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Compressive Sensing (CS) allows a signal to be sparsely measured first and accurately recovered later in 

software [1]. In scanning transmission electron microscopy (STEM), it is possible to compress an image 

spatially by reducing the number of measured pixels, which decreases electron dose and increases 

sensing speed [2,3,4]. The two requirements for CS to work are: (1) sparsity of basis coefficients and (2) 

incoherence of the sensing system and the representation system. However, when pixels are missing 

from the image, it is difficult to have an incoherent sensing matrix. Nevertheless, dictionary learning 

techniques such as Beta-Process Factor Analysis (BPFA) [5] are able to simultaneously discover a basis 

and the sparse coefficients in the case of missing pixels. 

 

On top of CS, we would like to apply active learning [6,7] to further reduce the proportion of pixels 

being measured, while maintaining image reconstruction quality. Suppose we initially sample 10% of 

random pixels. We wish to select the next 1% of pixels that are most useful in recovering the image. 

Now, we have 11% of pixels, and we want to decide the next 1% of “most informative” pixels. Active 

learning methods are online and sequential in nature. Our goal is to adaptively discover the best sensing 

mask during acquisition using feedback about the structures in the image. In the end, we hope to recover 

a high quality reconstruction with a dose reduction relative to the non-adaptive (random) sensing 

scheme.  In doing this, we try three metrics applied to the partial reconstructions for selecting the new 

set of pixels: (1) variance, (2) Kullback-Leibler (K-L) divergence using a Radial Basis Function (RBF) 

kernel, and (3) entropy. 

 

Figs. 1 and 2 display the comparison of Peak Signal-to-Noise (PSNR) using these three different active 

learning methods at different percentages of sampled pixels. At 20% level, all the three active learning 

methods underperform the original CS without active learning. However, they all beat the original CS as 

more of the “most informative” pixels are sampled. One can also argue that CS equipped with active 

learning requires less sampled pixels to achieve the same value of PSNR than CS with pixels randomly 

sampled, since all the three PSNR curves with active learning grow at a faster pace than that without 

active learning when the pixel fraction is larger than 20%. For this particular STEM image, by observing 

the reconstructed images and the sensing masks, we find that while the method based on RBF kernel 

acquires samples more uniformly, the one on entropy samples more areas of significant change, thus less 

uniformly. The K-L divergence method performs the best in terms of reconstruction error (PSNR) for 

this example [8]. 
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Figure 1.  Reconstructed images (upper row) and sensing masks (lower row) by active learning based 

on variance (left column), RBF (middle column), and entropy (right column), up to 40% pixels sampled. 

 

  
 

Figure 2. Comparison of PSNR (dB) vs Pixel fraction (%) for different methods.  

Method \ Pixel fraction 20% 30% 40% 

Bernoulli random 18.9 20.4 22.2 

Variance 18.4 21.3 24.0 

K-L Divergence 18.7 22.1 24.8 

Entropy 18.6 21.2 23.2 
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