Increased Intestinal Permeability and Parkinson Disease Patients: Chicken or Egg?

D. Salat-Foix, K. Tran, R. Ranawayya, J. Meddings, O. Suchowersky

ABSTRACT: Gastrointestinal involvement is a frequent and early event in the course of Parkinson Disease (PD), and may have a prominent role in the early pathophysiology of the disease. On the other hand, derangement in intestinal permeability could also result from the involvement of the gastrointestinal tract over the course of the disease. Patients and methods: The intestinal permeability of 12 non-selected PD patients was studied using a validated, non-invasive test; these results were compared to predefined age-adjusted reference values. Results: 4/12 PD patients had abnormal gastrointestinal permeability; two had both an abnormal lactulose/mannitol ratio and an abnormal sucrose concentration, and two an isolated abnormal result. An increased lactulose/mannitol ratio is consistent with defect of either the enterocytes or the tight junctions between them. Conclusion: Intestinal permeability is increased in a significant proportion of unselected PD patients with minimal gastrointestinal symptoms. The significance of this finding needs to be further evaluated.

Gastrointestinal involvement occurs early in the course of Parkinson Disease (PD), as shown both by clinical1-3 and pathological4-5 studies. These findings have led to speculations about the role of gastrointestinal dysfunction in the early pathophysiology of the disease6,7. It has been conjectured that an ingested neurotoxin could permeate the gastrointestinal mucosa, reach the enteric nervous system, locally induce the aggregation of native α-synuclein, trigger cell death, and subsequently reach the dorsal motor of the vagus nerve via retrograde axonal transport, and thus be the primary pathological event in the development of PD. On the other hand, it has been well established that the frequency and severity of gastrointestinal symptoms tend to increase with disease progression8, thus suggesting that the involvement of the gastrointestinal tract may be a dynamic process over the course of the disease.

Given the high prevalence of gastrointestinal complaints among PD patients (reported by as high as 88% in some existing reviews8) we decided to systematically evaluate 15 consecutive early-to-moderate PD patients seen at our Clinic, both from a neurological and a gastrointestinal perspective. Among the multiple tests of gastrointestinal function, we decided to focus on mucosal permeability. Derangement in gastrointestinal permeability may be significantly involved in the pathogenesis of PD8, and, although its presence cannot be inferred from any given gastrointestinal complaint, it can be easily studied using a standardized, validated, non-invasive and relatively inexpensive test.

The foundations of intestinal permeability studies have been discussed elsewhere9. In short, small, nontoxic, noncharged, water soluble compounds that will be largely excreted in the urine without being metabolized if absorbed from the gastrointestinal tract are given to the study subjects. Sucrose (to test gastro-duodenal absorption), lactulose and mannitol (which test absorption in more distal segments of the small intestine) are commonly used. The urinary concentration of the compounds is directly proportional to their degree of absorption in the gastrointestinal tract. By comparing these values to previously determined reference intervals, it is inferred whether a subject’s intestinal permeability is abnormal.
PATIENTS AND METHODS

Considering that we had not defined stringent selection criteria and that individuals in the study were not stratified into groups, this study can be considered to be observational. On top of this, all of the procedures in the study’s protocol are routinely employed either in the Movement Disorders or the Gastrointestinal Clinic. For these reasons, the implicit consent that pertains to the standard clinical practice was considered to be operative in this setting, and no further approval by the Ethics Board was sought.

Consecutive early-to-moderate PD patients diagnosed according to the United Kingdom’s Parkinson’s Society Brain Bank Clinical Diagnostic Criteria\(^\text{10}\) were invited to participate in the study. Those with a prior diagnosis of celiac disease, inflammatory bowel disease, irritable bowel syndrome, seronegative spondyloarthropaty, primary biliary cirrhosis, cachexia, HIV disease, acute pancreatitis, chronic heart failure, type 1 diabetes mellitus, or nonalcoholic fatty liver disease were excluded. In total, the clinic records of the fifteen patients were reviewed, and a standard visit covering their current symptoms (both motor and non-motor) and the response to therapy was performed. At the end of the visit a kit and appropriate instructions to perform the gastrointestinal permeability test were given to the patients.

Information on age and gender, times since onset of motor symptoms and PD diagnosis, the presence and nature of prodromal gastrointestinal symptoms, and current medications for both PD and gastrointestinal complaints was collected. A levodopa equivalent daily dose (LEDD) was calculated by applying the following corrections: sustained release L-dopa0.75, amantadine dose1, L-dopa with a catechol-O-methyl transferase-inhibitor dose of L-dopa1.3, pramipexole and rasagiline doses100\(^\text{11}\). The NMS-Quest\(^\text{12}\) and the MDS-UPDRS part III\(^\text{13}\) were subsequently scored.

Study participants were instructed to stop the ingestion of any alcoholic beverage at least five days prior to performing the test. On the day they chose to perform it, they were allowed to eat and drink freely until 6 pm, and asked to empty their bladder and take a test solution (a flavored mixture of 100 g sucrose, 5 g lactulose and 2 g mannitol reconstituted in 450 mL of water) before going to bed. The overnight urine output was collected for analysis.

Samples were kept refrigerated until analyzed by high-pressure liquid chromatography. Chromatography refers to the various techniques by which a certain compound can be detected and quantified in a problem solution. When a fluid flows along thin spaces between densely packed solid columns, the interaction between its molecules and those at the surface of the columns (a process determined largely by the size and polarity of the flowing molecules) will cause each compound in the fluid to advance at a different speed. High-pressure liquid chromatography relies on this feature for their separation. If the speed at which a compound of interest will move under preset experimental conditions is known, the absorption of ultra-violet (UV) light of a certain wavelength at the time when this substance is expected to move across a detector system can be used to document both its presence and its concentration in the problem solution. The total amount of each one of the probes in the urine was determined, and expressed in mg for sucrose and as a ratio for lactulose and mannitol (lac/man ratio).

Individuals with abnormal lac/man test results were screened for subclinical celiac disease using the IgA tissue transglutaminase antibody test\(^\text{14}\).

Descriptive statistics of our data were expressed as mean and range for quantitative variables, and absolute and relative frequencies for qualitative variables. The reference values for the probes were <180 mg for sucrose and <0.025 for the lac/man ratio.

RESULTS

Three individuals did not return the urine sample (one argued that her taking medication at bedtime was a violation of the test protocol, one refused to take the test solution as it turned black (due to the flavoring substance that was used) when water was added to the mixture, and one moved out of the province) and they were excluded from the analysis. The other 12 patients, seven men and five women aged 46 to 84 (mean 68.58) years were included in the study. All of these participants reported they had been compliant with the instructions regarding alcohol and food ingestion they had received.

The symptoms that led to the diagnosis of PD had begun on average 82.5 (range 18 to 171) months before their participation in the study. All patients receiving dopaminergic treatment were examined while in an on state (mean MDS-UPDRS score 13.64, range 3 to 31); a patient who was not being treated had a MDS-UPDRS score of 13. The mean H&Y scale value was 1.75 (range 1 to 3).

Constipation (n=4) and bloating (n=1) were reported as preceding the diagnosis of PD; nausea/vomiting or abdominal pain were not recalled by any of our patients. Reported symptoms were graded as “long-standing”, “mild” and/or “infrequent” by those who had experienced them.

Eleven patients had been treated since the time of diagnosis (mean treatment length 64.45 (range 6 to 144) months). At the time of their inclusion ten patients were taking L-dopa (dose range 300 to 1000 mg). Six patients were also taking pramipexole (n=3, dose range 0.5 to 2 mg), rasagiline (n=1 in a dose of 1 mg) or amantadine (n=1 in a dose of 100 mg). One patient was on monotherapy with rasagiline (1 mg). The mean LEDD for treated patients was 556.82 mg.

The NMS questionnaire disclosed an average of 7.33 (range 0 to 19) non-motor symptoms (1.67 (range 0 to 3) of which involving the gastrointestinal tract) per patient. Two patients were taking domperidone (dose of 10 and 20 mg respectively) to relieve gastrointestinal symptoms.

The total sucrose content and the lac/man ratios determined for each of the patients’ urine samples are plotted in the Figure. The overall prevalence of gastrointestinal permeability abnormalities was 33.3%, with two patients having both parameters significantly elevated, and two additional patients having an isolated abnormality in one of the tests. The Table shows the distribution of the study participants according to the results of the permeability tests and their self-report of current gastrointestinal symptoms (as per NMS-Quest). An average of 1.25 coexisting gastrointestinal symptoms were reported by participants in the group with normal permeability test results, while patients with abnormal test results reported an average of two symptoms. The celiac screening was negative in all patients with abnormal intestinal permeability results.
DISCUSSION

Increased intestinal permeability was identified as a significant component of celiac disease in the late 1970’s. Subsequent research found that this abnormality may be significant for the development and progression of various other gastrointestinal disorders, including inflammatory bowel disease and the irritable bowel syndrome, as well as in systemic disease, such as seronegative spondyloarthropathies, primary biliary cirrhosis, cachexia, the progression of HIV disease, acute pancreatitis, chronic heart failure, type 1 diabetes mellitus, and nonalcoholic fatty liver disease. Feld et al. found abnormal permeability test results in 3.9% of healthy controls (1.3% had abnormal sucrose excretion and 4% an abnormal lactulose/mannitol ratio, but no subject had an abnormal result on both tests).

The only previous attempt to evaluate intestinal permeability in PD using a differential sugar absorption test was published in 1996 by Davies et al. As a group, PD patients showed evidence of deranged intestinal permeability (reduced absorption of mannitol and increased lactulose/mannitol ratio) when compared to age and sex matched controls, but individual results in both groups were highly overlapping. As this study was performed at a time when the association between certain systemic conditions and increased intestinal permeability had not been recognized, abnormal results among “healthy controls” may have resulted precisely from the inclusion of individuals with one of these conditions in the control group.

The results from the three patients in our study who had increased intestinal permeability (abnormal lactulose/mannitol ratio) suggest either epithelial damage or abnormal function at the level of the tight junction in the small intestine. None of the patients in our series were diagnosed with any of the conditions currently thought to relate to abnormal gastrointestinal permeability. The turnover rate for enterocytes has been estimated to be about three days. Since participants in our study had stopped alcohol consumption at least five days before the tests were performed we believe that it is likewise unlikely that the abnormal results can be attributed to an enteroptoxic effect of alcohol. In this scenario, our results suggest that the “intestinal barrier function” may be significantly compromised in 25-30% of PD patients. The cause for these abnormalities and their potential role in the pathogenesis of PD, however, cannot be determined by permeability testing alone.

The isolated abnormality in sucrose excretion found in an additional patient is harder to interpret, as gastric permeability is influenced by multiple factors (such as Helicobacter pylori infection, a stress response, or the ingestion of gastroesophageal foods or medications), some of which are not easily controlled for.

Table: Distribution of study participants according to presence of gastrointestinal complaints and permeability test results.

<table>
<thead>
<tr>
<th>No current GI symptoms</th>
<th>Normal permeability tests</th>
<th>Abnormal permeability tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (2)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Any current GI symptom</td>
<td>4 (1)</td>
<td>6 (9)</td>
</tr>
</tbody>
</table>

An estimation of expected values based on previously published data is given in parenthesis after the observed values in each cell.
So far, animal models have not been successful in reproducing the pathophysiology of PD, and the enteral administration of rotenone is no exception to this observation\(^9\). However, Pan-Montojo et al\(^{29}\) have reported that the chronic low-dose exposure of mice to intragastric rotenone induced the sequence of neurochemical and pathological changes predicted in Braak's model. Our results don’t offer a scientifically sound validation of Braak’s “dual-hit” hypothesis (which would require a prospective study of asymptomatic individuals periodically assessed regarding intestinal permeability and parkinsonism). However, if coupled with the results of Pan-Montojo’s group, they could be viewed as favoring its biologic plausibility.

We were unable to determine whether the gastrointestinal permeability abnormalities preceded any of their reported symptoms (including gastrointestinal premotor complaints and parkinsonism). Bacterial overgrowth and infection with *Helicobacter pylori* have both been recognized to occur frequently in the setting of gastrointestinal dysmotility and to lead to deranged mucosal permeability, thus our findings could reflect a long-term complication of the involvement of the enteric nervous system in the disease process.

Besides the limitations that stem from the exploratory nature of our study, it must be acknowledged that it was not powered to disclose associations between the permeability abnormalities and gastrointestinal symptoms. Nevertheless, several observations may be made from our results, as depicted in the Table. All individuals with abnormal permeability test results had gastrointestinal symptoms and, as a group, they had non-significantly higher scores on the gastrointestinal items of the NMS-Quest as compared to participants with normal permeability test results. The number, frequency and severity of gastrointestinal symptoms in a given participant, however, were not reliable predictors of whether that individual would have abnormal test results. Likewise, the study was not powered to disclose potential associations between the permeability abnormalities and prodromal gastrointestinal symptoms, the duration, severity of PD, nor intended to evaluate potentially confounding factors, such as the various antiparkinsonian treatments.

This study has shown that gastrointestinal permeability is increased in a significant proportion of unselected PD patients with minimal gastrointestinal symptoms, but the significance of this finding needs to be further evaluated.

REFERENCES