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Sliding over anisotropic beds

RicaarD C.A. HINDMARSH
British Antarctic Survey, Natural Environment Research Council, High Cross, Cambridge CB3 OET, England

ABSTRACT. Many glacier beds are anisotropic, by which is meant that the dominant
wavelengths are different in the two map-plane directions. A largely unexplored conse-
quence of Nye—Kamb sliding theory is the fact that an anisotropic bed can produce a sliding
velocity not parallel to the tangential traction vector. This has important consequences,
since observations of non-parallel flow are often taken as indications that the shallow-ice
approximation has broken down, whereas this need not be the case with an anisotropic bed.

Mathematically, this effect can be incorporated through the use of a sliding tensor. The
mathematical properties of this tensor are outlined, and the correct “invariant” for the
sliding law, a quadratic form, is deduced. Nye—Kamb theory for anisotropic beds is dis-
cussed. Flow on the infinite plane and the properties of surface-topography diffusion are
elucidated. The properities of kinematic waves and shock waves are discussed. Kinematic
waves can have a lateral component. Numerical computations of ice-sheet flow on beds
with anisotropic roughness are presented, with emphasis placed on how this affects
divide-ridge structure. It is suggested that cold-based ice sheets, which have an anisotropic
bed affecting the shear layer, may also show non-parallelism of surface slope and velocity.

1. INTRODUCTION schadler, 1983). A functional form for S often used in ice-

sheet modelling is

Glacier beds are anisotropic (e.g. Héttestrand and others,

S = AS‘TtrL—l, (1)

where A is a rate constant.
We now develop the theory for anisotropic beds. It will
be seen from section 3 that a consequence of this is that the

1999; personal communication from B. Hubbard, M. J. Siegert
and D. McCarroll, 1998), by which is meant that the wave-
lengths in orthogonal directions are different. This has a num-
ber of implications, which are discussed in this paper: (i)

. . basal-velocity and basal-traction vectors are not aligned. A
velocity and basal-traction vectors are not parallel (Nye,

) . . . e familiar analogy of this 1s the anisotropic permeability of
1969; there is some indirect observational evidence for this in vosy . pic p Y

porous media, where the potential gradient (corresponding
mathematically to the tangential traction) and the Darcy
velocity (corresponding to the sliding velocity) vectors are

no longer aligned (Bear, 1972).

East Antarctica, Rémy and Minster, 1997); (ii) a tensor-type
relation must exist between the basal tangential traction and
the sliding velocity; (iii) the “invariant” in non-linear sliding
laws needs to be generalized. In addition, we discuss: (1) the
predictions of Nye-Kamb theory (Nye, 1969, 1970; Kamb,
1970) for anisotropic sliding; (ii) the influence of anisotropic
beds on surface response and bed-topography—surface-topo-
graphy relations; and (iii) the influence of anisotropic sliding
on large-scale ice-sheet flows.

As an example of how an anisotropic bed might arise, let
us consider a configuration analogous to that considered by
Weertman (1957) in his study of sliding. In this analysis,
Weertman’s cubic obstructions are replaced by semi-ellip-
soids. Suppose that the ice is flowing in a plug flow in a half
3-space with far-field velocity (uw, Uy, 0) and consider a
semi-ellipsoid with its flat edge fixed to the base of the half
space, aligned with the (z,y, z) frame with principal semi-
axes ({y,4,, (). Strain-rate magnitudes are given by

(ema:a eyy) = (u:c/fz:v Uy/gy)a
and a scale estimate of the strain-rate second invariant is
e= ((uz/ﬁz)2—|—(uy/€y)2)l/2. With a Glen rheology

€ij = ATn_lTij

2. TENSOR SLIDING THEORY

At their simplest, sliding laws relate two vector quantities,
the basal tangential traction, Ty, and the basal velocity, u,
through a relationship of the form

u = ST(;,

where the smoothness S'is a constant or function relating to
the geometry of the bed. These vectors have components
(ﬂa@ﬂy), (U;m uy), respectively. Various generalizations
suggest themselves, for example

the longitudinal-stress magnitude is

(rers i) = (AP (G P )7 1)

u= S(|Tt|;pe)Tt>

which includes a non-linear dependence on the norm of the
basal traction and the scalar effective pressure p.(e.g. Bind-
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(2)
Since we are considering perfect slip, the force, Fy, exerted
on the bump acting in the (z,y) directions is given by the

137


https://doi.org/10.3189/172756400781820840

Hindmarsh: Sliding over anisotropic beds

appropriate stress times the projected area of the bump
normal to the flow, i.e.

th' == Ta:;véyeza (3)
Ey = Tyygxgzv (4)

and using Equation (2) we find

o (1/n=1)/2
(Fi ) = (A) 0ty (n /)74 (/1))

(/2,0 2). (5)

When considering scale magnitudes we can equate wave-
numbers (km, ky) = (l/ﬂr, l/ﬁy)7 and can therefore rewrite
Equation () as

1/2n—-1/2

T, = (A)"/"V(u"Ku) Ku, (6)

where

0
<[5 "

and where V' = £,0,0. R, and R is the number of semi-ellip-
soids per unit area.

Relationship (6) exhibits some important points; (1) we ex-
pect to see a tensor-relationship between sliding velocity and basal trac-
tion; (7) 1s diagonal simply because we aligned the semi-axes
of the ellipsoid with the coordinate frame; (i) the tnvariant in
the sliding law generalizes to the quadratic form u* K (iii) the com-
ponents of the tensor do not depend upon the velocity field. The general
truth of these statements can probably only be verified by nu-
merical computation of ice flow over beds (e.g. Gudmunds-
son, 1997); however, statements (1) and (iii) are also true for
Nye—Kamb sliding (see section 3), and in this case as well the
tensor components depend upon the square of the wave-
length/wavenumber.

We now adopt the italicized parts of statements (1), (ii)
and (iii) as constitutive hypotheses and assume that they
apply to anisotropic beds in general. The implications of hy-
pothesis (1) is that the smoothness can be written as a tensor
S such that

u = ST;. (8)

On grounds we shall argue in more detail later, this tensor is
diagonalizable, by which we mean that it has real eigen-
values. If the velocity is directed parallel to one of the cor-
responding eigenvectors, there will be no transverse
component to the drag. The eigenvalues are termed the
principal smoothnesses and the eigenvectors the principal
directions of the smoothness tensor. Equation (6) is ex-
pressed in a form where the principal directions of the
smoothness tensor are aligned with the coordinate axes;
had the semi-ellipsoid not been aligned with the coordinate
axes, the K matrix would have been full.

Hypothesis (ii) is of significance because, as we shall
shortly see, it creates an invertible form such that we can de-
duce the drag from the sliding velocity. Hypothesis (ii1) is
the least likely to be generally true. In the rest of the section
we shall suppose that

K [ kim 0 ]
= 2m |’
0 K

where m 1s an exponent; in the previous example and in the
Nye—Kamb analysis, we find m = 1.
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The inverse form of Relationship (6) can be computed as
follows. Writing (6) as

(ﬂam 71ty) =L (uzkimv uykim) ) (9)

where

L= (A)71/71‘/—(11’1“I<u)1/271,—1/27

we see that we can also write (9) as

V;{L ol [7. _le;fl 0 ] [u]
0 0 K| |u,

Ty
and after multiplying the left and right sides by their respec-
tive transposes we obtain

u'Ku=T/LT,/L?

(10)

where
L=K' (11)

Substitution of this into Equation (10) gives us L in terms of
the traction vector,

L=A"'v(T'LT,)" "
and we substitute this into (9) to obtain the inverse form
(e, y) = AV (TILT) " (a2, Ty2m). (12)
The scale-model generalization of Equation (1) is thus
s = Av(T'LT) " VL, (13)

where S is the tensor equivalent of S. We shall see in the next
section that Nye—Kamb theory gives this functional form
for the special case n = 1 and with small bed undulations.
The above argument has supposed that the L and K ten-
sors are diagonal. However, in the above example the diago-
nal form arises from the fact that we have aligned the axes of
the ellipsoid with the coordinate axes. A more general form,
where the “grain” of the landscape is not aligned with the co-
ordinate axes, will result in a full smoothness tensor. If we
define the principal smoothnesses S; and S5 to be at angle ¢
to the coordinate axes, we find the smoothness tensor to be

Sicos? 0+ Sysin?@  cos@sinO(S; — So)

S fr—
cosOsinf(S; — S2)  Sisin®60+ S, cos®

after applying the usual tensor-transformation rules. TFor
1sotropic sliding we can, without loss of generality, take
(K,L) = (I,I), and we then obtain the usual sliding invar-
1ant used in glaciology.

The quadratic-form construction depends on the exis-
tence of the smoothness tensor, and is a form which permits
inversion of the sliding relationship, since the forms TT LT,
and uTKu maintain a constant ratio irrespective of the
orientation of the coordinate axes. The dissipation is given
by T;-u=T;-STi,which implies that the tensor S
should be positive definite; if it were not energy production
could be negative.

Finally, we show that the tensor S is symmetric. A positive-
definite matrix is one where the eigenvalues (principal
smoothnesses) are positive. This means that we can write S =
EAE™!, where Ais the diagonal matrix of eigenvalues and E is
the matrix of eigenvectors. Since the matrix A is also a smooth-
ness matrix in a rotated frame, by using the usual transforma-
tion rules we can write S = RARY, where R is the
(orthonormal) rotation matrix. This means that the eigen-
vectors are an orthonormal matrix and we can write S =

EAET. This can be written as S = FFT where F = EAY2,
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Since the product of a real matrix and its transpose is sym-
metric, this shows that the smoothness tensor is symmetric.

3. NYE-KAMB THEORY

Nye—Kamb theory (Nye, 1969, 1970; Kamb, 1970) considers
the case where a block of ice is moved, with perfect slip, over
a flat surface, at a prescribed velocity (uy, 0, 0). Perturbative
undulations in the bed are introduced. These create a first-
order velocity field which vanishes at large distance from
the surface; the ice velocity therefore remains (uy, 0,0) at
large distance. These undulations introduce a drag, which
is a second-order quantity as it is a multiple of two first-
order quantities, the normal stress and the bed slope. Where
slip 1s perfect, there are no contributions from the second-
order stress field to the second-order drag, and we therefore
do not need to compute the second-order stress field to com-
pute the second-order drag. We now treat Nye—Kamb slid-
ing over an anisotropic bed. Three-dimensional flow has
been treated by Nye (1969, 1970) who in particular com-
puted the “transverse drag” for the case where the bed-
profile autocorrelation function is anisotropic. We consider
a simpler case (where two washboards are superimposed),
emphasizing the tensorial nature of the solution and the de-
pendence of the tensor components on the components of
the wavelength vector; neither of these features are very ob-
vious in Nye’s work. We ignore regelation.

In the rest of the paper we consider perturbed and unper-
turbed velocity fields. When we are considering a three-
dimensional-velocity field, we denote it v with components
(vw, vy, ’U;,;). Sometimes we wish to restrict consideration to a
horizontal-velocity field u which has components (ua,,uy)
= (Ug;,vy). When we consider this horizontal-velocity-field
vector and wish to consider the vertical velocity as well, we
denote it w; by definition w = v,.

Now we consider a perturbed half-space z> D =
DeXp(—ik ‘1), k :(Akw, ky), r =(z,y) and specifically con-
sider the case D = Dy, where piis a small parameter. In this
half-space ice is moving with perfect slip over the base. Fol-
lowing Nye (1970) we define a new coordinate 2z =
i—D exp(—ik - r), and obtain the field equations

77V2V1 = VPI ;

where v is the perturbed three-dimensional vector field, p;
is the perturbed pressure and 7 is the viscosity of ice. The
zeroth-order solution, corresponding to p = 0, is

Vo = (’LL}], Oa 0)7
po = 0.

Boundary conditions are

vi—0, p—0 as z— o0,
d.uy +V gw, = 0 (perfect slip),

wy = vy - VD4 (basal kinematical condition),

where Vj is the horizontal-divergence operator. (For func-
tions of  and y only, we do not in general distinguish
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between Vi and V). These equations possess the solution
(cf. Nye, 1969, 1970)

k, P
Vg = ﬁQ—;exp(—|k|z —ik-r),
ik, P
vy = ﬁ2—;exp(—|k|z —ik-r),
P /1
Vi = o (m + z) exp(—|k|z — ik - 1),

p1 = Pexp(—|k|z —ik - 1)
where
P = —2in|k|k.ugD;.
Use of the basal kinematical condition shows that
T = —2ink - ug|k|D; exp(—ik - r),
where we have used
VD, = —ikD, exp(—ik - r),

and to obtain the average drag per unit area we use the sec-
ond-order approximation

.k 2n/k, p2n/k,
TQ = ﬁ/ / T{LVDldy dz
0 0

ik,
T o2

2n/ky  p2m/ky,
/ / exp(—2ik - r)dydz,
0 0

— nk(k - ug) k| D?.

ik (k - ug) k| D? x

We can express this in tensor form through

1 ~
T, = §n|k|D%Kuo,

e [54]
koky K,

The matrix K has eigenvalues (k - k,0) with corresponding
orthogonal principal directions ([kt/k:,, 1], [—ky/k‘x 1])
The orthogonality arises from the symmetry of the matrix.
The singularity of the matrix, as evinced by the zero eigen-
value, indicates that we can deduce the drag from the sliding
velocity, but that we cannot deduce the sliding velocity from the drag.
It stems from the fact that the function exp(—ik - r) is an
angled washboard and that the drag parallel to the axis of
the washboard must be zero for perfect slip.

In this linear case, more complicated topographies can
be constructed by superposing N different washboard topo-
graphies. Let us number indices (j,£) € (1, N). Use of the
basal kinematic condition shows that the normal traction
is given by

T} = —2ink; - uo|ky| Dy exp(~ik; -x),

and the average drag per unit area is given by

1 X rY
T :WZ;/O /O T;;VDudydx
J
2n X Yy |
:WZJ:ZK:/O /(; Dﬂkj~110‘kj|eXp(—'ij.r) %

Dy kg exp(—ik,r) dyde,
X =lecm (|277/ka|, \27r/k:gz|),
Y =lecm (|27T/k'jy|, ’27T/k‘(y|),
where lcm indicates the least common multiple.
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Fig. 1. Anisotropic flow with perfect slip around bumps of wavelength much shorter than the ice thickness ( Nye—Kamb configuration ).
The relationship between basal topography, interfacial-pressure distribution, zeroth-order velocity Wy and the drag vector To. The two
columns correspond to different basal topographies, while the rows correspond to different orientations of the drag vector. These differ-
ent orientations cause the changing orientation of the velocity vector. If the drag vector were parallel to either of the principal axes of the
smoothness tensor, corresponding to the axes of the diagram, the velocity vector would be parallel to the traction vector. Basal topography
is indicated by the shape of the lower, grey surface. The pressure is indicated three ways; by the shading on the basal topography, with
darker indicating hugher presure; by the shape of the upper mesh, and by the three-dimensional contouring on this mesh.
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A topography containing hummocks and hollows can be
created by superposing two washboard topographies defined
by wavenumbers (kz, ky) and (kz, —ky), ﬁjl = ﬁa = %ﬁl,
which means that the amplitude of the basal topography is
ﬁl. In this case, we find

ko k 2r/ky  p2m/ky,
T, = 4-%5'22 / / T}V Dy dy da
j ¢ 0 0

B, [0
:7771“{‘ 5 | Yo
0 k,

This tensor is not singular for non-zero wavenumbers, and
can be readily inverted to create the inverse form

2 /K2 0
uy = A2 9 T2-
kD |0 1/,

Note that the average drag and the zeroth-order velocity are
not parallel even in this simple example; this is a result of
the additional stresses in the ice caused by the presence of
the bed topography. The basic solution of glacier sliding thus
gives anisotropic sliding. In this construction we have
aligned the principal axes of the sliding tensor with the
coordinate axes, but it could equally be aligned with the
velocity or the drag. In such a case, the sliding tensor would
in general contain non-zero off-diagonal elements. The
diagonal form arises from the fact that the washboard axes
subtend the same absolute angle with the axes.

Some examples are plotted in Figure 1. The two columns
correspond to different basal topography, while the rows cor-
respond to the average drag vector, which is pointed increas-
ingly obliquely to the z axis. In the left column, the wave-
length ratios are 2:1, while in the right column, they are 4:1.
This will cause the ratio of the principal roughnesses (inverse
smoothnesses) to be 4:1 and 16:1 respectively. It can be seen
that flow is directed along the longer wavelength direction for
relatively small deflections of the drag vector from the  axis,
and that this effect is particularly marked for the more aniso-
tropic case. Pressure maxima reside on the upstream side of
the bumps, their orientation seeming to be more related to
the velocity direction rather than the drag direction.

4. SURFACE EFFECTS

Here we extend to the case of anisotropic sliding analyses
due to Nye (1959) and to Budd (1970) which show: (i) how
disturbances in the surface profile decay to the zeroth order
profile; and (ii) how variations in the bed profile affect the
surface profile. In both cases, we consider flow down an in-
finitely long and broad plane, with gravity components
given by g(g,0, —1). We are assuming ¢ to be small, but it is
not an aspect ratio and not a perturbation parameter. Wave-
lengths of undulations which give rise to surface effects are
much larger than the ice thickness in this analysis and the
mechanics can thus be described by the shallow-ice approx-
imation (Hutter, 1983). However anisotropic sliding arises
from bedrock undulations with wavelength much smaller
than the ice thickness so that the effect of these undulations
1s not noticeable at the surface. We are thus dealing with two
distinct limits, one of which gives rise to the surface effects
and the other of which gives rise to the anisotropic sliding.
We expand H = Hj + vH; etc., where v is a small par-
ameter. At zeroth order, the basal shear stress is given by

Tgm = pigHE, Toy = 0,
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where pj is the density of'ice, g is the acceleration due to grav-
ity and H is the thickness of the ice. There is subtlety here; T
here refers to the expansion in the small parameter v. This
resistance arises from short-wavelength perturbations, and
corresponds to the second-order drag T obtained from per-
turbing in parameter p discussed in section 3.
The sliding velocity is given by

uy = A (TILT) " LT,
(see Equation (8)) where L is the tensor defined in Equation
(11). This shows that the zeroth-order velocity need not be in
the x direction if the principal smoothnesses are not aligned

with the coordinate axes.
The first-order basal tractions are

T, = To.(Hi/Hy — 0. H: /¢),
Ty = —To,0,H, /e,
and the first-order velocity vector becomes
u; = A,|To|" 'LTyz x
L,x(n—1)(H1/Hy — 0, H1/e) + (H1/Hy — 0, Hy /¢)
—OyHy/e — Lyy(n — 1)0,H: Je
At first order the continuity equation is
OH1 = —HyV.u; — VH,.uy.
To proceed, we define a surface wavenumber k® and write

H, = Hy exp(—ik’r), VH, = —ik’H exp(—ik’r),

Vg (ﬁl/Ho—F’LkJi]:Il/&) ,
u = UL . exp(—ik®.r),

ivyk, H /e
Uy Hl/H0+ikJ;I:[1/€)

Vay = —ily(k) 'L ( . exp(—ik®.r),

iVyszl/E
Qi s+ 1)/ Hy vk fe]
d—tl = Qu(k)'L Hi,

—v,k, /e

where we define the scalars

n—1

Up = A|T{LTo|" Tos,
Qo = HyUh,

Vy = La:a:(n - 1) +1,

vy = Lgy(n —1) + 1.

4.1. Decay of surface disturbances

The decay-rate constant is given by the real part of the ratio

(dH, /dt)/Hy, which is

T
~Qo(k) L[wak k| /e

We can prove stability as follows. Let us rotate the axes into
a coordinate system (2, y/') determined by the principal di-
rections of L. This implies that the transformed tensor L is
diagonal, and we can see immediately that the decay rate is

—Qo(k)°L. (L, (n—1)+1)/e <0

since the principal smoothness L’ > 0 by the positive-defi-
niteness property. The imaginary component can be written
(ve + DU K5 Lyy + Lyyk; ). For one-dimensional flow
over an isotropic bed, k, —"0 and without loss of generality
we can write L = I, which allows us to retrieve the well-
known one-dimensional results.

Wave velocity (i.e. of a washboard surface wave) in the z
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Fig. 2. Illustrating the motion of kinematic waves of wavelength greater than the ice thickness. The surface represents the glacier
surface and the dark lines are included to demonstrate the wave motion. Note how anisotropic flow leads to lateral wave motion; the
lateral velocity depends on the wavelength, t.e. it is dispersive, unlike the downstream velocity.

direction is given by (vy + 1)Up g + Lok /k:) while
the x velocity of the plane (washboard) wave of opposite
orientation to the y axis is given by (v, + 1)U

L. — kasy/k; . Both waves will remain plane waves or-
iented at the same angle, moving at different velocities.
Since their superposition is hummocks and hollows oriented
with the x and y axes, we can anticipate that these features
will migrate laterally if L,, # 0, which of course happens
when the principal smoothnesses are not aligned with the
coordinate axes/downstream direction. This is illustrated
in Figure 2. In particular, we are interested in the ratio of
the lateral- and longitudinal-wave-migration velocities,
how this relates to the lateral and longitudinal components
of the zeroth-order ice-flow velocity and how this wave-
velocity ratio is affected by the wavenumbers.

4.2. Bedrock-surface relationships

We now wish to investigate the steady surface response to
bedrock perturbations (Hutter, 1983, chapter 4). This is car-
ried out for wavelengths greater than the ice thickness,
while the wavelengths which determine the sliding resis-
tance are much less than the ice thickness. We suppose that
the bed profile is given by z = b;.The first-order stresses are
given by

T, = Too(Hi/Ho — 0,(Hy + by) /e),
T1y = —ngay(l‘h + bl)/E,

and the first-order velocity vector becomes

ve(Hy/Hy — 0, (Hy + by) /)

w = AJTo|" LTy,
1 | o| 0 —l/yay(Hl n bl)/a

To proceed, we assume the bedrock topography is defined
by a wavenumber vector k” and assume that under the lin-
earity assumption this will be the wavelength of the surface
topography. Thus,
by = by exp(—ik".r), Vb; = —ik"b; exp(—ik" 1),
H1 = I:Il exp(fikb.r) y VHl = 71.ka1 exp(fikb . I‘),
142
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and we can readily deduce that

111:U()L><
[ v (FL/Hy 4 ik2 (Hy + by ) /€) |
R C) I
L iVyk;(H1+b1)/€
Vo = =il (k") 'L x
[ v (FL/Ho 4 ik2 (Hy + by ) /€) |
(i) )
ZVukS(H1+b1)/€

and the steady condition is

(ve + 1)(1/Ho + k2 /2) ] .

(k")'L H,
ivykz/s
iv kP /e .
=L T b
i,k /e

This equation applies to the case of the angled washboard,
1.e. where the bed is a washboard with axes angled to the
downstream, x direction. The magnitude of the surface
effect is determined by Re (1:11), while Im(Hl) determines
the phasing relative to the bedrock topography.

The superposition of two angled washboards leads to a
hummocks and hollows topography, and solution for the
elevation may be found by superposing solutions for H,.
Some examples are plotted in Figure 3. The traction vector
is aligned with the x axis. The two columns correspond to
different basal topography, while the rows correspond to
different alignments of the principal smoothnesses, the
major one being pointed increasingly obliquely to the x axis.
The resulting zeroth-order velocity is indicated. Where the
long-wavelength topography (shown on the figure) is aniso-
tropic and aligned orthogonal to the traction direction, sur-
face maxima reside upslope of the basal maxima, but when
the long-wavelength basal topography is isotropic, surface
maxima reside upflow of the basal maxima. If the sliding
were isotropic, upflow and upslope would be in the same
direction under the shallow-ice approximation, but aniso-
tropic sliding permits them to be different when the slope
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Fig. 3. The relationship between basal topography, and ice-surface elevation for wavelengths greater than the ice thickness (the
shallow-ice approximation ). The two columns correspond to different basal topographies, while the rows correspond to different
orientations of the principal smoothnesses. Basal topgraphy is indicated by the shape of the lower, grey surface. The surface is
indicated three ways; by the shading on the basal topography, with darker indicating greater ice-surface elevation; by the shape of
the upper mesh; and by the three-dimensional contouring on this mesh. The small axes indicate the direction of the traction ( parallel
to the x axis ), the zeroth-order sliding velocity and the principal smoothnesses. The ratio of principal smoothnesses was 10: 1.
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and velocity are not aligned with one of the principal axes of
the smoothness tensor.

4.3. Shock velocities

In valley glaciers, the basic form of the evolution equation
for ice thickness 1s hyperbolic and kinematic waves will form
shocks, where there is a jump in the thickness (Fowler, 1982).
These shocks will be severely smoothed by diffusion
(Jéhannesson, 1992), but the possibility of smoothed
shock-like form existing remains. The shock is also of mathe-
matical interest as it represents a limiting non-linear beha-
viour.

The shock speed v is given by the Rankine-Hugoniot
condition

v=[c"q]/[H],

where cis the unit vector normal to the shock. If the traction
vector is aligned with the z axis, the flux is given by

L(L‘.’L‘

q :As (TJ?LJ::0> (n—1)/2 H”+1T1-
Lyy

)

and the shock speed by

v=A(T’Ly,) " P HYT, (cos L, + sin gLy,
where ¢ 1s the angle the shock axis makes with the z axis.
The dependence of the shock speed on the angle is thus dif-
ferent for isotropic and anisotropic beds.
5. APPLICATIONS

5.1. Numerical solutions to the ice-sheet equation

Some calculations based on the European Ice Sheet Model-

Fig. 4. The influence of bed anisotropy and bed asymmetry on steady ice-sheet profiles computed using the non-linear equations. Based
onthe EISMINT Benchmark configuration ( Hupbrechts and others, 1996). Six calculations are presented as contour plots: (a) flat
bed, isotropic smoothness (the EISMINT Benchmark ); (b) flat bed, anisotropic smoothness angled at 0°, principal smoothness
ratio of 10:1; (c) flat bed, anisotropic smoothness angled at 30°, principal smoothness ratio of 10:1; (d) flat bed, anisotropic
smoothness angled at 530°, principal smoothness ratio of 2:1; (¢ ) flat bed, anisotropic smoothness angled at 45°, principal smooth-
ness ratio of 10: 1; and (f) asymmmetric bed, isotropic smoothness. Bed contours are shown as dotted lines; these can be seen to be

asymmetrical about the centre of the solution domain.
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ling Initiative (EISMINT) Benchmark (Huybrechts and
others, 1996) are presented. The basic configuration is a
1500 km? ice sheet with zero-thickness (Vialov) boundary
conditions, which admit a finite outlet flux through zero ice
thickness. Accumulation is uniform. Bedrock topography is
prescribed (but flat in most of the cases presented here), while
flow 1s not through internal deformation as in the EISMINT
Benchmark, but by Weertman sliding and with an anisotropic
smoothness tensor using Equation (5). Six calculations are
presented and the results are shown in Figure 4.

Smoothness ratios of 10:1 have a very significant effect,
depending on the alignment of the principal directions with
the divide ridges. This implies a wavelength ratio of around
3:1. Smoothness ratios of 2:1 have a less-marked but never-
theless observable effect. Large-scale bed asymmetry has
equally marked, but qualitatively different effects.

5.2. Rugose topography underlying cold-based ice
sheets

Cold-based ice sheets contain a shear layer at the base (Fowler,
1992) where most of the internal deformation occurs. This
layer arises because the basal viscosity is lower owing to the
higher stresses and temperatures. Rugose topography which
substantially penetrates this layer is likely to affect the flow of
ice sheets. If this topography has a grain, then cold-based ice is
also likely to exhibit non-parallelism between surface slopes
and flow directions. Such non-parallelism should not be used
a priori to infer either warm bases or the breakdown of the
shallow-ice approximation.

6. CONCLUSIONS

(I) Anisotropic beds give rise to non-parallel basal-tangen-
tial-traction and basal-sliding vectors, which are related
by a smoothness tensor. This tensor is real and symmetric
to ensure positive definiteness, necessary on account of
the Second Law of Thermodynamics. This tensor can be
diagonalized, with the two eigenvalues, necessarily both
positive, called the principal major and principal minor
smoothnesses. In the shallow-ice approximation, velocity
and slope vectors are no longer parallel in general, which
means that there 1s a distinction between upslope when
considering the ice surface and upflow. Non-linear sliding
requires a generalization of the absolute value of the slope
in terms of a quadratic form involving the slope vector
and the inverse smoothness tensor.

(2) The Nye—Kamb solution for short-wavelength obstructions
predicts anisotropic sliding, with the strengths of the prin-
cipal smoothnesses being proportional to the wavelength
squared for linear rheologies. For wavelength ratios of 4:1,
tractions deviating only slightly from the direction of the
minor principal smoothness result in velocities strongly
aligned with the major principal smoothness.

(3) For flow according to the shallow-ice approximation
down the infinite plane, the decay rate of surgace distur-
bances is given by —Q()(ks)TS[VIk;7Vyk;] /€. Plane
wave velocities in the z direction are given by
(ve + DUy Suz + SMkZ/k; . Plane waves of opposite
orientation (e.g. with k, of opposite sign) have a different
wave velocity, which means that superpositions of these
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plane waves, which are hummocks and hollows, have lat-
eral velocities which depend on the relative wavelength
and the orientation of the principal smoothnesses.

(4) Under steady flow, according to the shallow-ice approx-
imation, steady anisotropic sliding can affect surface-
topography—basal-topography relationships. If the
long-wavelength basal topography is of shorter wave-
length in the direction of the traction vector, then the
ice-surface highs are found upslope of the basal highs. If
the long-wavelength basal topography is isotropic, ice-
surface highs reside upflow of the basal highs.

(5) Shock waves angled at  across the direction of flow have
a shock-wave velocity cos 8 of that of a wave with axis
orthogonal to the flow when sliding is 1sotropic. Aniso-
tropic sliding will cause there to be a different relation-
ship between the angle subtended by the axis of a plane
shock wave and the direction of maximum of slope.

(6) Anisotropic sliding causes deflection of divide ridges
compared with the isotropic case. This may be of signifi-
cance in East Antarctica, where basal temperatures in
central regions reach melting point.

(7) Anisotropic sliding will make inferring the deposition
location of snow in off-divide cores more difficult; slope
strike does not equal flow strike.
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