?10%?)1—_62 logp > u(®)als)
e et

:<2'y—1-{-22 ]OgP>A+62 —1 3pj—2~10gp S el
plu P plu 3P P (t,up)=1
S« logp (p=1logp p }

= 11[2 —1 2 6

Yol T2 P p+2
= B.

For square-free s, we have
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-~

3v(s)
OL(S)<I’;ISPQ— 52 <

_ log s )
v(s) = 0<log log s/’
by (1, Theorem 317). Hence

2 la(s)n@s)] < Z

$>\T

V)lh
ol

for all large s, because

=O(x~§+7°).
From the formula for 8(s), we have

; 18(s)u(s)| < O log log 2u) + ; [u(s)a(s) log s|

= 0(x""* log log 3u).

Y 0<Z j—) = 0@,

s<vr S s<vz
§ square-free

Finally,

Thus,
R(x) = 0{x*"*(log x + log log 3u + S)}
_ O< e ax cV/log 3u>
log log 3u/ °
To derive (2), write G(x) for the sum in the theorem. Then,

r(n)
n<z n
(n,u)=1
n(n)=0
TdG(@)
= L

— G)/x + f GO 4

= Alogx + B+ R(x)/x + fl {Alogt-t™' + B ' 4+ Rt }dt

%Alogzx—l— (4 + B) log x + me(” dt—}—R(x) me(t) it + B

— L 4 log% + (4 + B) logx + B + me(‘)

2
e, cV/log 3u>
t O( exp log log 3u/’

which gives (2).
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4, We conclude by observing that our method would enable Y 7(n) over
the kth-power-free integers to be similarly treated. As to the effect of
replacing (1) by (2) in (2), this does not lead to a reduction of the number

20 in their result.
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