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This paper proposes a novel method of algorithmic subsampling (data sketching)
for multiway cluster-dependent data. We establish a new uniform weak law of
large numbers and a new central limit theorem for multiway algorithmic subsample
means. We show that algorithmic subsampling allows for robustness against potential
degeneracy, and even non-Gaussian degeneracy, of the asymptotic distribution under
multiway clustering at the cost of efficiency and power loss due to algorithmic
subsampling. Simulation studies support this novel result, and demonstrate that
inference with algorithmic subsampling entails more accuracy than that without
algorithmic subsampling. We derive the consistency and the asymptotic normality for
multiway algorithmic subsampling generalized method of moments estimator and
for multiway algorithmic subsampling M-estimator. We illustrate with an application
to scanner data for the analysis of differentiated products markets.

1. INTRODUCTION

In the present era of big data, it is not uncommon that datasets are so large that
researchers may not need to use the whole sample for statistical inference to draw
informative conclusions. Furthermore, computational bottlenecks in time and/or
memory may even prohibit econometric analyses with such large datasets. The
recent econometrics literature Lee and Ng (2020a, 2020b) suggests methods to deal
with these circumstances that started to arise in today’s data-rich environments.
The algorithmic subsampling or data sketching explored by these authors paves
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the way for econometric and statistical analyses based on random subsampling of
big data.

The existing study of algorithmic subsampling focuses on i.i.d. cases, and it has
been “silent about how to deal with data that are dependent over time or across
space” (Lee and Ng, 2020a, Sect. 8). On the other hand, some of big data may
exhibit cross-sectional statistical dependence, such as multiway clustering. For
instance, common scanner data (leading examples of big data) are clustered in
two ways by markets and products. Common demand shocks within a market
may induce statistical dependence among different products within that market.
Similarly, common supply shocks by a producer may induce statistical dependence
among different markets within the product produced by that producer. “A natural
stochastic framework for the regression model with multiway clustered data is that
of separately exchangeable random variables” (MacKinnon, Nielsen, and Webb,
2021).

In this paper, we propose a novel method of algorithmic subsampling for
separately exchangeable random variables, which we will refer to as the multiway
algorithmic subsampling, and develop asymptotic statistical properties of this
method. We first establish basic theories for multiway algorithmic subsample
means, namely their uniform weak law of large numbers and central limit theorem,
which differ from the standard ones in a meaningful way. In particular, the form
of the central limit theorem that is unique to multiway algorithmic subsampling
entails a practically useful property of robustness against potential degeneracy.
Researchers do not know ex ante how the data in use are affected by the cluster sam-
pling. In cases where the cluster-specific shocks have no mean effect on the data,
the standard multiway-cluster-robust asymptotic distribution without algorithmic
subsampling would suffer from degeneracy, which can lead to either a Gaussian
limiting distribution with a faster convergence rate or a non-Gaussian limiting
distribution (cf. Menzel, 2021), and invalidates the statistical inference based on
standard multiway cluster-robust standard errors. On the other hand, we show
that multiway algorithmic subsampling allows for a nondegenerate asymptotic
distribution regardless of whether the data are dependent or not. In other words,
algorithmic subsampling ensures robustness against potential degeneracy, and
even non-Gaussian degeneracy, of the asymptotic distribution, thereby allowing
researchers to robustly enjoy valid statistical inference without knowing whether
data are dependent or not. This finding about the added practical advantage of
algorithmic subsampling is novel in the literature to the best of our knowledge.
We emphasize that these advantages of robustness come at the cost of efficiency
and power loss due to algorithmic subsampling.

Once these basic asymptotic statistical theories are established, we apply
them to common econometric frameworks. Specifically, we propose a multiway
algorithmic subsampling generalized method of moments (GMM) estimator, and
derive asymptotic theories for it, including consistency, asymptotic normality, and
consistent variance estimation. This multiway algorithmic subsampling GMM
estimator also enjoys the aforementioned robustness property against potential
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degeneracy. Likewise, we also propose a multiway algorithmic subsampling
M-estimator, and derive similar asymptotic theories for it, including the consis-
tency, asymptotic normality, and consistent variance estimation.

1.1. Relation to the Literature

This paper intersects with two branches of the literature, namely, algorithmic
subsampling and multiway clustering. In econometrics, algorithmic subsampling
and its properties are first studied by Lee and Ng (2020a, 2020b). This literature
has focused on random (i.i.d.) sampling as emphasized earlier. Robust variances
under multiway clustering have been proposed by Cameron, Gelbach, and Miller
(2011), Thompson (2011), and Cameron and Miller (2014). Asymptotic statistical
properties under multiway clustering have been rigorously investigated by Chiang,
Kato, and Sasaki (2021), Davezies, D’Haultfoeuille, and Guyonvarch (2021),
MacKinnon et al. (2021), Menzel (2021), and Chiang et al. (2022) under various
contexts. This literature has not considered algorithmic subsampling. To the best
of our knowledge, this paper is the first to study the properties of algorithmic
subsampling under multiway clustering, and therefore, is the first to propose
the aforementioned advantage of algorithmic subsampling for robustness against
potential degeneracy, including non-Gaussian degeneracy, in the asymptotic dis-
tribution under multiway clustering. We take advantage of the asymptotic distri-
butional theory for incomplete one-sample U-statistics (Janson, 1984) to develop
parts of our basic theoretical results. The method of algorithmic subsampling is
also closely related to the general scheme of resampling methods for clustered
data, which has been studied for one or multiway clustering by MacKinnon and
Webb (2017), MacKinnon and Webb (2018), Djogbenou, MacKinnon, and Nielsen
(2019), Chiang et al. (2021), Davezies et al. (2021), MacKinnon et al. (2021), and
Menzel (2021), to name but a few.

1.2. Organization

The rest of this paper is organized as follows: Section 2 introduces multiway
algorithmic subsampling and presents its asymptotic statistical theories. Sections
3 and 4 demonstrate applications to the GMM and M-estimation frameworks,
respectively. Section 5 presents Monte Carlo simulation studies. Section 6 presents
an empirical application to scanner data. Section 7 concludes. All mathematical
proofs and details are collected in the Appendix.

2. MULTIWAY ALGORITHMIC SUBSAMPLING

Suppose a researcher observes data {Wij : 1 ≤ i ≤ N,1 ≤ j ≤ M}, where N and M
are the sample sizes in the first and second cluster dimensions. For instance, N and
M are the number of markets and the number of products, respectively, in scanner
data. The data may be two-way clustered, in the sense that we allow for arbitrary
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statistical dependence of Wij across j ∈ {1, . . . ,M} within each market i (due to
a common demand shock) and also allow for arbitrary statistical dependence of
Wij across i ∈ {1, . . . ,N} within each product j (due to a common supply shock).
A formal assumption of this sampling process will be stated as Assumption 1.
Using such two-way cluster sampled data, we are interested in (uniformly) con-
sistent estimation of and statistical inference about E[f (Wij)] based on standard
econometric techniques. Since scanner data are very big, however, computational
bottlenecks in time or memory may limit or even prohibit implementation of
standard econometric analysis. Lee and Ng (2020a, 2020b) therefore suggest
algorithmic subsampling of big data to alleviate computational burdens.

Adapting the ideas of Lee and Ng (2020a, 2020b) to our framework of two-
way clustered data, we propose the following multiway algorithmic subsampling
procedure. (We remark that algorithmic subsampling is different from subsampling
as a resampling method.) Let pNM denote the probability of subsample selection
that may depend on the current sample size (N,M). Generate i.i.d Bernoulli(pNM)

random variables {Zij : 1 ≤ i ≤ N,1 ≤ j ≤ M} independently from data. Let
L̂ =∑N

i=1

∑M
j=1 Zij denote the number of nonzero elements. Note that L̂ follows

Binomial(NM,pNM), and thus L ≡ E[̂L] = NMpNM in particular. In fact, this
formulation of algorithmic subsampling is called the Bernoulli subsampling, and is
one of the alternative approaches to subsampling proposed by Lee and Ng (2020a).
We focus on Bernoulli subsampling in this paper for simplicity as well as its
desired property of the aforementioned robustness against degeneracy. That said,
we remark that it is also feasible to use alternative subsampling methods (namely,
the uniform subsampling with and without replacement) proposed by Lee and Ng
(2020a).

We use L̂−1∑N
i=1

∑M
j=1 Zijf

(
Wij
)

to estimate and make inference about
E[f (Wij)]. To this end, we first develop the uniform weak law of large numbers and
the central limit theorem under this setting of multiway algorithmic subsampling
in Sections 2.1 and 2.2, respectively. We then apply these basic theories in turn
to establish the consistency and the asymptotic normality for the GMM and
M-estimation in Sections 3 and 4, respectively. Hereafter, for conciseness of
notations, pNM will be abbreviated as p. We let [k] denote the set {1, . . . ,k} for
any k ∈ N, and let [k]c = N\[k] for any k ∈ N. We use the short-hand notation
C = min {N,M}. Throughout the paper, the asymptotics is understood as C → ∞.
For a vector v ∈ Rk, let ‖v‖ denote the Euclidean norm of v.

2.1. The Uniform Weak Law of Large Numbers

We first formally state the assumption of two-way cluster sampling.

Assumption 1 (Sampling). (i)
(
Wij
)
(i,j)∈N2 is an infinite sequence of separately

exchangeable d-dimensional random vectors. That is, for any permutations π1 and

π2 of N, we have
(
Wij
)
(i,j)∈N2

d= (Wπ1(i)π2(j)
)
(i,j)∈N2 . (ii)

(
Wij
)
(i,j)∈N2 is dissociated.

That is, for any (c1,c2) ∈ N2,
(
Wij
)

i∈[c1],j∈[c2] is independent of
(
Wij
)

i∈[c1]c,j∈[c2]c .
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Part (i) requires a form of the identical distribution condition in separate
permutations of the i index and the j index. Although we relax the independent
sampling, we maintain a form of identical distribution as such. Part (ii)
requires that sets of observations are independent if they do not share the
same i index or the same j index, i.e.,

(
Wij : i ∈ {1, . . . ,c1},j ∈ {1, . . . ,c2}

)
and(

Wij : i ∈ {c1 +1, . . . },j ∈ {c2 +1, . . . }) are assumed to be independent for any
(c1,c2) ∈N2. However, where any observations are sharing either the same i index
or the same j index, then they are allowed to be arbitrarily dependent. For example,
in the scanner data, two observations in the same market i may be dependent due
to a common demand shock, and likewise two observations in the same product j
may also be dependent due to a common supply shock.

Assumption 1 consists of a sufficient condition for what we actually need. These
conditions can be relaxed to the assumption that the data (Wij)(i,j)∈N2 are generated
via the process Wij = f (αi,βj,εij) for some Borel-measurable function f, where
(αi)i∈N, (βj)j∈N, and (εij)(i,j)∈N2 are mutually independent, and each of (αi)i∈N,
(βj)j∈N, and (εij)(i,j)∈N2 is i.i.d. This data generating process, or so-called Aldous–
Hoover–Kallenberg representation, is implied by Assumption 1. We can interpret
αi and βj as i- and j-specific effects, respectively, while εij is an idiosyncratic effect.
This representation is also consistent with the data generating processes considered
in the simulation studies.

For convenience of stating the next assumption, we introduce additional nota-
tions and definitions. Let (T,d) be pseudometric space.1 For ε > 0, an ε-net of T
is a subset Tε of T such that for every t ∈ T there exists tε ∈ Tε with d(t,tε) ≤ ε.
We define the ε-covering number N(T,d,ε) of T by

N(T,d,ε) = inf{Card(Tε) : Tε is an ε-net of T}.
For any probability measure Q on a measurable space (S,S) and any q ≥ 1, define
‖f ‖Q,q = {∫ |f |qdQ

}1/q
, and let Lq(S) = {f : S → R : ‖f ‖Q,q < ∞}. A function

G : S →R is an envelope of a class of functions G 	 g, g : S →R, if supg∈G |g(s)| ≤
G(s) for all s ∈ S. With these notations and definitions, we state the following
assumption regarding the function class where f resides.

Assumption 2 (Function class). The function class F satisfies (i) E
[
f
(
Wij
)]=

0 for all f ∈ F . (ii) F admits an envelope F satisfying E
[
F(Wij)

]
< ∞ with

supQ N(F, ‖·‖Q,2 ,ε ‖F‖Q,2) < ∞ for all ε > 0, where Q is any finite discrete
measure. (iii) F is pointwise measurable.2

Part (i) is a location normalization (centering) and is therefore without loss of
generality. Although this part will not be needed in the short run (Lemma 1), we
state it here as this Assumption 2 collects requirements about the function space
where f resides. Part (ii) is a regularity condition imposed to establish a uniform
weak law of large numbers. Part (iii) is a technical requirement that is used to avoid

1That is, d(x,y) = 0 does not imply x = y.
2For its definition, see van der Vaart and Wellner (1996, p. 110) for instance.
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measurability issues. At this moment, we are stating these high-level assumptions
for the sake of generality, but we will provide the standard lower-level primitive
conditions in the context of the application to the GMM presented in Section 3 and
the application to the M-estimation presented in Section 4.

Under these assumptions, we can establish the uniform weak law of large
numbers for multiway algorithmic subsample means as formally stated in the
lemma below.

Lemma 1 (Uniform weak law of large numbers). Suppose that Assumption 1
holds and that F satisfies Assumption 2 (ii), (iii). Then, for any f ∈ F , we have

sup
f∈F

∣∣∣∣∣∣1L̂
N∑

i=1

M∑
j=1

Zijf
(
Wij
)−E [f (W11)]

∣∣∣∣∣∣ P→ 0.

This result is not very surprising, but we state above as Lemma 1 and prove
it (in Appendix C.1) for the following two reasons. First, this is the first time it
is stated and proved in the literature to the best of our knowledge. Second, more
importantly, this lemma serves as a useful auxiliary device for other results to be
presented below that are practically more relevant.

2.2. The Central Limit Theorem

To establish the central limit theorem under multiway algorithmic subsampling,
we augment our assumptions with the following additional condition. Recall the
short-hand notation C = min{N,M}.

Assumption 3. There exists a constant � ≥ 0 such that (C/NM)((1 −
pNM)/pNM) → �.

It entails that there exist constants λ1 ≥ 0 and λ2 ≥ 0 such that C/N → λ1,
C/M → λ2. To facilitate the subsequent discussions, we introduce a notion of
degenerate asymptotic distribution. For any scalar-valued sequence of random
variables

(
Xij
)
(i,j)∈N2 satisfying Assumption 1, we say the asymptotic distribution

is degenerate if Var
(
(
√

C/NM)
∑N

i=1

∑M
j=1 Xij

)
→ 0 as C → ∞. The following

theorem establishes the central limit theorem under multiway algorithmic subsam-
pling.

Theorem 1 (Central limit theorem). Suppose that Assumptions 1, 2(i), (iii), and
3 hold, and that the class F = {f1, . . . ,fk} is finite, independent of sample size, and
admits an envelope F satisfying E

[
F(Wij)

2
]
< ∞. Let f = (f1, . . . ,fk)

T . Then,

√
C

1

L̂

N∑
i=1

M∑
j=1

Zijf
(
Wij
) d→ N (0,	),
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where the variance is given by 	 = 	A + �	B, 	A = λ1E
[
f (W11) f T (W12)

]+
λ2E
[
f (W11) f T (W21)

]
and 	B = E

[
f (W11) f T (W11)

]
.

A proof is provided in Appendix C.2. This central limit theorem entails a novel
and useful feature of algorithmic subsampling for multiway clustered data in
practice. Notably, the asymptotic variance 	 consists of a sum of two components,
	A and �	B. This is in contrast with algorithmic subsampling for independent
data, where the asymptotic variance consists of only one term. The first part, 	A, in
fact coincides with the asymptotic variance that we would get without algorithmic
subsampling. Specifically, 	 = 	A if p = 1. More generally, if p is a constant, as the
sample sizes (N,M) increase, then � = 0 so that 	 = 	A. On the other hand, if p is
chosen so that � = limN,M→∞(C/NM)((1−p)/p) > 0, then the second part, �	B,
is also present. Furthermore, 	B is nonzero whenever the distribution of f (Wij) is
nondegenerate, and this feature ensures robustness in inference against possible
events of no cross-sectional dependence.

In practice, a researcher may not ex ante know whether data exhibit cross-
sectional dependence (E[f (W11)f T(W12)] 
= 0 or E[f (W11)f T(W21)] 
= 0) or not.
If a researcher knew the true dependence structure, he or she could set the
correct cluster dimension to conduct valid inference. However, this premise is
implausible. In cases where there is no cross-sectional dependence, then 	A = 0
and the statistical inference based on the asymptotic normality without algorithmic
subsampling would suffer from the degeneracy problem. Because of algorithmic
subsampling, however, we can robustly safeguard against such degenerate asymp-
totic distributions without requiring a prior knowledge of the researcher about
the presence/absence of cross-sectional dependence in data. This result is novel
in the literature, and also uncovers an additional useful property of algorithmic
subsampling in practice.3 Simulation studies presented in Section 5 support this
practically relevant property of multiway algorithmic subsampling.

Intuitively, algorithmic subsampling with smaller p makes it less likely that
multiple observations from the same row i or the same column j are selected.
Thus, it results in placing relatively more weights on the variance E[f (Wij)f (Wij)]
than on the covariances, E[f (Wij)f (Wij′)] and E[f (Wij)f (Wi′j)], in the asymptotic
distribution. Hence, the part E[f (Wij)f (Wij)] of the asymptotic variance becomes
dominant in the case of degenerate covariances, and this feature of algorithmic
subsampling prevents the degeneracy problem.

We can apply these theoretical results to a number of common frameworks of
econometric analysis. Two of the most frequently used classes of econometric
methods are the GMM and the M-estimation. Therefore, we will demonstrate
applications of these basic theories of the uniform weak law of large numbers

3Indeed, the method of inference by MacKinnon et al. (2021) as well as Cameron et al. (2011) adapts to specific
classes of degenerate asymptotic distributions. However, these are restricted to the cases of Gaussian degeneracy,
where the convergence rate is

√
NM, yet the asymptotic distribution is still Gaussian. On the other hand, these existing

methods of inference by Cameron et al. (2011) and MacKinnon et al. (2021) do not adapt to the class of non-Gaussian
degenerate asymptotic distributions.
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(Lemma 1) and the central limit theorem (Theorem 1) to establish the consistency
and the asymptotic normality of the GMM and M-estimators under multiway
algorithmic subsampling in Sections 3 and 4.

We conclude this section with a remark on alternative subsampling methods. As
mentioned earlier, our method is based on the Bernoulli subsampling, and is one
of the alternative approaches to subsampling proposed by Lee and Ng (2020a).
Besides the Bernoulli subsampling on which we focus in this paper, they propose
uniform subsampling with replacement, uniform subsampling without replace-
ment, and leverage score subsampling. Among these alternative methods, it is also
feasible to use uniform subsampling with replacement and uniform subsampling
without replacement. Similar asymptotic properties will follow through similar
lines of the argument following Janson (1984) to those in the proof of Theorem 1.
See Appendix H for details.

2.3. Application to the Ordinary Least Squares

This section demonstrates an application of the basic theories to the ordinary least
squares (OLS) estimator. Consider the linear regression model

Yij = XT
ij β +uij 1 ≤ i ≤ N,1 ≤ j ≤ M, (2.1)

where Yij is a response variable, Xij is a vector of d covariates, and uij is an

error satisfying E
[
uij|Xij

] = 0. Let Wij =
(

Yij,XT
ij

)T
, and we apply the proposed

multiway algorithmic subsampling to Wij. The parameter of interest is the vector
of linear projection coefficients

β = E
[
X11XT

11

]−1
E [X11Y11], (2.2)

and multiway algorithmic subsampling OLS estimator is

β̂ =
⎛⎝1

L̂

N∑
i=1

M∑
j=1

ZijXijX
T
ij

⎞⎠−1⎛⎝1

L̂

N∑
i=1

M∑
j=1

ZijXijYij

⎞⎠ . (2.3)

Applications of Lemma 1 and Theorem 1 yield the following limit distribution
property about β̂.

Corollary 1. Suppose that Assumption 1 holds for Wij = (Yij,XT
ij )

T . Assume

E
[|Y11|4

]
< ∞, E

[||X11|| 4
]
< ∞, and that E

[
X11XT

11

]
is nonsingular. For β and

β̂ defined in (2.2) and (2.3), we have√
C
(
β̂ −β

) d→ N (0,V),

where V = J−1	OLSJ−1, J = E
[
X11XT

11

]
, 	OLS = 	OLS,1 + �	OLS,2, 	OLS,1 =

λ1E[X11u11(X12u12)
T ]+λ2E[X11u11(X21u21)

T ], and 	OLS,2 = E[X11u11(X11u11)
T ].

See Appendix C.3 for proof of this corollary.
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3. APPLICATION TO GENERALIZED METHOD OF MOMENTS

In this section, we apply the basic methods and theories presented in Section 2
to multiway algorithmic subsampling GMM. Suppose that an economic model
implies moment restrictions E

[
g
(
Wij,θ

0
)] = 0 for a true parameter vector θ0 =

(θ0
1 , . . . ,θ

0
k )T ∈ �, � ⊂ Rk, where g = (g1, . . . ,gm)T , and m ≥ k. With a Bernoulli

sample {Zij : 1 ≤ i ≤ N,1 ≤ j ≤ M}, algorithmic subsample moment evaluated at
θ = (θ1, . . . ,θk)

T ∈ � is given by ĝNM (θ) = L̂−1∑N
i=1

∑M
j=1 Zijg

(
Wij,θ

)
. Let V̂

be a positive semi-definite random matrix, which may depend on θ . We define
multiway algorithmic subsampling GMM estimator θ̂ as the solution to

max
θ∈�

Q̂NM (θ),

where Q̂NM (θ) = −̂gNM (θ)T V̂ĝNM (θ) . The true parameter vector θ0 ∈ �

is assumed to uniquely solve the population problem maxθ∈� −E[g(Wij,θ)]T

VE[g(Wij,θ)], where V is positive semi-definite and V̂
P→ V .

3.1. Consistency and Asymptotic Normality

To establish the consistency and asymptotic normality for multiway algorithmic
subsampling GMM estimator θ̂ , we make the following assumption. To concisely
state the following assumption, we introduce one additional definition regarding
Lipschitz continuity. A function g :Rk →R, is Lipschitz with a universal Lipschitz
constant, if there exists a positive constant M such that

∣∣g(w,θ)−g
(
w,θ ′)∣∣ ≤

M
∥∥θ − θ ′∥∥ for all w ∈ supp(Wij).

Assumption 4.

(i) V is positive semi-definite, and VE[g(Wij,θ)] = 0 only if θ = θ0.
(ii) θ0 ∈ int(�), where � is a compact subset of Rk.

(iii) (a) θ �→ gr(w,θ) is Lipschitz with a universal Lipschitz constant.
(b) Each coordinate of θ �→ ∇θgr(w,θ) is Lipschitz with a universal Lips-

chitz constant.
(iv) E

[
supθ∈�

∥∥g(Wij,θ
)∥∥]< ∞.

(v) GTVG is nonsingular, where G = E
[∇θg

(
Wij,θ

0
)]

.
(vi) E

[
supθ∈�

∥∥∇θg
(
Wij,θ

)∥∥]< ∞.
(vii) gsup(·) = maxr∈{1,...,m} |gr (·,θ) | satisfies E[gsup(Wij)

2] < ∞.

Assumption 4 is analogous to the conditions required for Theorems 2.6 and
3.4 in Newey and McFadden (1994), which state the consistency and asymptotic
normality, respectively, of the GMM estimator under the conventional random
sampling.

We first state the consistency of the multiway algorithmic subsampling GMM
estimator.
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Lemma 2 (Consistency of multiway algorithmic subsampling GMM estimator).

If Assumptions 1 and 4(i)–(iv) hold and that V̂
P→ V, then θ̂

P→ θ0.

A proof is provided in Appendix E.1. It follows from combining the arguments
in the proofs of Newey and McFadden (1994, Thm. 2.1) with our uniform weak
law of large numbers for multiway algorithmic subsampling (Lemma 1) presented
in Section 2.1.

We next state the asymptotic normality of the multiway algorithmic subsampling
GMM estimator.

Theorem 2 (Asymptotic normality of multiway algorithmic subsampling GMM

estimator). If Assumptions 1, 3, and 4 hold, and that V̂
P→ V, then

√
C
(
θ̂ − θ0

) d→ N
(

0,
(
GTVG

)−1
GTV�VG

(
GTVG

)−1
)
,

where G = E
[∇θg

(
W11,θ

0
)]

and � = 	1 + �	2, with 	1 = λ1E[g(W11,θ
0)gT

(W12,θ
0)]+λ2E

[
g
(
W11,θ

0
)

gT
(
W21,θ

0
)]

and 	2 = E
[
g
(
W11,θ

0
)

gT
(
W11,θ

0
)]

.

A proof is provided in Appendix E.2. It follows from combining the arguments
in the proofs of Newey and McFadden (1994, Thm. 3.4) with our central limit the-
orem for multiway algorithmic subsampling (Theorem 1) presented in Section 2.2.

3.2. Algorithmic Subsampling Variance Estimation

The components, G and � in Theorem 2, of the asymptotic variance of multiway
algorithmic subsampling GMM estimator can be estimated by

G̃ = 1

L̂

N∑
i=1

M∑
j=1

Zij∇θg
(
Wij,θ̂

)
and

�̃ = 	̃1 +�	̃2,

respectively, where

	̃1 = C

L̂2

N∑
i=1

∑
1≤j,j′≤M

ZijZij′g
(
Wij,θ̂

)
gT
(
Wij′,θ̂

)
+ C

L̂2

∑
1≤i,i′≤N

M∑
j=1

ZijZi′jg
(
Wij,θ̂

)
gT
(
Wi′j,θ̂

)
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and

	̃2 = 1

L̂

N∑
i=1

M∑
j=1

Zijg
(
Wij,θ̂

)
gT
(
Wij,θ̂

)
.

We propose to estimate the asymptotic variance
(
GTVG

)−1
GTV�VG

(
GTVG

)−1

by the sample counterpart
(
G̃T V̂G̃

)−1
G̃T V̂�̃V̂G̃

(
G̃T V̂G̃

)−1
. To guarantee that this

algorithmic subsampling variance estimator works asymptotically, we make the
following assumption in addition.

Assumption 5.

(i) θ �→ E
[∇θg

(
Wij,θ

)]
is continuous at θ0.

(ii) θ �→ λ1E
[
g
(
Wij,θ

)
gT
(
Wij,θ

)]+ λ2E
[
g
(
Wij,θ

)
gT
(
Wij,θ

)]
is continuous at

θ0.
(iii) θ �→ E

[
g
(
Wij,θ

)
gT
(
Wij,θ

)]
is continuous at θ0.

With this additional assumption,
(
G̃T V̂G̃

)−1
G̃T V̂�̃V̂G̃

(
G̃T V̂G̃

)−1
is consistent for

the asymptotic variance
(
GTVG

)−1
GTV�VG

(
GTVG

)−1
, as formally stated in the

following theorem.

Theorem 3 (Consistent asymptotic variance estimation of multiway algorithmic

subsampling GMM estimator). If Assumptions 1 and 3–5 hold and that V̂
P→ V,

then(
G̃T V̂G̃

)−1
G̃T V̂�̃V̂G̃

(
G̃T V̂G̃

)−1 P→ (
GTVG

)−1
GTV�VG

(
GTVG

)−1
.

A proof is provided in Appendix E.3. It follows by combining Lemma 1 and
similar lines of arguments to those in the proofs of Lemma 2 and Theorem 2.

4. APPLICATION TO M-ESTIMATION

In this section, we apply the basic methods and theories presented in Section 2
to multiway algorithmic subsampling M-estimation. Let � ⊂ Rk be a parameter
space and define the class Q = {q(·,θ) : θ ∈ �} of functions q(·,θ) indexed by
θ . With a Bernoulli sample {Zij,1 ≤ i ≤ N,1 ≤ j ≤ M}, we define multiway
algorithmic subsampling M-estimator θ̂ as the solution to

max
θ∈�

− 1

L̂

N∑
i=1

M∑
j=1

Zijq
(
Wij,θ

)
.

The true parameter vector θ0 = (θ0
1 , . . . ,θ

0
k )T ∈ � is assumed to uniquely solve

the population maximization problem maxθ∈� −E
[
q
(
Wij,θ

)]
, in the sense that

E
[
q
(
Wij,θ

0
)]

< E
[
q
(
Wij,θ

)]
holds for all θ = (θ1, . . . ,θk)

T ∈ � and θ 
= θ0. For
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each θ ∈ �, let −L̂−1∑N
i=1

∑M
j=1 Zijq

(
Wij,θ

)
and −E

[
q
(
Wij,θ

)]
be denoted by

Q̂NM (θ) and Q0 (θ), respectively, for conciseness.

4.1. Consistency and Asymptotic Normality

To establish the consistency and asymptotic normality for multiway algorithmic
subsampling M-estimator θ̂ , we make the following assumption.

Assumption 6.

(i) θ0 ∈ int(�), where � is a compact subset of Rk, and E[q(Wij,θ
0)] <

E[q(Wij,θ)] for all θ ∈ �\{θ0}.
(ii) (a) θ �→ q(w,θ) is Lipschitz with a universal Lipschitz constant.

(b) Each coordinate of θ �→ ∇θq(w,θ) is Lipschitz with a universal Lipschitz
constant.

(c) Each coordinate of θ �→ ∇θθT q(w,θ) = ∂2q(w,θ)/∂θ∂θT is Lipschitz
with a universal Lipschitz constant.

(iii) E[supθ∈� q
(
Wij,θ

)
] < ∞.

(iv) E
[
supθ∈�

∥∥∇θθT q
(
Wij,θ

)∥∥]< ∞.
(v) H = H

(
θ0
)

is nonsingular, where H(θ) = −E
[∇θθT q

(
Wij,θ

)]
.

(vi) q̇sup(·) = maxr∈{1,...,k} |∂q(·,θ)/∂θr| satisfies E[q̇sup(Wij)
2] < ∞.

Assumption 6 is analogous to the conditions required for Theorems 2.1 and 3.1
in Newey and McFadden (1994), which state the consistency and asymptotic nor-
mality, respectively, of the M-estimator under the conventional random sampling.

We first state the consistency of multiway algorithmic subsampling M-estimator.

Lemma 3 (Consistency of multiway algorithmic subsampling M-estimator). If

Assumptions 1 and 6(i)–(iii) hold, then θ̂
P→ θ0.

A proof is provided in Appendix F.1. It follows from combining the arguments
in the proof of Newey and McFadden (1994, Thm. 2.1) with our uniform weak law
of large numbers for multiway algorithmic subsampling (Lemma 1) presented in
Section 2.1.

We next state the asymptotic normality of multiway algorithmic subsampling
M-estimator.

Theorem 4 (Asymptotic normality of multiway algorithmic subsampling M-es-
timator). If Assumptions 1, 3, and 6 hold, then√

C
(
θ̂ − θ0

) d→ N
(
0,H−1�H−1

)
,

where H = −E[∇θθT q(W11,θ
0)], � = �1 + ��2, �1 = λ1E[∇θq(W11,θ

0)

∇θq(W12,θ
0)T ] + λ2E[∇θ q(W11,θ

0)∇θq(W21,θ
0)T ] and �2 = E[∇θq(W11,θ

0)

∇θq(W11,θ
0)T ].

https://doi.org/10.1017/S0266466623000166 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000166


ALGORITHMIC SUBSAMPLING UNDER MULTIWAY CLUSTERING 91

A proof is provided in Appendix F.2. It follows from combining the arguments in
the proof of Newey and McFadden (1994, Thm. 3.1) with our central limit theorem
for multiway algorithmic subsampling (Theorem 1) presented in Section 2.2.

4.2. Algorithmic Subsampling Variance Estimation

The components, H and � in Theorem 4, of the asymptotic variance of multiway
algorithmic subsampling M-estimator can be estimated by

H̃ = − 1

L̂

N∑
i=1

M∑
j=1

Zij∇θθT q
(
Wij,θ̂

)
and �̃ = �̃1 +��̃2, respectively, where

�̃1 = C

L̂2

N∑
i=1

∑
1≤j,j′≤M

ZijZij′∇θq
(
Wij,θ̂

)∇θq
(
Wij′,θ̂

)T
+ C

L̂2

∑
1≤i,i′≤N

M∑
j=1

ZijZi′j∇θq
(
Wij,θ̂

)∇θq
(
Wi′j,θ̂

)T
and

�̃2 = 1

L̂

N∑
i=1

M∑
j=1

Zij∇θq
(
Wij,θ̂

)∇θq
(
Wij,θ̂

)T
.

Thus, we propose to estimate H−1�H−1 by the sample counterpart H̃−1�̃H̃−1.
To guarantee that this asymptotic variance estimator works, we use the following
assumption in addition.

Assumption 7.

(i) θ �→ E
[∇θθT q

(
Wij,θ

)]
is continuous at θ0.

(ii) θ �→ λ1E
[
∇θq
(
Wij,θ

)∇θq
(
Wij,θ

)T] + λ2E
[
∇θq
(
Wij,θ

)∇θq
(
Wij,θ

)T]
is

continuous at θ0.
(iii) θ �→ E

[
∇θq
(
Wij,θ

)∇θq
(
Wij,θ

)T]
is continuous at θ0.

With this additional assumption, H̃−1�̃H̃−1 is consistent for the asymptotic
variance H−1�H−1, as formally stated in the following theorem.

Theorem 5 (Consistency of the asymptotic variance of multiway algorithmic
subsampling M-estimator). If Assumptions 1, 3, 6, and 7 hold, then H̃−1�̃H̃−1 is
consistent for H−1�H−1.

A proof is provided in Appendix F.3. It follows by combining Lemma 1 and
similar lines of arguments to those in the proofs of Lemma 3 and Theorem 4.
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5. SIMULATION STUDIES

As emphasized in Section 2, we discovered a new advantage of algorithmic
subsampling that it allows for robustness in inference against potential degeneracy
of the asymptotic distribution under multiway clustering. In this section, we
use Monte Carlo simulations to demonstrate this robustness property. Following
Menzel (2021), we consider two broad categories of designs, namely, additively
separable designs (Section 5.1) and nonseparable designs (Section 5.2). For each
of these two broad categories, we experiment with a design that leads to a non-
degenerate asymptotic distribution and another design that leads to a degenerate
asymptotic distribution if algorithmic subsampling were not to be employed. In
total, we consider four designs. Multiway algorithmic subsampling will be shown
to yield more accurate finite sample coverage results than conventional methods
robustly across all four cases, thereby supporting the aforementioned theoretical
discovery by this paper.

5.1. Additively Separable Designs

First, we generate the two-way clustered array {Yij}i∈[N],j∈[M] according to the
additively separable model

Yij = σaαi +σbβj +σeεij,

where βj and εij are i.i.d. standard normal, and αi = (ζi −μζ )/σζ for log(ζi)
i.i.d.∼

N(0,1), μζ = E[ζi], and σ 2
ζ = Var(ζi). With this basic setup, we consider two

designs:

Design 1 : σ 2
a = 0.5,σ 2

b = 0.1, and σ 2
e = 0.2;

Design 2 : σ 2
a = 0.0,σ 2

b = 0.0, and σ 2
e = 0.2.

Note that Design 2, without i-specific randomness or j-specific randomness, would
lead to a degenerate asymptotic distribution if algorithmic subsampling were not
employed.

Table 1 reports simulation results for N = M = 40, 80, 160, 320, and 640. The
top panel reports results for Design 1 (nondegenerate case), and the bottom panel
reports results for Design 2 (degenerate case). Each panel contains results based
on no algorithmic subsampling (i.e., p = 1)4 and results based on algorithmic sub-
sampling (with the subsampling probabilities of p = 1C/(NM) and p = 2C/(NM))
for estimation of the mean. The asymptotic variance is estimated using a random
subsample of 10% of the sample. The displayed statistics are the bias (Bias),
the standard deviation (SD), the root mean square error (RMSE), and the 95%
coverage (95% Cover).

Observe that the 95% coverage frequencies are closer to the nominal probability
of 95% when using algorithmic subsampling compared to not using it. This

4The 95% coverage is computed based on our asymptotic variance formula as the special case with p = 1.
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Table 1. Simulation results for the additively separable design with N = M = 40,
80, 160, 320, and 640 based on 2,500 Monte Carlo iterations

Design 1: Non-degenerate case

No algorithmic subsampling Algorithmic subsampling

(p = 1) p = 1C/(NM) p = 2C/(NM)

N M Bias SD RMSE 95% Bias SD RMSE 95% Bias SD RMSE 95%

40 40 0.006 0.127 0.127 0.885 0.005 0.194 0.194 0.926 −0.002 0.155 0.155 0.908

80 80 −0.001 0.087 0.087 0.902 0.002 0.131 0.131 0.925 −0.002 0.110 0.110 0.916

160 160 −0.001 0.060 0.060 0.918 0.000 0.094 0.094 0.925 0.002 0.079 0.079 0.923

320 320 0.001 0.044 0.044 0.916 0.000 0.068 0.068 0.932 0.000 0.057 0.057 0.927

640 640 0.001 0.032 0.032 0.922 0.000 0.047 0.047 0.948 −0.001 0.040 0.040 0.934

Design 2: Degenerate case

No algorithmic subsampling Algorithmic subsampling

(p = 1) p = 1C/(NM) p = 2C/(NM)

N M Bias SD RMSE 95% Bias SD RMSE 95% Bias SD RMSE 95%

40 40 0.000 0.011 0.011 0.999 −0.001 0.105 0.105 0.981 −0.001 0.049 0.049 0.986

80 80 0.000 0.006 0.006 1.000 −0.001 0.051 0.051 0.963 0.001 0.036 0.036 0.970

160 160 0.000 0.003 0.003 1.000 0.001 0.036 0.036 0.959 0.000 0.026 0.026 0.961

320 320 0.000 0.001 0.001 1.000 0.000 0.025 0.025 0.959 0.000 0.018 0.018 0.960

640 640 0.000 0.001 0.001 1.000 0.000 0.018 0.018 0.944 0.000 0.013 0.013 0.950

Note: The top panel reports results for Design 1 (nondegenerate case), whereas the bottom panel reports
results for Design 2 (degenerate case). Each panel contains results based on no algorithmic subsampling
(p = 1), results based on algorithmic subsampling with p = 1C/(NM), and results based on algorithmic
subsampling with p = 2C/(NM) for estimation of the mean. The displayed statistics are the bias (Bias),
the standard deviation (SD), the root mean square error (RMSE), and the 95% coverage (95%).

observation is robustly true in both Design 1 (nondegenerate case) and Design 2
(degenerate case). For Design 2 or the degenerate case, in particular, the coverage
frequency moves away from the nominal probability as the sample size increases if
algorithmic subsampling were not used. On the other hand, the coverage frequency
approaches the nominal probability as the sample size increases if algorithmic
subsampling is used. These results demonstrate the aforementioned robustness
property of multiway algorithmic subsampling against the potential degeneracy
of the asymptotic distribution. We also experimented with additional simulation
settings with much larger N and M and other subsampling probabilities for
algorithmic subsampling variance estimation, but we observe the same qualitative
patterns in the results under these alternative settings.

On the one hand, p = 1 leads to more precision, as quantified by smaller RMSE.
On the other hand, p = 1 leads to larger coverage as observed above. These two
phenomena may appear contradictory at first glance. The relevant issues are with
the variance estimation, and not with the point estimates. These results precisely
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highlight the cases of degeneracy. The asymptotic normality with the
√

C-rate fails
under the degeneracy if we do not use algorithmic subsampling, i.e., if p = 1.
Therefore, the standard errors are misleadingly larger compared to the actual
RMSE of the estimator and the simulated coverage rates exceed the nominal
coverage probability in the degenerate case with p = 1. This is the main reason
why we propose to use algorithmic subsampling (i.e., p < 1) to have inference
with estimated variance robust against the degeneracy.

5.2. Nonseparable Designs

Second, we generate the two-way clustered array {Yij}i∈[N],j∈[M] according to the
nonadditive model

Yij = (αi −μa)(βj −μb)−μaμb + εij,

where αi, βj and εij are i.i.d. standard normal. With this basic setup, we consider
two designs:

Design 3 : μa = 1.0, and μb = 1.0; and

Design 4 : μa = 0.0, and μb = 0.0.

Note that Design 4 would lead to a degenerate asymptotic distribution that is Gaus-
sian chaos, which is non-Gaussian (cf. Menzel, 2021), if algorithmic subsampling
were not employed.

Table 2 reports simulation results for N = M = 40, 80, 160, 320, and 640. The
top panel reports results for Design 3 (nondegenerate case), and the bottom panel
reports results for Design 4 (degenerate case). Each panel contains results based
on no algorithmic subsampling (i.e., p = 1) and results based on algorithmic sub-
sampling (with the subsampling probabilities of p = 1C/(NM) and p = 2C/(NM))
for estimation of the mean. The asymptotic variance is estimated using a random
subsample of 10% of the sample. The displayed statistics are the bias (Bias),
the standard deviation (SD), the root mean square error (RMSE), and the 95%
coverage (95% Cover).

Similarly to the case with the additively separable design, observe that the 95%
coverage frequencies are closer to the nominal probability of 95% with the use of
algorithmic subsampling than without the use of it. This observation is robustly
true in both Design 3 (nondegenerate case) and Design 4 (degenerate case). For
Design 4 or the degenerate case, in particular, the coverage frequency moves
away from the nominal probability as the sample size increases if algorithmic
subsampling were not used. On the other hand, the coverage frequency approaches
the nominal probability as the sample size increases if algorithmic subsampling is
used. As before, these results demonstrate the aforementioned robustness property
of multiway algorithmic subsampling against the potential degeneracy of the
asymptotic distribution. We also experimented with additional simulation settings
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Table 2. Simulation results for the nonseparable design with N = M = 40, 80,
160, 320, and 640 based on 2,500 Monte Carlo iterations

Design 3: Non-degenerate case

No algorithmic subsampling Algorithmic subsampling

(p = 1) p = 1C/(NM) p = 2C/(NM)

N M Bias SD RMSE 95% Bias SD RMSE 95% Bias SD RMSE 95%

40 40 −0.002 0.221 0.221 0.943 0.007 0.382 0.382 0.955 0.003 0.316 0.315 0.944

80 80 0.008 0.160 0.160 0.943 −0.004 0.272 0.272 0.949 0.003 0.221 0.221 0.956

160 160 −0.002 0.113 0.113 0.942 0.001 0.190 0.190 0.952 0.001 0.158 0.158 0.945

320 320 0.000 0.079 0.079 0.944 0.004 0.140 0.140 0.940 0.004 0.110 0.110 0.953

640 640 −0.002 0.055 0.055 0.956 −0.001 0.096 0.096 0.954 0.001 0.079 0.079 0.949

Design 4: Degenerate case

No algorithmic subsampling Algorithmic subsampling

(p = 1) p = 1C/(NM) p = 2C/(NM)

N M Bias SD RMSE 95% Bias SD RMSE 95% Bias SD RMSE 95%

40 40 0.000 0.036 0.036 1.000 −0.004 0.221 0.221 0.980 −0.004 0.160 0.160 0.980

80 80 0.000 0.018 0.018 1.000 −0.001 0.155 0.155 0.971 0.001 0.110 0.110 0.975

160 160 0.000 0.009 0.009 1.000 0.002 0.113 0.113 0.956 −0.001 0.078 0.078 0.966

320 320 0.000 0.005 0.005 0.999 0.000 0.078 0.078 0.956 0.000 0.057 0.057 0.952

640 640 0.000 0.002 0.002 0.999 0.001 0.057 0.057 0.946 −0.001 0.039 0.039 0.952

Note: The top panel reports results for Design 3 (nondegenerate case), whereas the bottom panel reports
results for Design 4 (degenerate case). Each panel contains results based on no algorithmic subsampling
(p = 1), results based on algorithmic subsampling with p = 1C/(NM), and results based on algorithmic
subsampling with p = 2C/(NM) for estimation of the mean. The displayed statistics are the bias (Bias),
the standard deviation (SD), the root mean square error (RMSE), and the 95% coverage (95%).

with much larger N and M and other subsampling probabilities for algorithmic
subsampling variance estimation, but we observe the same qualitative patterns in
the results under these alternative settings.

6. APPLICATION TO SCANNER DATA

In this section, we demonstrate an application of our proposed method to an anal-
ysis of demand for differentiated products using scanner data from the Dominick’s
Finer Foods (DFF) retail chain.5 Scanner data may be subject to two-way cluster
dependence, as mentioned in Section 1. Specifically, common demand shocks
within a market may induce statistical dependence among different products within
that market. Similarly, common supply shocks by a producer may induce statistical

5We thank James M. Kilts Center, University of Chicago Booth School of Business for allowing us to use this dataset.
It is available at https://www.chicagobooth.edu/research/kilts/datasets/dominicks.
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dependence among different markets within the product produced by that producer.
In this light, a researcher would like to use a two-way cluster robust variance
estimate for inference about the model parameters. However, the scanner data
from the DFF retail chain are too large, and today’s computational resources will
not permit the two-way cluster robust variance estimation in reasonable lengths of
time. A simple way to overcome this problem is to use the full sample for parameter
estimation and to use a subsample for variance estimation, but this approach fails to
deliver robustly valid inference. Hence, we use our proposed multiway algorithmic
subsampling method for estimation and two-way cluster robust inference about the
key demand model parameter.

Following the literature (for instance, see a survey by Nevo, 2000) on analysis of
demand for differentiated products with an additive Type-I-Extreme-Value error,
we use the GMM approach with the moment restriction

g(Wij,θ) = ζij(ln(Sij)− ln(S0j)− ln(Pij)θ1 −XT
ij θ−1), (6.1)

where i indexes products (universal product code, hereafter referred to as UPC),
j indexes markets (store × week), Sij denotes the share of product i in market j,
Pij denotes the price, Xij denotes a vector of controls (the UPC fixed effects and
a time trend), ζij denotes instruments, and Wij = (Sij,Pij,XT

ij ,ζ
T
ij )

T .6 In addition to
the elements in Xij, the instrument vector includes ζij as an excluded variable the
wholesale costs, which are calculated by inverting the gross margin. We drop those
observations for which ln(Sij)− ln(S0j) is not finite,7 as well as those observations
with missing values. The parameter vector in the model consists of θ = (θ1,θ

T
−1)

T ,
and we are in particular interested in the price coefficient θ1.

We consider four product categories: beer, oats, snacks, and canned tuna. Table 3
summarizes the sizes of the original data in terms of various dimensions. It first
shows the number of UPCs, the number of weeks, and the number of stores for
each product category. As we define a product as that identified by the UPC, the
number of products N coincides with the number of UPCs. We define a market
as the unique combination of the week and the store. Therefore, the number of
markets M is close to, but is generally smaller than, the product of the number
of weeks and the number of stores. It is smaller than the naïve product because
of the unbalancedness of data. Finally, the bottom row shows the total number of
observations, which is again smaller than the naïve product NM because of the
unbalancedness in data.

6In cases where the model involves product fixed effects, algorithmic subsampling can be applied to within-
transformation. This operation incurs additional computational costs, although this is a common issue in fixed-effect
methods in general. In cases where a model involves two-way fixed effects, two-way differencing may induce a
more complicated dependence structure especially under unbalanced panels. An alternative approach may be to use
instrumental variables. We leave rigorous treatments of such a variety of extensions to fixed-effect models for future
research.
7In other words, we drop observations with the zero market share. Dropping these observations may generally incur a
trimming bias. We adopt this trimming as it is a standard practice in the literature of demand analysis for differentiated
products markets, and we consider the possibly biased estimand as our pseudo-true value.
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Table 3. Data sizes of the four product categories: beer, oats, snacks, and canned
tuna

Beer Oats Snacks Tuna

No. of UPCs 788 96 425 94

No. of weeks 303 306 386 375

No. of stores 89 93 94 93

No. of products N 788 96 425 94

No. of markets M 22,299 26,210 32,708 31,853

No. of observations 3,990,672 1,333,465 5,427,491 1,048,575

Table 4. Results of the estimation of the price coefficient

Beer Beer Oats Oats Snacks Snacks Tuna Tuna

p 100C
NM

200C
NM

100C
NM

200C
NM

100C
NM

200C
NM

100C
NM

200C
NM

0.004 0.009 0.004 0.008 0.003 0.006 0.003 0.006

Price coefficient † −0.223∗∗ −0.334∗∗∗ −1.186∗∗∗ −1.273∗∗∗ −1.155∗∗∗ −1.105∗∗∗ −1.605∗ −0.936∗

(0.102) (0.066) (0.173) (0.103) (0.159) (0.151) (0.985) (0.500)

Computational time‡

Parameter estimation 7.313 13.952 0.081 0.129 2.525 5.582 0.063 0.092

Variance estimation 1,223 4,458 34 189 676 2,901 10 46

† The standard errors are shown in parentheses under the estimates. ‡ Computational time is expressed
in seconds based on a single processor of Intel Xeon Processor E5-2687W V4. ***p < 0.01, **p <

0.05, *p < 0.10.

We now apply our multiway algorithmic subsampling GMM with the moment
function defined in (6.1) for each of the four product categories. Table 4
summarizes the estimation results. The table displays the probability p of
algorithmic subsampling, the corresponding estimates and their standard errors
for the price coefficient, and computational time in seconds for each of parameter
estimation and asymptotic variance estimation.

First, observe that the estimates of the price coefficient are negative, as expected,
and are statistically significant at the level of 95% for each column except for
tuna despite efficiency loss due to algorithmic subsampling and despite the two-
way cluster robustness in the asymptotic variance. As emphasized in Sections 2
and 5, algorithmic subsampling with p ∝ C/(NM) allows these standard errors
to have asymptotically accurate coverage robustly against potential degeneracy,
unlike the conventional two-way cluster robust standard errors without algorithmic
subsampling.

Second, the computational time for parameter estimation is within about a dozen
seconds for each column, given that algorithmic subsampling extracts only the
proportions, p ≈ 0.003–0.009, of the original sample sizes. However, it is the
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asymptotic variance estimation that costs more computational time under multiway
cluster dependence. Focusing on the beer product category, for instance, even the
algorithmic subsampling that extracts only the p ≈ 0.004 portion of the original
sample size requires 1,223 seconds of computation for variance estimation. When
the proportion doubles to p ≈ 0.009, then the computational time nearly quadruples
to 4,458 seconds. A naïve calculation implies that the use of the full sample without
algorithmic subsampling would require about 3 years.

7. CONCLUSION

In this paper, we propose a novel method of algorithmic subsampling for multiway
cluster-dependent data. We develop asymptotic statistical properties of this pro-
posed method. Specifically, we develop a new uniform weak law of large numbers
and a new central limit theorem for multiway algorithmic subsample means. As
a consequence of the new central limit theorem, we show that algorithmic sub-
sampling allows for robustness against the potential degeneracy of the asymptotic
distribution under multiway clustering at the cost of efficiency and power loss
due to the subsampling. Applying these basic asymptotic statistical theories, we
derive the consistency and the asymptotic normality for the multiway algorithmic
subsampling GMM estimator and the multiway algorithmic subsampling M-
estimator.

Our main finding that algorithmic subsampling allows for the robustness against
degeneracy in the asymptotic distribution is novel in the literature on multiway
clustering. Indeed, the method of inference by MacKinnon et al. (2021) as well
as Cameron et al. (2011) adapts to the Gaussian degeneracy. However, these
existing methods do not adapt to the class of non-Gaussian degenerate asymptotic
distributions. In contrast, the asymptotic distribution under algorithmic subsam-
pling adapts even to the non-Gaussian degeneracy as well. The bootstrap method
of Menzel (2021) is robust against non-Gaussian degeneracy. Our proposed
method via algorithmic subsampling leads to the exact limit distribution, and thus
nonconservative inference, unlike the method of Menzel (2021). This said, we
again emphasize that these merits come at the cost of efficiency and power loss
by disposing parts of big data.

Finally, we shed some light on possible future directions. This paper consid-
ers non-nested multiway clustering (as in Cameron et al., 2011). In practice,
researchers may be interested in applications with nested clustering in one or more
cluster dimensions. Under the current framework, one could take the coarsest levels
of clustering. Handling it in a more efficient way is a useful topic but is beyond the
scope of this paper. In addition, in MacKinnon, Nielsen, and Webb (2023), formal
theory is developed for testing the correct level of (one-way) clustering. One could
consider generalizing such a test for multiway nested clustering, which is also left
for future research.
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APPENDIX

Throughout this appendix, for any arrays (aNM) and (bNM), denote aNM � bNM for aNM ≤
CbNM for some positive constant C independent of sample size.

A. Choice of the Subsample Size

Theorem 1 provides a guidance on rates at which p should converge in order to guarantee
robustness against degeneracy under multiway cluster sampling. Specifically, p = pNM
should be chosen so that � = limN,M→∞(C/(NM))((1 − p)/p) > 0 holds. To this goal,
it is in particular sufficient to choose

p = c
C

NM
for some c > 0.

For our asymptotic properties with robustness, any choice of a positive constant c works in
theory. Simulation studies presented in Section 5 demonstrate that even the naïve choices,
such as c = 1 and c = 2, result in excellent finite-sample performances across various
alternative data generating designs.

That said, it is also useful as well to provide a data-driven method to choose c based on
a well-defined criterion. In this section, we propose a method to this end following the idea
of power analysis which is often employed to determine experimental sample size. Suppose
that a researcher has in mind a maximum tolerable level Vmax of the approximate variance
	/C of L̂−1∑N

i=1
∑M

j=1 Zijf
(
Wij
)

in the asymptotic normal approximation by Theorem 1.
First, choose a preliminary positive value of cpre, set ppre = cpreC/(NM), generate

i.i.d Bernoulli
(
ppre) random variables {Zpre

ij : 1 ≤ i ≤ N,1 ≤ j ≤ M} independently from

data, and set L̂pre = ∑N
i=1
∑M

j=1 Z
pre
ij . Then, estimate 	A = λ1E

[
f (W11) f T (W12)

]
+

λ2E
[
f (W11) f T (W21)

]
and 	B = E

[
f (W11) f T (W11)

]
by

	̂
pre
A = C

(̂Lpre)2

N∑
i=1

∑
1≤j,j′≤M

Z
pre
ij Z

pre
ij′ f
(
Wij
)

f
(
Wij′
)

+ C

(̂Lpre)2

∑
1≤i,i′≤N

M∑
j=1

Z
pre
ij Z

pre
i′j f
(
Wij
)

f
(
Wi′j
)

and

	̂
pre
B = 1

L̂pre

N∑
i=1

M∑
j=1

Z
pre
ij f
(
Wij
)

f
(
Wij
)
,

respectively. Finally, solve

CVmax = 	̂
pre
A + C

NM

NM − cC

cC
	̂

pre
B

for c to find the value c∗ of c. This plug-in procedure yields the subsample size rate ppre =
cpreC/(NM), under which the approximate variance 	/C of L̂−1∑N

i=1
∑M

j=1 Zijf
(
Wij
)

is
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Table A.1. Simulation results for the additively separable design with N = M =
40, 80, 160, 320 and 640 based on 2,500 Monte Carlo iterations

Design 2: Degenerate case

No algorithmic subsampling Algorithmic subsampling

(p = 1) p = c∗C/(NM)

N M Bias SD RMSE 95% Bias SD RMSE 95%

40 40 0.000 0.011 0.011 0.999 0.001 0.071 0.071 0.987
80 80 0.000 0.006 0.006 1.000 0.001 0.050 0.050 0.972
160 160 0.000 0.003 0.003 1.000 −0.001 0.036 0.036 0.964
320 320 0.000 0.001 0.001 1.000 0.000 0.025 0.025 0.953
640 640 0.000 0.001 0.001 1.000 0.001 0.017 0.017 0.955

Note: Each panel contains results based on no algorithmic subsampling (p = 1) and results based on
algorithmic subsampling with p = c∗C/(NM), for estimation of the mean. The displayed statistics are
the bias (Bias), the standard deviation (SD), the root mean square error (RMSE), and the 95% coverage
(95%).

close to the target level Vmax. Note the similarity of this procedure to the power analysis
for sample size calculation, which is often employed by experimental researchers.

We remark that this proposed procedure of choosing the subsample size differs from that
proposed by Lee and Ng (2020a, Sect. 7.2). This difference in the approaches taken is due
to the different goals under different dependence structures. Lee and Ng (2020a) base their
requirement for the subsample size on a condition that guarantees the subspace embedding
(Lee and Ng, 2020a, Def. 1). On the other hand, we base our requirement for the subsample
size on attaining robustness against degeneracy under multiway cluster sampling.

While the simulation studies presented in Section 5 are based fixed c ∈ {1,2}, we now
present simulation results under the above choice rule of the subsample size. We set Vmax =
0.5/C throughout, and start with c = 1 for preliminary estimation of 	̂

pre
A and 	̂

pre
B . Focusing

on the degenerate case, Table A.1 summarizes simulation results under the additively
separable designs, as the counterpart of Table 1 in the main text. Similarly, focusing on the
degenerate case, Table A.2 summarizes simulation results under the nonseparable designs,
as the counterpart of Table 2 in the main text. Overall, we observe qualitatively similar
patterns here to those presented in the main text.

B. Additional Simulation Results

The simulation studies presented in Section 5 in the main text and Appendix A compare
inference results only across those methods that assume two-way clustering. This section
extends these simulation analyses by comparing the finite-sample performance of our
proposed method with more conventional methods that assume i.i.d. sampling and one-way
clustering as well as two-way clustering.

We continue to use the same simulation designs from Section 5. Namely, data are
generated according to Designs 1–4. Sample sizes are varied as N = M = 40, 80, 160, 320,
and 640. Each set of simulations consists of 2,500 Monte Carlo iterations. Unlike Section 5,

https://doi.org/10.1017/S0266466623000166 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000166


ALGORITHMIC SUBSAMPLING UNDER MULTIWAY CLUSTERING 101

Table A.2. Simulation results for the nonseparable design with N = M = 40, 80,
160, 320, and 640 based on 2,500 Monte Carlo iterations

Design 4: Degenerate case

No algorithmic subsampling Algorithmic subsampling

(p = 1) p = c∗C/(NM)

N M Bias SD RMSE 95% Bias SD RMSE 95%

40 40 0.000 0.036 0.036 1.000 0.000 0.084 0.084 0.990
80 80 0.000 0.018 0.018 1.000 0.000 0.067 0.067 0.984
160 160 0.000 0.009 0.009 1.000 −0.001 0.051 0.051 0.966
320 320 0.000 0.005 0.005 0.999 0.001 0.038 0.038 0.957
640 640 0.000 0.002 0.002 0.999 −0.000 0.027 0.027 0.958

Note: Each panel contains results based on no algorithmic subsampling (p = 1) a nd results based on
algorithmic subsampling with p = c∗C/(NM), for estimation of the mean. The displayed statistics are
the bias (Bias), the standard deviation (SD), the root mean square error (RMSE), and the 95% coverage
(95%).

however, we also compute 95% coverage frequencies with the Eicker–Huber–White robust
variance estimator (0-Way Cluster) and the conventional one-way cluster-robust variance
estimator (1-Way Cluster) in addition to the two-way cluster-robust variance estimator (2-
Way Cluster). Tables B.1 and B.2 summarize the results for Designs 1 and 2 and Designs 3
and 4, respectively.

In each of these two tables, we make the following observations. First, the 0-Way
Cluster method suffers from severe under-coverage across all the sample sizes under the
nondegenerate designs. Second, the 1-Way Cluster method suffers from under-coverage
across all the sample sizes under the nondegenerate designs, while it in contrast suffers
from over-coverage across all the sample sizes under the degenerate designs.

Third, comparisons between the 2-Way Cluster method without algorithmic subsampling
and the 2-Way Cluster method with algorithmic subsampling remain the same as those
presented in Section 5 in the main text. In particular, we conclude that the 2-Way Cluster
with algorithmic subsampling is the only approach that delivers correct coverage across all
the designs.

C. Proofs of the Main Results

C.1. Proof of Lemma 1

Proof. By the definition of Zij, it can be written as Zij = 1{Uij ≤ pNM} for some i.i.d.
Uij ∼ Unif(0,1) independent from the data. Define F̃ = {(u,w) �→ f (w) : f ∈ F} and G̃NM =
{(u,w)

g̃NM�→ 1(u ≤ pNM)/pNM}. Note that Assumption 2(ii), (iii) for F implies that the same
conditions hold with F̃ in place of F . Also, note that for each (N,M), G̃NM consists of a
single function with itself as an envelope. Therefore, by Theorem 9.15 in Kosorok (2008),
for g̃NMF̃ = {̃gNMf : f ∈ F̃}, we have that

sup
Q

N
(̃

gNMF̃, ‖·‖Q,2 ,
√

2ε ‖̃gNMF‖Q,2

)
≤ sup

Q
N
(
F̃, ‖·‖Q,2 ,ε ‖F‖Q,2

)
1 < ∞
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Table B.1. 95% coverage frequencies of various inference methods in the
additively separable designs with N = M = 40, 80, 160, 320, and 640 based on
2,500 Monte Carlo iterations

Design 1: Non-Degenerate case

No algorithmic subsampling Algorithmic subsampling

0-Way 1-Way 2-Way Cluster

N M Cluster Cluster p = 1 p = 1C/(NM) p = 2C/(NM)

40 40 0.270 0.834 0.885 0.926 0.908

80 80 0.192 0.837 0.902 0.925 0.916

160 160 0.140 0.854 0.918 0.925 0.923

320 320 0.097 0.846 0.916 0.932 0.927

640 640 0.074 0.845 0.922 0.948 0.934

Design 2: Degenerate case

No algorithmic subsampling Algorithmic subsampling

0-Way 1-Way 2-Way Cluster

N M Cluster Cluster p = 1 p = 1C/(NM) p = 2C/(NM)

40 40 0.952 1.000 0.999 0.981 0.986

80 80 0.960 1.000 1.000 0.963 0.970

160 160 0.945 1.000 1.000 0.959 0.961

320 320 0.948 1.000 1.000 0.959 0.960

640 640 0.951 1.000 1.000 0.944 0.950

uniformly over (N,M) for any finite discrete measure Q and ε ∈ (0,1]. Note that g̃NMF̃
satisfies Assumption 2(ii), (iii). Under Assumptions 1 and 2(ii), (iii), therefore, we can apply
Lemma D.3 (Appendix D) to g̃NMF̃ , and then apply the Markov inequality to get

sup
f ∈F

∣∣∣∣∣∣ 1

NM

N∑
i=1

M∑
j=1

Zij

pNM
f
(
Wij
)− 1

pNM
E [Z11f (W11)]

∣∣∣∣∣∣ P→ 0.

Since E [Z11f (W11)] = E [Z11]E [f (W11)] = pNME [f (W11)], we in turn obtain

sup
f ∈F

∣∣∣∣∣∣ 1L
N∑

i=1

M∑
j=1

Zijf
(
Wij
)−E [f (W11)]

∣∣∣∣∣∣ P→ 0.

Finally, Lemma D.2 (Appendix D) implies that L̂/L
P→ 1, and thus

sup
f ∈F

∣∣∣∣∣∣ 1L̂
N∑

i=1

M∑
j=1

Zijf
(
Wij
)−E [f (W11)]

∣∣∣∣∣∣ P→ 0.

This completes the proof. �
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Table B.2. 95% coverage frequencies of various inference methods in the
nonseparable designs with N = M = 40, 80, 160, 320, and 640 based on 2,500
Monte Carlo iterations

Design 3: Non-degenerate case

No algorithmic subsampling Algorithmic subsampling

0-Way 1-Way 2-Way Cluster

N M Cluster Cluster p = 1 p = 1C/(NM) p = 2C/(NM)

40 40 0.341 0.914 0.943 0.955 0.944

80 80 0.240 0.927 0.943 0.949 0.956

160 160 0.170 0.924 0.942 0.952 0.945

320 320 0.122 0.916 0.944 0.940 0.953

640 640 0.089 0.923 0.956 0.954 0.949

Design 4: Degenerate case

No algorithmic subsampling Algorithmic subsampling

0-Way 1-Way 2-Way Cluster

N M Cluster Cluster p = 1 p = 1C/(NM) p = 2C/(NM)

40 40 0.950 1.000 1.000 0.980 0.980

80 80 0.940 1.000 1.000 0.971 0.975

160 160 0.946 1.000 1.000 0.956 0.966

320 320 0.946 1.000 0.999 0.956 0.952

640 640 0.953 1.000 0.999 0.946 0.952

C.2. Proof of Theorem 1

Proof. Consider the decomposition of L̂−1∑N
i=1
∑M

j=1 Zijf
(
Wij
)

into two terms as

1

L̂

N∑
i=1

M∑
j=1

Zijf
(
Wij
)= L

L̂

1

L

N∑
i=1

M∑
j=1

Zijf
(
Wij
)= L

L̂

(
ANM +√1−pNMBNM

)
, (C.1)

where ANM and BNM are defined by

ANM = 1

NM

N∑
i=1

M∑
j=1

f
(
Wij
)

and BNM = 1

L

N∑
i=1

M∑
j=1

Zij −pNM√
1−pNM

f
(
Wij
)
,

respectively.
The first step is to get the asymptotic normality for ANM . Our setup satisfies the first part

of Assumption 3 in Davezies, D’Haultfoeuille, and Guyonvarch (2018), since class F is
finite and E[F2] < ∞. Under our Assumptions 1, 2(i), (iii), and 3, applying Theorem 3.1 of
Davezies et al. (2018) yields√

CANM
d→ N
(

0,λ1E
[
f (W11) f T (W12)

]
+λ2E

[
f (W11) f T (W21)

])
. (C.2)
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Next, we will obtain the variance–covariance matrix of BNM . By the law of total covariance,

Cov(BNM,BNM) = E
[
Cov
(

BNM,BNM

∣∣∣{Wij
}

i∈[N],j∈[M]

)]
+Cov

(
E
[
BNM |{Wij}i∈[N],j∈[M]

]
,E
[
BNM

∣∣{Wij}i∈[N],j∈[M]
])

.

For the first term, we can write

E
[
Cov
(

BNM,BNM

∣∣∣{Wij
}

i∈[N],j∈[M]

)]
= E

⎡⎣ 1

L2(1−pNM)

N∑
i=1

M∑
j=1

f
(
Wij
)

f T (Wij
)

Var
(
Zij|{Wij}i∈[N],j∈[M]

)⎤⎦
= E

⎡⎣ 1

L2(1−pNM)

N∑
i=1

M∑
j=1

f
(
Wij
)

f T (Wij
)

pNM(1−pNM)

⎤⎦
= pNM

L2

N∑
i=1

M∑
j=1

E
[
f
(
Wij
)

f T (Wij
)]

= 1

L
E
[
f
(
Wij
)

f T (Wij
)]

.

For the last term, note that

E
[
BNM

∣∣∣{Wij
}

i∈[N],j∈[M]

]
= 1

L
√

1−pNM

N∑
i=1

M∑
j=1

f
(
Wij
)

E
[
(Zij −pNM)|{Wij}i∈[N],j∈[M]

]

= 1

L
√

1−pNM

N∑
i=1

M∑
j=1

f
(
Wij
)

E
[
(Zij|{Wij}i∈[N],j∈[M])−pNM

]

= 1

L
√

1−pNM

N∑
i=1

M∑
j=1

f
(
Wij
)
(pNM −pNM) = 0.

Therefore,

Cov
(
E
[
BNM |{Wij}i∈[N],j∈[M]

]
,E
[
BNM

∣∣{Wij}i∈[N],j∈[M]
])= 0.

It thus follows that

Cov(BNM,BNM) = 1

L
E
[
f
(
Wij
)

f T (Wij
)]= 1

L
E
[
f (W11) f T (W11)

]
, (C.3)

where the second equality holds by Assumption 1(i).
We now show that the term (ANM +√

1−pNMBNM) is asymptotically normal. Pick any
q = (q1, . . . ,qk)

T ∈ Rk. For a given bounded sequence
{
aij
}
, define

YNM,L = 1√
L

N∑
i=1

M∑
j=1

(
Zij −pNM

)
aij√

1−pNM
and α2

NM = 1

NM

N∑
i=1

M∑
j=1

a2
ij.
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And, suppose f (Wij) is bounded, by applying Lemma 2 of Janson (1984) with aij =
qT f (Wij), conditionally on {Wij}i∈[N],j∈[M], we obtain

E
(

eitYNM,L
∣∣∣{Wij}i∈[N],j∈[M]

)
− e−t2α2

NM/2 → 0.

Meanwhile, (NM)−1∑N
i=1
∑M

j=1 f T (Wij)qqT f (Wij)
P→ E[f T (W11)qqT f (W11)], and thus

α2
NM

P→ α2, where α2 = E[f T (W11)qqT f (W11)], so that the above conditional charac-

teristic function converges to e−t2α2/2. Thus, conditionally on
{
Wij
}

i∈[N],j∈[M], we have
√

LqT BNM/α
d→ N(0,1). Also note that conditional on {Wij}i∈[N],j∈[M], ANM is determin-

istic. In addition, we have already shown that
√

CANM is (unconditionally) asymptotically
normal as in (C.2). Therefore, an application8 of Theorem 2 in Chen and Rao (2007) yields
that

√
C

1

L

N∑
i=1

M∑
j=1

Zijq
T f
(
Wij
)=√C

1

NM

N∑
i=1

M∑
j=1

qT f
(
Wij
)

+
√

C√
L

√
1−pNM

1√
L

N∑
i=1

M∑
j=1

Zij −pNM√
1−pNM

qT f
(
Wij
)

d→ N
(

0,qT	q
)
,

recall that 	 = 	A + �	B with 	A = λ1E[f (W11)f T (W12)] + λ2E[f (W11)f T (W21)] and
	B = E[f (W11)f T (W11)]. The Cramér–Wold device now implies

√
C(ANM +√1−pNMBNM) =√C

1

L

N∑
i=1

M∑
j=1

Zijf
(
Wij
) d→ N (0,	) . (C.5)

In cases where f is unbounded, one can approximate f in L2 using a bounded function f ′
following the argument in Theorem 1 of Janson (1984, p. 499) under Lemma D.2 and the
condition E[F2] < ∞ in the statement of the theorem. The resulting errors in

√
CANM

and
√

LBNM have variances bounded by T1E[(f (W11)− f ′(W11))(f (W12)− f ′(W12))T ] +
T2E[(f (W11) − f ′(W11))(f (W21) − f ′(W21))T ] and T3E[(f (W11) − f ′(W11))(f (W11) −
f ′(W11))T ] from (C.2) and (C.3), where T1, T2, and T3 are constants. The result then
follows by letting f ′ → f with an application of the dominated convergence theorem.

Finally,
√

CL−1∑N
i=1
∑M

j=1 Zijf (Wij) can be replaced by
√

CL̂−1∑N
i=1
∑M

j=1 Zijf (Wij)

by virtue of Lemma D.2 (Appendix D). �

C.3. Proof of Corollary 1

Proof. Since E[||X11||4] < ∞, we have E[X4
r,11] < ∞, for any coordinate Xr,11 of X11.

The condition E[|Y11|4] < ∞ implies E[u4
11] < ∞. By the Cauchy–Schwarz inequality,

we have E[(Xr,11u11)2] < ∞ and E[(Xr,11Xr′,11)2] < ∞ for any r and r′, and also

8We thank a reviewer for suggesting this proof strategy, which simplifies the proof.
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E[(||X11u11||)2] < ∞. Applying Lemma 1 to the function class FOLS,1 = {f (Wij) =
Xr,11Xr′,11, for allr,r′}, we have

1

L̂

N∑
i=1

M∑
j=1

ZijXijX
T
ij

P→ E[X11XT
11].

Now, let a vector μ have the same dimension as β, and denote fμ(Wij) = μT Xijuij. Applying
Theorem 1 to FOLS,2 = {fμ(Wij),i ∈ {1, . . . ,N},j ∈ {1, . . . ,M}}, we obtain

√
C

1

L̂

N∑
i=1

M∑
j=1

Zijfμ(Wij)
d→ N(0,μT	OLSμ),

where 	OLS = 	OLS,1 + �	OLS,2, 	OLS,1 = λ1E[X11u11(X12u12)T ] +
λ2E[X11u11(X21u21)T ], and 	OLS,2 = E[X11u11(X11u11)T ]. Cramér–Wold device thus
yields

√
C

1

L̂

N∑
i=1

M∑
j=1

ZijXijuij
d→ N(0,	OLS).

Finally, applying Slutsky’s lemma yields√
C(β̂ −β)

d→ N(0,V),

where V = J−1	OLSJ−1 and J = E
[
X11XT

11

]
. �

D. Useful Lemmas

In this appendix section, we state auxiliary lemmas that are used to prove our main results.
Each of these results is either coming directly from the existing literature or is the existing
result with minor modifications. For the latter case, we provide a proof.

Lemma D.1. Let � be a compact subset of Rk, and let F = {f (·,θ) : θ ∈ �} be a class
of real-valued functions indexed by θ such that f (w,·) is continuous for all w ∈ supp(Wij).
Then, F is a pointwise measurable class of functions.

Proof. The proof is immediate and well known. We provide proof for completeness.
Let S = {f (·,θ) : θ ∈ � ∩Qk}, where Q is the rationals. Therefore, by the denseness of
Qk, for each w ∈ supp(Wij), we can find (θm) ⊂ � ∩Qk, θm → θ as m → ∞ and then
the continuity implies f (w,θm) → f (w,θ), which coincides with the definition of pointwise
measurability. �

The next lemma follows immediately from van der Vaart and Wellner (1996, Lem. 2.2.9).

Lemma D.2 (Bernstein’s inequality for Bernoulli r.v.’s). For each p ∈ (0,1], it holds that

P(|̂L/L−1| >
√

2t/L+2t/(3L)) ≤ 2e−t,

for every t > 0.
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Lemmas D.3 and D.4 follow closely from Theorem 3.4(i) in Davezies et al. (2021) and
Lemma D.12 in Davezies et al. (2018), respectively.

Lemma D.3 (Glivenko–Cantelli for two-way clustered random variables). Let (FNM)

be a sequence of classes of functions that satisfies Assumption 2(iii) and such that each
FNM admits an envelope FNM with E [FNM (W11)] ≤ M < ∞, supQ logN

(
FNM, ‖·‖Q,2 ,

ε ‖FNM‖Q,2
)
< ∞ for any finite discrete measure Q, ε ∈ (0,1], then under Assumption 1,

we have

E

⎡⎣ sup
f ∈FNM

∣∣∣∣∣∣ 1

NM

N∑
i=1

M∑
j=1

f
(
Wij
)−E [f (W11)]

∣∣∣∣∣∣
⎤⎦= o(1).

Proof. The result is a minor modification of the proof of Theorem 3.4(i) in Davezies
et al. (2021) with the standard Glivenko–Cantelli theorem modified for function classes
changing with the sample size. Denote PNM = (NM)−1∑N

i=1
∑M

j=1 δXij , where δx is the
Dirac measure at x. Following their symmetrization argument (which is nonasymptotic and
independent of the function class) in the proof of Theorem 3.4(i) in Davezies et al. (2021),
for each K > 0 and ε > 0, denote FNM,K = FNM1{FNM > K}, then one has

E

⎡⎣ sup
f ∈FNM

∣∣∣∣∣∣ 1

NM

N∑
i=1

M∑
j=1

f
(
Wij
)−E [f (W11)]

∣∣∣∣∣∣
⎤⎦

� E[FNM1{FNM > K}]+E

[
ε + K√

NM

√
logN(FNM,K,‖ · ‖PNM,1,ε)

]
.

The first term on the right-hand side is bounded by M. To deal with the second term, by
Jensen’s inequality, it holds that ‖f − f ′‖PNM,1 ≤ ‖f − f ′‖PNM,2. Thus, the smallest ε-net for
(FNM,‖ ·‖PNM,2) is an ε-net for (FNM,‖ ·‖PNM,1). Thus, we have N(FNM,‖ ·‖PNM,1,ε) ≤
N(FNM,‖ · ‖PNM,2,ε). The condition supQ logN

(
FNM, ‖·‖Q,2 ,ε ‖FNM‖Q,2

)
< ∞ for

all ε ∈ (0,1] implies N(FNM,‖ · ‖PNM,2,ε) < ∞ for all ε > 0. Finally, observe that
E[‖F‖PNM,1] = E[FNM] < M. This concludes the proof. �

Lemma D.4 (Lemma D.11 in Davezies et al. (2018) for sequences). Let (FNM) and
(GNM) be two pointwise measurable classes of functions. Suppose that each FNM admits

an envelope FNM with E
[
FNM (W11)2

]
< ∞ and

∫ 1

0
sup
Q

√
logN

(
FNM, ‖·‖Q,2 ,ε ‖FNM‖Q,2

)
dε ≤ M < ∞,

where Q is taken over the set of all finite discrete measures and ε ∈ (0,1]. Similarly, (GNM)

admits a sequence of envelope functions (GNM) with E
[
GNM (W11)2

]
< ∞ and

∫ 1

0
sup
Q

√
logN

(
GNM, ‖·‖Q,2 ,ε ‖GNM‖Q,2

)
dε ≤ M < ∞.
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Then, under Assumptions 1 and 3,

lim
C→∞E

⎡⎣ sup
FNM×GNM

∣∣∣∣∣∣ C

(NM)2

N∑
i=1

∑
1≤j,j′≤M

f
(
Wij
)

g
(
Wij′
)−λ1E [f (W11)g(W12)]

∣∣∣∣∣∣
⎤⎦= 0.

Proof. The proof follows the same steps of the proof of Lemma D.11 of Davezies et al.
(2018) with the modification of FNM , FNM , GNM , and GNM in place of F , F, G, and G,
respectively. Notice that their symmetrization arguments and Lemma D.4 are nonasymptotic
and thus are not affected by such modification. The detail is omitted. �

E. Proofs for the Application to GMM

Define the class G = {gr (·,θ) : θ ∈ � and r ∈ {1, . . . ,m}} of functions indexed by r and θ

and the class G′ = {∂gr(·,θ)/∂θl : θ ∈ �,r ∈ {1, . . . ,m},l ∈ {1, . . . ,k}} of functions indexed
by r, l, and θ .

E.1. Proof of Lemma 2

Proof. We verify the conditions of Theorem 2.1 in Newey and McFadden (1994),

where the population criterion is Q0(θ) = −E
[
g
(
Wij,θ

)]T VE
[
g
(
Wij,θ

)]
. Their condition

2.1(i), Q0 (θ) is uniquely maximized at θ0, holds by Lemma 2.3 in Newey and McFadden
(1994) under Assumption 4(i). Condition 2.1(ii) holds by Assumption 4(ii). Condition
2.1(iii) that Q0 is continuous at θ follows from Assumption 4(iii)(a). Under Assumption
4(ii), (iii)(a), (iv), by Example 19.7 in Van der Vaart (2000) and Lemma 9.18 in Kosorok
(2008), we know that the class Gr = {gr (·,θ),θ ∈ �}, for r ∈ {1, . . . ,m}, has an envelope∣∣∣gr(Wij,θ

0)

∣∣∣+DM < ∞, where D is a diameter of a set containing �. Thus, for any finite

discrete measure Q and ε ∈ (0,1], N
(
Gr, ‖·‖Q,2 ,ε

)≤ (1+4DM/ε)k . Since G =⋃m
r=1Gr,

we obtain N
(
G, ‖·‖Q,2 ,ε

)≤ m(1+4DM/ε)k < ∞, which implies that the class G satisfies
Assumption 2(ii).G is a pointwise measurable class of functions sinceGr , for r ∈ {1, . . . ,m},
is a pointwise measurable class of functions by Lemma D.1 under Assumption 4(ii),
(iii)(a) and G = ⋃m

r=1Gr . Thus, with Assumption 1, by applying Lemma 1, we have

supθ∈�

∥∥̂gNM (θ)−E
[
g
(
Wij,θ

)]∥∥ P→ 0. By the triangle and Cauchy–Schwartz inequalities,
we obtain∣∣Q̂NM (θ)−Q0 (θ)

∣∣
≤
∣∣∣(̂gNM (θ)−E

[
g
(
Wij,θ

)])T V̂
(̂
gNM (θ)−E

[
g
(
Wij,θ

)])∣∣∣
+
∣∣∣E [g(Wij,θ

)]T (V̂ + V̂T
)(̂

gNM (θ)−E
[
g
(
Wij,θ

)])∣∣∣
+
∣∣∣E [g(Wij,θ

)]T (V̂ −V
)

E
[
g
(
Wij,θ

)]∣∣∣
≤ ∥∥̂gNM (θ)−E

[
g
(
Wij,θ

)]∥∥2 ∥∥V̂∥∥+2
∥∥E [g(Wij,θ

)]∥∥∥∥̂gNM (θ)−E
[
g
(
Wij,θ

)]∥∥∥∥V̂∥∥
+∥∥E [g(Wij,θ

)]∥∥2 ∥∥V̂ −V
∥∥ .
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Thus, supθ∈�

∣∣Q̂NM (θ)−Q0 (θ)
∣∣ P→ 0 so that condition 2.1(iv) is satisfied. Applying

Theorem 2.1 in Newey and McFadden (1994), we therefore obtain θ̂
P→ θ0. �

E.2. Proof of Theorem 2

Proof. Under Assumption 4(ii), (iii)(a), the first-order condition requires that

2ĜNM
(
θ̂
)T V̂ĝNM

(
θ̂
) = 0 holds with probability approaching one, where ĜNM (θ) =

∇θ ĝNM (θ) . Expanding ĝNM
(
θ̂
)

around θ0 and multiplying by
√

C, we have√
C
(
θ̂ − θ0

)
= −

[
ĜNM

(
θ̂
)T V̂ĜNM

(
θ̄
)]−1

ĜNM
(
θ̂
)T V̂
√

CĝNM

(
θ0
)
,

where θ̄ is the mean value implied by the mean value theorem for each coordinate. Under
Assumption 4(ii), (iii)(b), similar lines of argument to those in the proof of Lemma 2
yield N

(
G′, ‖·‖Q,2 ,ε

)
< ∞ for any finite discrete measure Q and ε ∈ (0,1]. G′ is a

pointwise measurable class of functions by Lemma D.1 under Assumption 4(ii), (iii)(b).
With Assumptions 1 and 4(vi), Lemma 1 thus yields

sup
θ∈�

∣∣∣∣∣∣ 1L̂
N∑

i=1

M∑
j=1

Zij
∂gr
(
Wij,θ

)
∂θl

−E

[
∂gr (W11,θ)

∂θl

]∣∣∣∣∣∣ P→ 0

for each r and l. Since there are only finite numbers of r and l, it follows that ĜNM(θ̂)−
G(θ̂)

P→ 0 and ĜNM(θ̄) − G(θ̄)
P→ 0, where G(θ) = E[∇θ g(W11,θ)]. Also, since the

conditions of Lemma 2 are satisfied, we have θ̄
P→ θ0 and θ̂

P→ θ0. We thus obtain

G(θ̂)− G
P→ 0 and G(θ̄)− G

P→ 0 by the continuous mapping theorem under Assumption

4(iii)(b). Combining the above results yields ĜNM(θ̂)
P→ G and ĜNM(θ̄)

P→ G. Therefore,

[ĜNM(θ̂)T V̂ĜNM(θ̄)]−1ĜNM(θ̂)T V̂
P→ (GT VG)−1GT V follows by an application of the

continuous mapping theorem under Assumption 4(v). Now, notice that finite function
class {g1(·,θ0), . . . ,gm(·,θ0)} is pointwise measurable since G is a pointwise measurable
class of functions following Lemma 2 and E[g(Wij,θ

0)] = 0. With E[gsup(Wij)
2] < ∞

under Assumption 4(vii), by applying Theorem 1 under Assumptions 1 and 3, we obtain√
CĝNM(θ0)

d→ N(0,�), where � = 	1 +�	2, with 	1 = λ1E[g(W11,θ
0)gT (W12,θ

0)]+
λ2E[g(W11,θ

0)gT (W21,θ
0)] and 	2 = E[g(W11,θ

0)gT (W11,θ
0)]. Slutsky’s theorem then

implies√
C
(
θ̂ − θ0

)
d→ N

(
0,
(

GT VG
)−1

GT V�VG
(

GT VG
)−1
)

,

which concludes the proof. �

E.3. Proof of Theorem 3

Proof. First, we want to establish G̃
P→ G via

∥∥G̃−G
∥∥ ≤ ∥∥G̃−G

(
θ̂
)∥∥+∥∥G(θ̂)−G

∥∥,
where G(θ) = E [∇θ g(W11,θ)] . Since the conditions of Lemma 2 are satisfied, it holds that

θ̂
P→ θ0. Under Assumption 5(i), we obtain

∥∥G(θ̂)−G
∥∥ P→ 0 by the continuous mapping

theorem. Note that G′ is pointwise measurable and N
(
G′, ‖·‖Q,2 ,ε

)
< ∞ for any finite
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discrete measure Q, ε ∈ (0,1] by the proof of Theorem 2. Under Assumptions 1 and 4(vi),
by applying Lemma 1, we thus obtain

sup
θ∈�

∣∣∣∣∣∣ 1L̂
N∑

i=1

M∑
j=1

∂gr
(
Wij,θ

)
Zij

∂θl
−E

[
∂gr (W11,θ)

∂θl

]∣∣∣∣∣∣ P→ 0

for each r and l. Since there are only finite numbers of l and r, we get

sup
θ∈�

∥∥∥∥∥∥ 1

L̂

N∑
i=1

M∑
j=1

Zij∇θ g
(
Wij,θ

)−E [∇θ g(W11,θ)]

∥∥∥∥∥∥ P→ 0.

It then follows that G̃
P→ G(θ̂). Combining the above arguments, we establish G̃

P→ G.

We will next verify 	̃2
P→ 	2. Define a new class Gsub = {(w,z) �→ zgr(w,θ),

θ ∈ �,r ∈ {1, . . . ,m}}. For any finite discrete measure Q and ε ∈ (0,1], we have

supQ N
(
G, ‖·‖Q,2 ,ε

∥∥gsup
∥∥

Q,2

)
< ∞ by the proof of Lemma 2. By Theorem 9.15 in

Kosorok (2008), therefore,

sup
Q

N

(
GsubGsub, ‖·‖Q,2 ,

√
2ε

∥∥∥g2
sup

∥∥∥
Q,2

)
≤ sup

Q
N
(
Gsub, ‖·‖Q,2 ,ε

∥∥gsup
∥∥

Q,2

)
sup
Q

N
(
Gsub, ‖·‖Q,2 ,ε

∥∥gsup
∥∥

Q,2

)
< ∞

for any finite discrete measure Q and ε ∈ (0,1], where GsubGsub is defined as the pointwise
product. Note that GsubGsub is a pointwise measurable class of functions since Gsub is a
pointwise measurable class of functions by the arguments in the proof of Lemma 2. This
implies that with E[gsup(Wij)

2] < ∞ and Assumption 1, by applying Lemma D.3, we thus
obtain

E

⎡⎣ sup
θ∈�

∥∥∥∥∥∥ 1

NM

N∑
i=1

M∑
j=1

g
(
Wij,θ

)
Zij
(
g
(
Wij,θ

)
Zij
)T −E

[
g(W11,θ)Z11 (g(W11,θ)Z11)T

]∥∥∥∥∥∥
⎤⎦

= o(1).

As we can write

1

NM

N∑
i=1

M∑
j=1

g
(
Wij,θ

)
Zij
(
g
(
Wij,θ

)
Zij
)T = L

NM

1

L

N∑
i=1

M∑
j=1

g
(
Wij,θ

)
Zij
(
g
(
Wij,θ

)
Zij
)T

= p
1

L

N∑
i=1

M∑
j=1

g
(
Wij,θ

)
Zij
(
g
(
Wij,θ

)
Zij
)T

and

E
[
g(W11,θ)Z11 (g(W11,θ)Z11)T

]
= E
[
Z2

11

]
E
[
g(W11,θ)gT (W11,θ)

]
= pE

[
g(W11,θ)gT (W11,θ)

]
.
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Therefore, by Markov’s inequality, it follows that

sup
θ∈�

∥∥∥∥∥∥ 1

L

N∑
i=1

M∑
j=1

g
(
Wij,θ

)
Zij
(
g
(
Wij,θ

)
Zij
)T −E

[
g(W11,θ)gT (W11,θ)

]∥∥∥∥∥∥ P→ 0.

In addition,

1

L

N∑
i=1

M∑
j=1

Zijg
(
Wij,θ

)
gT
(
Wij,θ

)= 1

L

N∑
i=1

M∑
j=1

g
(
Wij,θ

)
Zij
(
g
(
Wij,θ

)
Zij
)T .

Thus, Lemma D.2 yields 	̃2
P→ 	2(θ̂), where 	2(θ) = E

[
g(W11,θ)gT (W11,θ)

]
. Mean-

while, θ̂
P→ θ0 and we have 	2(θ̂)

P→ 	2 by Assumption 5(iii). Therefore, 	̃2
P→ 	2 follows.

Finally, we establish 	̃1
P→ 	1. Note that Gsub is a pointwise measurable class of

functions and that supQ N
(
Gsub, ‖·‖Q,2 ,ε

∥∥gsup
∥∥

Q,2

)
< ∞ for any finite discrete measure

Q and ε ∈ (0,1]. With E[gsup(Wij)
2] < ∞ and Assumptions 1 and 3, and Lemma D.4 yields

lim
C→∞E

[
sup
θ∈�

∥∥∥∥ C

(NM)2

N∑
i=1

∑
1≤j,j′≤M

g
(
Wij,θ

)
Zij
(
g
(
Wij′,θ

)
Zij′
)T

−E
[
λ1g(W11,θ)Z11(g(W12,θ)Z12)T

]∥∥∥∥]= 0.

As we can write

C

(NM)2

N∑
i=1

∑
1≤j,j′≤M

g
(
Wij,θ

)
Zij
(
g
(
Wij′,θ

)
Zij′
)T

= L2

(NM)2

C

L2

N∑
i=1

∑
1≤j,j′≤M

g
(
Wij,θ

)
Zij
(
g
(
Wij′,θ

)
Zij′
)T

= p2 C

L2

N∑
i=1

∑
1≤j,j′≤M

g
(
Wij,θ

)
Zij
(
g
(
Wij′,θ

)
Zij′
)T

and

E
[
λ1g(W11,θ)Z11 (g(W12,θ)Z12)T

]
= E [Z11Z12]E

[
λ1g(W11,θ)gT (W12,θ)

]
= p2E

[
λ1g(W11,θ)gT (W12,θ)

]
.

Therefore, by the Markov inequality, it follows that

sup
θ∈�

∥∥∥∥∥∥ C

L2

N∑
i=1

∑
1≤j,j′≤M

g
(
Wij,θ

)
Zij
(
g
(
Wij′,θ

)
Zij′
)T −λ1E

[
g(W11,θ)gT (W12,θ)

]∥∥∥∥∥∥ P→ 0,
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as C → ∞. In addition, a symmetric argument also shows that

sup
θ∈�

∥∥∥∥∥∥ C

L2

∑
1≤i,i′≤N

M∑
j=1

g
(
Wij,θ

)
Zij
(
g
(
Wi′j,θ

)
Zi′j
)T −λ2E

[
g(W11,θ)gT (W21,θ)

]∥∥∥∥∥∥ P→ 0,

as C → ∞. Also, note that

C

L2

N∑
i=1

∑
1≤j,j′≤M

ZijZij′g(Wij,θ)gT (Wij′,θ) = C

L2

N∑
i=1

∑
1≤j,j′≤M

g(Wij,θ)Zij(g(Wij′,θ)Zij′)
T

and

C

L2

∑
1≤i,i′≤N

M∑
j=1

ZijZi′jg(Wij,θ)gT (Wi′j,θ) = C

L2

∑
1≤i,i′≤N

M∑
j=1

g(Wij,θ)Zij(g(Wi′j,θ)Zi′j)
T

hold. Therefore, Lemma D.2 yields 	̃1
P→ 	1(θ̂), where

	1(θ) = λ1E
[
g(W11,θ)gT (W12,θ)

]
+λ2E

[
g(W11,θ)gT (W21,θ)

]
.

Meanwhile, since θ̂
P→ θ0, we get 	1(θ̂)

P→ 	1 by Assumption 5(ii). We thus obtain

	̃1
P→ 	1.

Combining the above results yields �̃
P→ � by continuous mapping theorem.

By another application of the continuous mapping theorem and the continuity of

matrix inversion under Assumption 4(v), we get (G̃T V̂G̃)−1 P→ (GT VG)−1. Therefore,
(G̃T V̂G̃)−1G̃T V̂�̃V̂G̃(G̃T V̂G̃)−1 is consistent for (GT VG)−1GT V�VG(GT VG)−1 by the
continuous mapping theorem. �

F. Proofs for the Application to M-Estimation

For convenience, define the class Q′′ =
{
∂2q(·,θ)/∂θr∂θl : θ ∈ � and r,l ∈ {1, . . . ,k}

}
of

functions indexed by θ , r, and l.

F.1. Proof of Lemma 3

Proof. We verify the conditions of Theorem 2.1 in Newey and McFadden (1994).
Condition 2.1(i) that Q0 (θ) is uniquely maximized at θ0 follows from the second part in
Assumption 6(i). Condition 2.1(ii) holds by the first part in Assumption 6(i). Condition
2.1(iii) that Q0 (θ) is continuous at θ follows from Assumption 6(ii)(a). Under Assumption
6(i), (ii)(a), (iii), by Example 19.7 in Van der Vaart (2000) and Lemma 9.18 in Kosorok

(2008), the class Q has an envelope
∣∣∣q(Wij,θ

0
)∣∣∣+DM < ∞, where D is the diameter of a

set containing �. Thus, for any finite discrete measure Q and ε ∈ (0,1], N
(
Q, ‖·‖Q,2 ,ε

)≤
(1+4DM/ε)k, which implies that the class Q satisfies Assumption 2(ii). Q is a pointwise
measurable class of functions by Lemma D.1 under Assumption 6(i), (ii)(a). Thus, with

Assumption 1, by applying Lemma 1, we have supθ∈�

∣∣Q̂NM (θ)−Q0 (θ)
∣∣ P→ 0, so that
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condition 2.1(iv) is satisfied. Applying Theorem 2.1 in Newey and McFadden (1994), we

obtain θ̂
P→ θ0. �

F.2. Proof of Theorem 4

Proof. We verify the conditions of Theorem 3.1 in Newey and McFadden (1994).
Conditions 3.1(i), (ii), and (v) follow from the Assumption 6(i), (ii)(c), (v). Note that the

finite function class
{
∂q(·,θ0)/∂θ1, . . . ,∂q(·,θ0)/∂θk

}
is pointwise measurable since Q′ is

by Lemma D.1 under Assumption 6(i), (ii)(b). With E[q̇sup(Wij)
2] < ∞ under Assumption

6(vi), by applying Theorem 1 under Assumptions 1 and 3, we obtain
√

C∇θ Q̂NM

(
θ0
)

d→
N (0,�), where � = �1 +��2,

�1 = λ1E

[
∇θ q
(

W11,θ
0
)
∇θ q
(

W12,θ
0
)T
]

+λ2E

[
∇θ q
(

W11,θ
0
)
∇θ q
(

W21,θ
0
)T
]
,

�2 = E

[
∇θ q
(

W11,θ
0
)
∇θ q
(

W11,θ
0
)T
]

.

This implies that condition 3.1(iii) is satisfied. Under Assumption 6(i), (ii)(c), similar lines
of argument to those in the proof of Lemma 3 yield N

(
Q′′, ‖·‖Q,2 ,ε

)
< ∞ for any finite

discrete measure Q and ε ∈ (0,1]. Note that Q′′ is a pointwise measurable class of functions
by Lemma D.1 under Assumption 6(i), (ii)(c). With Assumptions 1 and 6(iv), Lemma 1 thus
yields

sup
θ∈�

∣∣∣∣∣∣ 1L̂
N∑

i=1

M∑
j=1

Zij
∂2q
(
Wij,θ

)
∂θr∂θl

−E

[
∂2q(W11,θ)

∂θr∂θl

]∣∣∣∣∣∣ P→ 0

for each r,l ∈ {1, . . . ,k}. Since there are only finite numbers of r and l, we obtain

supθ∈�

∥∥Ĥ (θ)−H(θ)
∥∥ P→ 0, where Ĥ(θ) = ∇θθT Q̂NM (θ) . With Assumption 6(ii)(c),

condition 3.1(iv) is satisfied. Applying Theorem 3.1 in Newey and McFadden (1994), we

obtain
√

C
(
θ̂ − θ0

)
d→ N
(

0,H−1�H−1
)

. �

F.3. Proof of Theorem 5

Proof. First, we want to establish H̃
P→ H via

∥∥H̃ −H
∥∥≤ ∥∥H̃ −H

(
θ̂
)∥∥+∥∥H (θ̂)−H

∥∥,
where H (θ) = −E

[∇θθT q(W11,θ)
]

. Since the conditions of Lemma 3 are satisfied, we

have θ̂
P→ θ0. Under Assumption 7(i), we thus obtain

∥∥H (θ̂)−H
∥∥ P→ 0 by the continuous

mapping theorem. Note that Q′′ is pointwise measurable and N
(
Q′′, ‖·‖Q,2 ,ε

)
< ∞ for

any finite discrete measure Q, ε ∈ (0,1] by the proof of Theorem 4. Under Assumptions 1
and 6(iv), by applying Lemma 1, we obtain

sup
θ∈�

∣∣∣∣∣∣ 1L̂
N∑

i=1

M∑
j=1

Zij
∂2q
(
Wij,θ

)
∂θr∂θl

−E

[
∂2q(W11,θ)

∂θr∂θl

]∣∣∣∣∣∣ P→ 0
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for each r,l ∈ {1, . . . ,k}. Since there are only finite numbers of r and l, we get

sup
θ∈�

∥∥∥∥∥∥ 1

L̂

N∑
i=1

M∑
j=1

Zij∇θθT q
(
Wij,θ

)−E
[∇θθT q(W11,θ)

]∥∥∥∥∥∥ P→ 0.

Thus, we obtain H̃
P→ H

(
θ̂
)

. Combining the above result together yields H̃
P→ H. By the

continuity of matrix inversion under Assumption 6(v), it follows that H̃−1 P→ H−1. Next,

we will establish �̃2
P→ �2. Define a new classQ′

sub = {(w,z) �→ z∂q(w,θ)/∂θr,θ ∈ �, r ∈
{1, . . . ,k}}. Under Assumption 6(i), (ii)(b), similar lines of argument to those in the proof of

Lemma 3 yield supQ N
(
Q′

sub, ‖·‖Q,2 ,ε
∥∥qsup

∥∥
Q,2

)
< ∞, for any finite discrete measure

Q and ε ∈ (0,1]. By Theorem 9.15 in Kosorok (2008),

sup
Q

N

(
Q′

subQ
′
sub, ‖·‖Q,2 ,

√
2ε

∥∥∥q2
sup

∥∥∥
Q,2

)
≤ sup

Q
N
(
Q′

sub, ‖·‖Q,2 ,ε
∥∥qsup

∥∥
Q,2

)
sup
Q

N
(
Q′

sub, ‖·‖Q,2 ,ε
∥∥qsup

∥∥
Q,2

)
< ∞

holds for any finite discrete measure Q and ε ∈ (0,1], where Q′
subQ

′
sub is defined as the

pointwise product. Note that Q′
subQ

′
sub is a pointwise measurable class of functions since

Q′
sub is a pointwise measurable class of functions by the same argument as in the proof

of Theorem 4. With Assumption 1 and E[q̇sup(Wij)
2] < ∞ under Assumption 6(vi), by

applying Lemma D.3, we obtain

E

⎡⎣ sup
θ∈�

∥∥∥∥∥∥ 1

L

N∑
i=1

M∑
j=1

∇θ q(Wij,θ)Zij(∇θ q(Wij,θ)Zij)
T −E[∇θ q(W11,θ)∇θ q(W11,θ)T ]

∥∥∥∥∥∥
⎤⎦

= o(1).

Therefore, by the Markov inequality, it follows that

sup
θ∈�

∥∥∥∥∥∥ 1

L

N∑
i=1

M∑
j=1

∇θ q
(
Wij,θ

)
Zij
(∇θ q

(
Wij,θ

)
Zij
)T −E

[
∇θ q(W11,θ)∇θ q(W11,θ)T

]∥∥∥∥∥∥
P→ 0.

In addition, we can write

1

L

N∑
i=1

M∑
j=1

Zij∇θ q
(
Wij,θ

)∇θ q
(
Wij,θ

)T = 1

L

N∑
i=1

M∑
j=1

∇θ q
(
Wij,θ

)
Zij
(∇θ q

(
Wij,θ

)
Zij
)T .

Thus, Lemma D.2 yields �̃2
P→ �2(θ̂), where �2(θ) = E

[
∇θ q(W11,θ)∇θ q(W11,θ)T

]
.

Meanwhile, θ̂
P→ θ0 and we have �2(θ̂)

P→ �2 by Assumption 7(iii). Therefore, we

establish �̃2
P→ �2.

Finally, we will establish �̃1
P→ �1. Note that Q′

sub is a pointwise measurable class

of functions and supQ N
(
Q′

sub, ‖·‖Q,2 ,ε
∥∥qsup

∥∥
Q,2

)
< ∞, for any finite discrete measure

Q, ε ∈ (0,1]. With Assumptions 1 and 3 and E[q̇sup(Wij)
2] < ∞ under Assumption 6(vi),
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Lemma D.4 yields

lim
C→∞E

[
sup
θ∈�

∥∥∥∥ C

(NM)2

N∑
i=1

∑
1≤j,j′≤M

∇θ q
(
Wij,θ

)
Zij
(∇θ q

(
Wij′,θ

)
Zij′
)T

−E
[
λ1∇θ q(W11,θ)Z11 (∇θ q(W12,θ)Z12)T

]∥∥∥∥]= 0.

As we can write

C

(NM)2

N∑
i=1

∑
1≤j,j′≤M

∇θ q
(
Wij,θ

)
Zij
(∇θ q

(
Wij′,θ

)
Zij′
)T

= L2

(NM)2

C

L2

N∑
i=1

∑
1≤j,j′≤M

∇θ q
(
Wij,θ

)
Zij
(∇θ q

(
Wij′,θ

)
Zij′
)T

= p2 C

L2

N∑
i=1

∑
1≤j,j′≤M

∇θ q
(
Wij,θ

)
Zij
(∇θ q

(
Wij′,θ

)
Zij′
)T

and

E
[
λ1∇θ q(W11,θ)Z11 (∇θ q(W12,θ)Z12)T

]
= E [Z11Z12]E

[
λ1∇θ q(W11,θ)∇θ q(W12,θ)T

]
= p2E

[
λ1∇θ q(W11,θ)∇θ q(W12,θ)T

]
.

Therefore, by the Markov inequality, it follows that

sup
θ∈�

∥∥∥∥ C

L2

N∑
i=1

∑
1≤j,j′≤M

∇θ q
(
Wij,θ

)
Zij
(∇θ q

(
Wij′,θ

)
Zij′
)T

−λ1E
[
∇θ q(W11,θ)∇θ q(W12,θ)T

]∥∥∥∥ P→ 0,

as C → ∞. In addition, a symmetric argument also shows that

sup
θ∈�

∥∥∥∥ C

L2

∑
1≤i,i′≤N

M∑
j=1

∇θ q
(
Wij,θ

)
Zij
(∇θ q

(
Wi′j,θ

)
Zi′j
)T

−λ2E
[
∇θ q(W11,θ)∇θ q(W21,θ)T

]∥∥∥∥ P→ 0,

as C → ∞. Also, we can write

C

L2

N∑
i=1

∑
1≤j,j′≤M

ZijZij′∇θ q
(
Wij,θ

)∇θ q
(
Wij′,θ

)T
= C

L2

N∑
i=1

∑
1≤j,j′≤M

∇θ q
(
Wij,θ

)
Zij
(∇θ q

(
Wij′,θ

)
Zij′
)T
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and

C

L2

∑
1≤i,i′≤N

M∑
j=1

ZijZi′j∇θ q
(
Wij,θ

)∇θ q
(
Wi′j,θ

)T
= C

L2

∑
1≤i,i′≤N

M∑
j=1

∇θ q
(
Wij,θ

)
Zij
(∇θ q

(
Wi′j,θ

)
Zi′j
)T .

Therefore, Lemma D.2 yields �̃1
P→ �1

(
θ̂
)
, where

�1(θ) = λ1E
[
∇θ q(W11,θ)∇θ q(W12,θ)T

]
+λ2E

[
∇θ q(W11,θ)∇θ q(W21,θ)T

]
.

Meanwhile, since θ̂
P→ θ0, we get �1

(
θ̂
) P→ �1 by Assumption 7(ii). We thus obtain �̃1

P→
�1 and �̃

P→ � by continuous mapping theorem. Therefore, H̃−1�̃H̃−1 is consistent for
H−1�H−1 by the continuous mapping theorem. �

G. Multiple Observations in a Cluster

In many empirical applications, researchers face situations in which there are multiple
observations in some cluster (i,j), and the number of observations may vary across the
clusters. In this section, we generalize the results from the main text to accommodate
multiple observations per cluster. We shall follow the basic setting in Davezies et al. (2018).
Throughout this section, we call a pair (i,j) of indices a cell. The number of observations in
a cell is allowed to be random and can be correlated with the observations. This allows for a
wide range of heterogeneous cluster structures. We will denote the number of observations
in the (i,j)th cell by Nij, which is itself a random variable that takes a nonnegative integer
value. The observation that corresponds to the �th unit, 1 ≤ � ≤ Nij, in the (i,j)th cell is
a d-dimensional random vector denoted by W�,ij. With these notations, we consider the
following sampling assumption.

Assumption G.1 (Sampling).

(i) The array
(
Nij,(W�,ij)�≥1

)
(i,j)∈N2 is separately exchangeable.

(ii)
(
Nij,(W�,ij)�≥1

)
(i,j)∈N2 is dissociated.

(iii) E[N11] > 0.

This assumption is essentially identical to Assumption 1 in Davezies et al. (2018). Parts
(i) and (ii) parallel Assumption 1(i) and (ii), respectively, in the main text except that the cell
size is random and can differ across cells here. When Nij = 1 for all i and j, the conditions
reduce to Assumption 1 in the main text. Also, part (ii) allows for a wide range of correlation
structures between Nij and (W�,ij)�≥1, and among (W�,ij)�≥1 within (i,j)th cell. Part (iii)
excludes the cells that are almost surely empty.

Assumption G.2 (Function class).

(i) E
[∑Nij

�=1 f
(
W�,ij

)]= 0.
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(ii) F admits an envelope F satisfying E
[∑Nij

�=1 F(W�,ij)
]

< ∞ with

supQ N(F, ‖·‖Q,2 ,ε ‖F‖Q,2) < ∞ for all ε > 0, where Q is any finite discrete
measure.

(iii) F is pointwise measurable.

This assumption generalizes Assumption 2 by allowing for multiple observations within
a cell as well as heterogeneous cell sizes.

Lemma G.1 (Uniform weak law of large numbers). Suppose that Assumptions G.1 and
G.2(ii), (iii) hold. Then we have

sup
f ∈F

∣∣∣∣∣∣ 1L̂
N∑

i=1

M∑
j=1

Zij

Nij∑
�=1

f
(
W�,ij

)−E

⎡⎣N11∑
�=1

f (W�,11)

⎤⎦∣∣∣∣∣∣ P→ 0.

A proof of Lemma G.1 is a straightforward modification of the proof of Lemma 1 and is
therefore omitted.

Theorem G.1 (Central limit theorem). Suppose that Assumptions 3, G.1, and G.2(i), (iii)
hold. In addition, suppose that any finite function class F = {f1, . . . ,fk} with a fixed k admits

an envelope F satisfying E

[(∑Nij
�=1 F(W�,ij)

)2
]

< ∞. Let f = (f1, . . . ,fk)
T . Then,

√
C

1

L̂

N∑
i=1

M∑
j=1

Zij

Nij∑
�=1

f
(
W�,ij

) d→ N (0,	),

where 	 = 	A +�	B,

	A = λ1E

⎡⎢⎣
⎛⎝N11∑

�=1

f
(
W�,11

)⎞⎠⎛⎝N12∑
�=1

f
(
W�,12

)⎞⎠T
⎤⎥⎦

+λ2E

⎡⎢⎣
⎛⎝N11∑

�=1

f
(
W�,11

)⎞⎠⎛⎝N21∑
�=1

f
(
W�,21

)⎞⎠T
⎤⎥⎦,

	B = E

⎡⎢⎣
⎛⎝N11∑

�=1

f
(
W�,11

)⎞⎠⎛⎝N11∑
�=1

f
(
W�,11

)⎞⎠T
⎤⎥⎦ .

Again, a proof is a straightforward modification of that of Theorem 1. Here, we describe
the necessary modification without repetitively showing the entire proof. Note that under
the current setting, we have

1

L̂

N∑
i=1

M∑
j=1

Zij

Nij∑
�=1

f
(
W�,ij

)= L

L̂

(
ANM +√1−pNMBNM

)
,
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where ANM and BNM are defined as

ANM = 1

NM

N∑
i=1

M∑
j=1

Nij∑
�=1

f
(
W�,ij

)
and BNM = 1

L

N∑
i=1

M∑
j=1

Zij −pNM√
1−pNM

Nij∑
�=1

f
(
W�,ij

)
,

respectively. Then, using a similar argument to the one in the proof of Theorem 1, the
asymptotic normality for ANM can be established as

√
CANM

d→ N

⎛⎜⎝0,λ1E

⎡⎢⎣
⎛⎝N11∑

�=1

f
(
W�,11

)⎞⎠⎛⎝N12∑
�=1

f
(
W�,12

)⎞⎠T
⎤⎥⎦

+ λ2E

⎡⎢⎣
⎛⎝N11∑

�=1

f
(
W�,11

)⎞⎠⎛⎝N21∑
�=1

f
(
W�,21

)⎞⎠T
⎤⎥⎦
⎞⎟⎠ .

Similarly, the variance–covariance matrices for BNM can be calculated as

Var (BNM) = 1

L
E

⎡⎢⎣
⎛⎝N11∑

�=1

f
(
W�,11

)⎞⎠⎛⎝N11∑
�=1

f
(
W�,11

)⎞⎠T
⎤⎥⎦ .

We thus obtain Theorem G.1 following from the arguments in the proof of Theorem 1.

G.1. Application to Generalized Method of Moments

We now generalize the results for GMM from Section 3 to allow for multiple observations
per cell. Under the current setting, we assume that the true parameter vector θ0 =
(θ0

1 , . . . ,θ0
k )T satisfies

E

⎡⎣ Nij∑
�=1

g
(

W�,ij,θ
0
)⎤⎦= 0,

where m ≥ k. Multiway algorithmic subsampling GMM estimator θ̂ can be subsequently
defined as

max
θ∈�

Q̂NM (θ),

where Q̂NM (θ) = −̂gNM (θ)T V̂ĝNM (θ), ĝNM (θ) = L̂−1∑N
i=1
∑M

j=1 Zij
∑Nij

�=1 g
(
W�,ij,θ

)
.

To establish the asymptotic properties of θ̂ , we impose the following conditions.

Assumption G.3.

(i) V is positive semi-definite, and VE
[∑Nij

�=1 g(W�,ij,θ)
]

= 0 iff θ = θ0.

(ii) θ0 ∈ int (�), where � is a compact subset of Rk.
(iii) (a) θ �→ gr(w,θ) is Lipschitz with a universal Lipschitz constant.

(b) Each component of θ �→ ∇θ gr(w,θ) is Lipschitz with a universal Lipschitz
constant.

(iv) E
[
supθ∈�

∥∥∥∑Nij
�=1 g

(
W�,ij,θ

)∥∥∥]< ∞.
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(v) GT VG is nonsingular, where G = E
[∑Nij

�=1 ∇θ g
(
W�,ij,θ

0
)]

.

(vi) E
[
supθ∈�

∥∥∥∑Nij
�=1 ∇θ g

(
W�,ij,θ

)∥∥∥]< ∞.

(vii) gsup(·) = maxr∈{1,...,m} |gr (·,θ) | satisfies E

[(∑Nij
�=1 gsup(W�,ij)

)2
]

< ∞.

Lemma G.2 (Consistency of multiway algorithmic subsampling GMM estimator). If

Assumptions G.1 and G.3(i)–(iv) hold, and that V̂
P→ V, then θ̂

P→ θ0.

A proof of Lemma G.2 follows analogously from the proof of Lemma 2 and an
application of Lemma G.1. We omit the proof.

Theorem G.2 (Asymptotic normality of multiway algorithmic subsampling GMM

estimator). If Assumptions 3, G.1, and G.3 hold, and that V̂
P→ V, then√

C
(
θ̂ − θ0

)
d→ N

(
0,
(

GT VG
)−1

GT V�VG
(

GT VG
)−1
)

,

where G = E
[∑N11

�=1 ∇θ g
(

W�,11,θ
0
)]

and � = 	1 +�	2, with

	1 = λ1E

⎡⎢⎣
⎛⎝N11∑

�=1

g
(

W�,11,θ
0
)⎞⎠⎛⎝N12∑

�=1

g
(

W�,12,θ
0
)⎞⎠T

⎤⎥⎦
+λ2E

⎡⎢⎣
⎛⎝N11∑

�=1

g
(

W�,11,θ
0
)⎞⎠⎛⎝N21∑

�=1

g
(

W�,21,θ
0
)⎞⎠T

⎤⎥⎦
and 	2 = E

[(∑N11
�=1 g

(
W�,11,θ

0
))(∑N11

�=1 g
(

W�,11,θ
0
))T
]

.

A proof of Theorem G.2 follows straightforwardly from the proof of Theorem 2 and an
application of Theorem G.1 in place of Theorem 1. To avoid repetition, the proof is omitted.

G.2. Application to M-Estimation

We now generalize the results for M-Estimation from Section 4 to allow for multiple
observations per cell. Under this setting, multiway algorithmic subsampling M-estimator
θ̂ is defined as the solution to

max
θ∈�

− 1

L̂

N∑
i=1

M∑
j=1

Zij

Nij∑
�=1

q
(
W�,ij,θ

)
.

The true parameter vector θ0 is assumed to be the unique solution of

maxθ∈� −E[
∑Nij

�=1 q(W�,ij,θ)]. For each θ ∈ �, let −L̂−1∑N
i=1
∑M

j=1 Zij
∑Nij

�=1 q(W�,ij,θ)

and −E[
∑Nij

�=1 q(W�,ij,θ)] be denoted by Q̂NM (θ) and Q0 (θ), respectively. To establish
the asymptotic properties of θ̂ , we restate Assumption 6 as follows.
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Assumption G.4.

(i) θ0 ∈ int(�), where � is a compact subset of Rk. Also, E
[∑Nij

�=1 q(W�,ij,θ
0)
]

<

E
[∑Nij

�=1 q(W�,ij,θ)
]

holds for all θ ∈ �\{θ0}.
(ii) (a) θ �→ q(w,θ) is Lipschitz with a universal Lipschitz constant.

(b) Each coordinate of θ �→ ∇θ q(w,θ) is Lipschitz with a universal Lipschitz
constant.

(c) Each coordinate of θ �→ ∇θθT q(w,θ) = ∂2q(w,θ)/∂θ∂θT is Lipschitz with a
universal Lipschitz constant.

(iii) E[supθ∈�

∑Nij
�=1 q

(
W�,ij,θ

)
] < ∞.

(iv) E
[
supθ∈�

∥∥∥∑Nij
�=1 ∇θθT q

(
W�,ij,θ

)∥∥∥]< ∞.

(v) H = H
(
θ0
)

is nonsingular, where H(θ) = −E
[∑Nij

�=1 ∇θθT q
(
W�,ij,θ

)]
.

(vi) q̇sup(·) = maxr∈{1,...,k} |∂q(·,θ)/∂θr| satisfies E

[(∑Nij
�=1 q̇sup(W�,ij)

)2
]

< ∞.

Lemma G.3 (Consistency of multiway algorithmic subsampling M-estimator). If

Assumptions G.1 and G.4(i)–(iii) hold, then, θ̂
P→ θ0.

A proof of Lemma G.3 follows analogously from the proof of Lemma 3 and an
application of Lemma G.1. We omit the proof.

Theorem G.3 (Asymptotic normality of multiway algorithmic subsampling M-estima-
tor). If Assumptions 3, G.1, and G.4 hold, then

√
C
(
θ̂ − θ0

)
d→ N
(

0,H−1�H−1
)
,

where H = −E
[∑N11

�=1 ∇θθT q
(

W�,11,θ
0
)]

, � = �1 +��2,

�1 =λ1E

⎡⎢⎣
⎛⎝N11∑

�=1

∇θ q
(

W�,11,θ
0
)⎞⎠⎛⎝N12∑

�=1

∇θ q
(

W�,12,θ
0
)⎞⎠T

⎤⎥⎦
+λ2E

⎡⎢⎣
⎛⎝N11∑

�=1

∇θ q
(

W�,11,θ
0
)⎞⎠⎛⎝N21∑

�=1

∇θ q
(

W�,21,θ
0
)⎞⎠T

⎤⎥⎦,

and �2 = E

[(∑N11
�=1 ∇θ q

(
W�,11,θ

0
))(∑N11

�=1 ∇θ q
(

W�,11,θ
0
))T
]

.

A proof of Theorem G.3 follows straightforwardly from the proof of Theorem 4 and an
application of Theorem G.1 in place of Theorem 1. To avoid repetition, the proof is omitted.
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H. Alternative Subsampling Methods

Although we have thus far focused on Bernoulli subsampling as the default subsampling
method, other algorithmic subsampling schemes are also applicable. In Lee and Ng (2020b),
two classes of algorithmic subsampling schemes are considered, namely, random subsam-
pling methods and random projection methods, with the Bernoulli subsampling considered
throughout this paper belonging to the former category. It is possible to adapt other random
subsampling methods under multiway cluster sampling setting, such as uniform sampling
with/without replacement. In fact, the robustness against possible degeneracy remains valid
when either of these two alternative random subsampling schemes is substituted. We are
going to illustrate such adaptations in the rest of this section. On the other hand, as random
projection-based methods produce rather different decompositions in the asymptotic terms,
their validity and asymptotic behaviors under the current setting remain unclear to us, and
are therefore not discussed here.

To implement uniform subsampling without replacement, the researcher sets L randomly
chosen {Zij : i = 1, . . . ,N,j = 1, . . . ,M} to 1 and the rest to 0. To implement uniform subsam-
pling with replacement, the researcher generates {Zij : i = 1, . . . ,N,j = 1, . . . ,M} following
a multinomial distribution with L trials, mutually exclusive events {1, . . . ,NM} and equal
event probabilities 1/(NM). For both subsampling schemes, the total number of subsampled
units,

∑N
i=1
∑M

j=1 Zij = L, is deterministic, while for the Bernoulli random sampling,∑N
i=1
∑M

j=1 Zij = L̂ is stochastic. Despite such a discrepancy, the uniform subsampling
without replacement yields asymptotically the same result as Bernoulli subsampling, since
Bernoulli subsampling can be considered as a uniform subsampling without replacement

with random sample size and also L̂/L
P→ 1 due to Lemma D.2. We state the following two

propositions for the uniform subsampling with and without replacement.

Proposition H.1. Consider the uniform subsampling without replacement. If the condi-
tions for Theorem 1 hold, then

√
C

1

L

N∑
i=1

M∑
j=1

Zijf
(
Wij
) d→ N (0,	UN), (H.1)

where 	UN has the same form as 	 in Theorem 1.

Proposition H.2. Consider the uniform subsampling with replacement. If the conditions
for Theorem 1 hold, then

√
C

1

L

N∑
i=1

M∑
j=1

Zijf
(
Wij
) d→ N (0,	UR), (H.2)

where 	UR = 	A + limN,M→∞(C/(NMp))	B, where 	A and 	B are as defined in Theo-
rem 1.

Proofs of Propositions H.1 and H.2 follow from a straightforward adaptation of argu-
ments in the proof of Theorem 1 with Lemma 2 and Theorem 1 of Janson (1984). Here, we
describe the required modifications rather than reproducing the repetitive proofs. First, note
that under either of these subsampling schemes, one can proceed with the following proof
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of Theorem 1 to obtain the decomposition of equation (C.1) with the factor L/̂L replaced
by 1. In addition, the BNM term in the decomposition of equation (C.1) has a different
conditional (on observations) distribution that depends on the subsampling scheme and
thus a different conditional variance. The propositions then follow from calculating the
alternative conditional variance of BNM and applying the law of total variance.
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