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ANOTHER CLASS OF CYCLICLY EXTENSIBLE AND 
REDUCIBLE PROPERTIES 

BY 

B. LEHMAN 

ABSTRACT. A space S has property P-t if S is nonempty. For n > — 1, 
S has property P„ if it is locally connected, has property P„-\ and if 
whenever it is written as a union, S = A U B where each of A and B is 
closed and has property P„-\, then A f! B also has property P„-t. The 
purpose of this paper is to establish that for locally compact spaces, each 
of the properties P„ is both cyclicly extensible and reducible. 

Introduction. In [3], it was shown that ^-coherence is, under certain conditions, 
both cyclicly extensible and reducible. In this paper, we define a weaker class of 
properties similar to properties defined by Vietoris in 1932 [14]. We show that for all 
connected, locally connected and locally compact Hausdorff spaces, these properties 
are all cyclicly extensible and reducible. 

1. PRELIMINARIES. Throughout this paper, M denotes a connected and locally con
nected Hausdorff space. 

A point p of M is an end point of M ifp has a neighbourhood base of open sets having 
singleton boundaries, p is a cut point of M if M — p is disconnected. Two points a and 
b of M are said to be conjugate in M if and only if no point of M separates a and b in 
M. E(a, b) denotes the collection of all points of M which separate a and b in M and 
" < " denotes the cut point order on E(a, b) U {a, b) - i.e. a < x, x < b for all x E 
E(a,b)\ a < b, and if x, y E E(a,b) then x <y if and only if x E E(a, y). (It has been 
established, ([15 and [2]), that E(a,b) U {a?b} is closed and compact and that the 
subspace topology on E(a, b) U {a, b) is the order topology relative to the cut point 
order.) An A-set of M is a closed subset of M such that every component of M - A has 
singleton boundary. If a, b E M, then C(a,b) — Pi {A: A is an A-set of M and a, 
b E A} and is called the cyclic chain in M from a to b. If E C M, then E is an E0-set 
of M if E is nondegenerate, connected, contains no cut point of itself and is maximal 
with respect to these properties. A cyclic element of M is a subset of M which is an 
£0-set of M or is a singleton cut point or end point of M. A property is cyclicly reducible 
if whenever a space M has the property, then every cyclic element of M has the 
property; a property is cyclicly extensible if whenever every cyclic element of M has 
the property, then M does also. 
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2. DEFINITION. A space has property P\ if S is non-empty. S has property P„, 
n > —1 if S is locally connected, has property Pn-\ and whenever S = A U B is a 
division of S into closed sets each having property Pn-\, then A P B also has property 
P„-\. We note that P0 is connectedness plus local connectedness andP\ is unicoherence 
plus local connectedness. 

3. NOTATION. In the rest of this paper, if S C A for some A-set A, then S* denotes 
the union of S with all components C of M - A such that the boundary of C belongs 
to S. 

4. LEMMA. If M is locally compact, then for each nonnegative integer n, if M has 
property P„-\, then M has property Pn if and only if every cyclic element of M has 
property P„. 

PROOF. We state an induction hypothesis I(n): If M is locally compact, then 
(a) if M has property Pn, then every cyclic element of M has property Pn\ 
(b) if M has property Pn-\ and every cyclic element of M has property Pn\ then M 

has property P„ ; 
(c) if M has property Pn, then every A-set of M has property P„; and if A is an A-set 

of M and Z is any locally compact subset of M such that A Pi Z ± c() and Z has property 
Pn, then ADZ has property Pn\ 

(d) if M has property P,n A is an A-set of M, and A = S U T is a division of M into 
closed sets each having property Pin and if L = S* and N = TU (A — S)*, then 
M = L U N is a division of M into closed sets each having property P„. 

1(0) — a and b are immediate and 1(0) — c and d have been established elsewhere, 
([5], Theorem 5.3 and [3], Theorem 3, respectively). 

Assume that I(n - 1) has been established, n > 1. Suppose that M has property Pn 

and that E is an £0-set of M. Then M has property Pn-,, so by I(n — 1), E has property 
P„-i. Suppose E = S U T is a division of E into closed sets each having property Pn-\. 
LetL = S*,N = TU(E- 5)*. By I(n - 1), M = L U N is a division of M into closed 
sets each having property Pn-\. Since M has property Pn, L D N has property Pn-\. 
Further, it was established in [3], (Theorem 3) thatL D N = S D T. Thus E has property 
P„, and it follows that every cyclic element of M has property P„. Thus I(n — 1) implies 
I(n) - a. 

Now assume that M has property P„_i and that every cyclic element of M has 
property Pn. Suppose M = S U T is a division of M into closed sets each having property 
Pn-\. Then each of S and T is connected and locally connected and S 0 T is locally 
compact. We now show that S Pi T is connected and locally connected. 

Suppose that S 0 T = W U Z where W and Z are disjoint closed sets. If £ is an £0-set 
of M, then E = (E P\ S) U (E C\ T) and since 5 and T are each connected, it follows 
from Theorem 5.3 of [6] that E Pi S and E H 7 are each connected and locally 
connected. Since E has property P„, E H S Pi 7 is connected. Thus £ Pi S Pi 7 C W 
or E Pi S H T C Z. Let w E W, z E Z. Since no £0-set of M meets both W and Z, 
E(w,z) 41 <j). Since w, z E S Pi 7, and S and 7 are each connected, E(w,z) C 5 Pi 
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T. Let t] be the last point in (E(w,z) U {w,z}) D W and t2 be the first point in 
(£(w, z) U {w, z}) fl Z. Then J, ^ r2 and ^ and t2 are conjugate in M. It follows ([5], 
Theorem 6.2) that C(tu t2) is an £0-set of M that meets both W and Z. Since this is a 
contradiction, S 0 T is connected. 

Suppose now that S D T is not locally connected. Then there is an open set of M and 
a point p E S H T such that p lies on a continuum of convergence D = lim Da, where 

a 

for each a, Da is //*<? closure of a component Ctt of 0 D 5 fl 7 and the components of 
O D S 0 T containing D and Da are distinct, ([1], Theorem 8). Since D is a continuum 
of convergence of M, there is an £0-set £ of M such that D = lim E ODa ([2], Theorem 

a 

5.13). This implies that E fl S D T is nondegenerate. Now £ Pi S and £ D T are 
connected and locally connected and for each a, E H Da is contained in a component 
o f O n s n m E distinct from the component of OnSHTDE containing E D 
D. But this implies that E D S D T is not locally connected, which is a contradiction 
since E has property P„. Thus S D 71 is locally connected. 

Now let £ be an £0-set of S D T. E C É for some £0-set £ of M. Since M has property 
Pn-Ul{n- 1) implies that each of £, 5 fl £ and T D £ has property Pw_,. Further since 
£ has property Pn, Ë fl 5 fl T has property P„_,. Now £ is an £0-set of £ Pi 5 fl T, 
so by /(AÏ - 1), £ has property Pn-,. It follows that evey cyclic element of 5 H T has 
property P„-\, so again by the induction hypothesis, S D T has property / V , . Thus M 
has property Pn and /(«) — Z? is established. 

Now assume that M has property P„ and that A is an A-set of M. By /(« - 1), A has 
property PW_| (since M does). If £ is a cyclic element of A, then £ is a cyclic element 
of M. It follows, since I(n — 1) implies I(n) — a, that £ has property Pn. Thus every 
cyclic element of A as property P„ and since /(« — 1) implies I(n — \) — b, A has 
property Pn. Further, if Z is any locally compact subset of M such that A D Z =£ (J) and 
Z has property P„, then since A D Z is an A-set of Z, it follows from what we have just 
proved that ADZ has property Pn. Thus I(n) — c is proved. 

Finally, assume that M has property Pn, that A is an A-set of M and that A = S U 
T is a division of A into closed sets each having property P„. Let L = S*, N = T U 
(A - 5)*. By I(n - 1),L and TV each have property Pn-\. Let £ be an£0-setofL. Then 
either £ C A or £ C C for some component C of M — A such that C C L . If the latter, 
then £ is an £0-set of C and therefore of M, and it follows from what has already been 
proved that £ has property Pn. If £ C A, let £ be the £0-set of M such that £ C £. Then 
£ has property P„. Further, since S is a locally compact subset of M and has property 
P„, it again follows from what has already been proved that S D £ has property P„. 
Since £ is an £0-set of S H £, £ has property /V Thus every cyclic element of L has 
property PH, so L has property /*„. The case for N is similar, so I(n) -dis established 
and the Lemma is proved. 

The following corollary is immediate. 
5. COROLLARY. If M is locally compact, then for every nonnegative integer n, if M 

has property Pny and A is an A-set of M, then 
(a) A has property Pn\ 
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(b) if Z is a locally compact subset of M that meets A and has property Pn, then 
ADZ has property Pn\ 

(c) if A = S U T is a division of A into closed sets each having property Pn and 
L = S*, N = T U (A — 5)*, then M = L U N is a division of M into closed sets having 
property Pn. 

6. THEOREM . If M is locally compact and n is an integer > — 1, then M has property 
Pn if and only if every cyclic element of M has property Pn. 

PROOF. If n — — 1 or n = 0, the result is immediate, so we assume n > 0. If M has 
property P,„ then from our Lemma, every cyclic element of M has property Pn. Suppose 
that every cyclic element of M has property P„ and that M does not. Since M is 
connected and locally connected, M has property P0. Let n* be the first integer (n* > 
0) such that M does not have property P„*. Then 0 < n* < n and M has property Pn*-\. 
Since every cyclic element of M has property P„, evey cyclic element of M has property 
Pn* so from our Lemma, M has property P„*, contrary to the definition of n*. The 
theorem follows. 

The following is trivial. 

7. COROLLARY. Every dendron has property Pn for every nonnegative integer n. 
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