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REPRESENTATION OF/7-LATTICE SUMMING OPERATORS 

BEATRIZ PORRAS POMARES 

ABSTRACT. In this paper we study some aspects of the behaviour of/?-lattice sum
ming operators. We prove first that an operator T from a Banach space £ to a Banach 
lattice X is /7-lattice summing if and only if its bitranspose is. Using this theorem we 
prove a characterization for 1 -lattice summing operators defined on a C{K) space by 
means of the representing measure, which shows that in this case 1 -lattice and oo-lattice 
summing operators coincide. We present also some results for the case 1 <p< oo on 
C(K,E). 

1. Introduction. In this paper we present some results concerning the behaviour of 
/7-lattice summing operators on spaces of continuous functions. In the first section, using 
the Local Reflexivity Principle and some properties of Banach lattices, we prove that 
an operator is /7-lattice summing if and only if its bitranspose is /?-lattice summing also. 
This is an important result related to the representation of/7-lattice summing operators 
defined on spaces of continuous functions by means of a vector measure. The relation 
between an operator and its representing measure has been considered by many authors 
(see for instance [2], [3], [4], [5] and [6]). 

In the second section we obtain some results in the case where the operators are de
fined on a C(K) space (space of real continuous functions on a compact Hausdorff space 
K) by means of the representing measure: we characterize 1-lattice summing operators 
and prove that they coincide with oo-lattice summing operators. For 1 < p < oo we 
show necessary conditions for an operator on C(K) and C(K, E) to be/7-lattice summing. 
We give also some examples and partial results for operators defined on a C(K, E) space 
(space of vector-valued continuous functions, from a compact Hausdorff space K to a 
Banach space £). 

Throughout this paper E and F will be Banach spaces, and X, Y will be Banach lattices. 
We will denote by E' the topological dual of E, BE the closed unit ball in £, and JE : E —> 
E" will be the natural inclusion. We will consider only real vector spaces. 

For p G R , let q = pj (p — 1 ), so that ^ + ̂  = 1. An operator T (linear and continuous) 
from a Banach space E to a Banach lattice X is /7-lattice summing (p 1. s.) if there is a 
constant K > 0 such that for each finite family { x\,..., xn } in £ we have: 

Ike i ^ i ^ L ^ Kup((*i)U)if i < p < °° 
n 

II V |7jt/| || < ^maxl ||JC/||, 1 < / < n} if/? = oo 
"i=i x 
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268 BEATRIZ PORRAS POMARES 

where 

i—\ 

= sup{|| Y.atx^at eR,l<i< " , £ N ' < l) 
i= 1 i= 1 

and 

Ct,\Txi\P)Lp = sup{£^7jt/, aieR,l<i<n,J2 Wi\q < l} 
i=\ i=\ i=\ 

in the form described by Krivine's calculus for 1-homogeneous continuous functions 
([8]). 

The smallest constant K satisfying the inequalities above is denoted by \P(T) (or 
Aoo(̂ O), and defines a Banach norm in the space AP(E,X) of p 1. s. operators from E 
to X. Operators in A00(£',Z) are called also majorizing operators ([12]). 

Some general results about these classes of operators can be found in Nielsen and 
Szulga's papers [9], [15] (in which they compare these operators with the absolutely 
summing operators defined by Pietsch ([10], [11]) ), or in Schaefer's book [12]. 

If T is an operator between two Banach lattices X and Y, T is called order-bounded if 
it maps order bounded sets of X into order bounded sets of Y. T is called regular if there 
exist positive operators T\ and Ti from X to Y such that T = T\ — T2. If Y is an order 
complete Banach lattice (for example the dual of a Banach lattice), regular and order 
bounded operators are the same for all lattices X, and it is possible to define the modulus 
of T: 

I T\ (x) = sup{ I Tz\, I z\ < x} for any x > 0 in X. 

The class of regular operators between X and Y, Lr(X, Y), is a Banach space with respect 
to the norm 

||r||r - inf{ H T! + 72||,ri,r2 > O,7Ï - T2 = T} 

and in the case where Y is an order complete Banach lattice, Z/(X, Y) is a Banach lattice 
too, and || 7||r = || \T\ \\ for all T in Z/(X, Y). 

Other properties of these operators are given in references [1], and [12]. 
Now let AT be a compact Hausdorff space, (3o(K) the Borel a -algebra of K, and C(K) 

the space of real-valued continuous functions on K. The representation theorem shows 
that each operator T: C(K) —> F (F a Banach space) determines a unique vector mea
sure m: (3o(K) > F", such that for each/ G C(K), T(f) = Jfdm, with some special 
regularity properties. This measure is defined by m(A) — r"(x(A)Y where x{A) is the 
characteristic function of A (A G Po(K)), and is called the representing measure of T. 

And there is also a representation theorem for operators defined on a space of vector 
valued continuous functions: if E and F are Banach spaces, and T: C(K, E) —> F is an 
operator, there is a vector measure m on /3o(K), with values in L(E, F") such that for each 
/ G C(K, E), T(f) = J fdm. In this case the measure is defined by m(A)(x) — T"(Y(A) -X) 

for each x G E and each Borel set A in K, and has also some regularity properties which 
make it unique, m is called again the representing measure of T. 

Classical references for this theory are [2], [3] and [5]. 
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REPRESENTATION OFp-LATTICE SUMMING OPERATORS 269 

2. Bitranspose of/?-lattice summing operators. For the proof of the main result 
in this section, we use the Local Reflexivity Principle, in a version of Pietsch ([11]). 
And we shall use also two standard properties of Banach lattices. As a consequence of 
Krivine's calculus for 1-homogeneous continuous functions in Banach lattices we have 
the following property: let X be a closed sublattice of a Banach lattice Y, and J: X —• Y 
the inclusion; for each 1-homogeneous continuous function/: Rn —• R and for each 
finite family { x\,..., xn } in X, we have that 

J(f(xu...9xnj)=f(j(xi),...,j(xnj) 

because of the unicity of Krivine's calculus. 
The second property is called the Fatou property: let X' be the topological dual of a 

Banach lattice X, and let {ya} be an upwards directed family in X! with ya > 0 and 
H âll < M; then there exists _y = sup{ja} inX', ||_y|| = sup{||;ya||} andj a converges 
to y in the weak* topology. 

Classical references for the theory of Banach lattices are [8] and [12]. 

THEOREM 1. Let E be a Banach space and T: E —> F an operator. Then, given pf 

1 < p < oo, T isp I s. if and only ifT"\ E" • F" is. Moreover, \p(T) = \p{T"). 

PROOF. Using the remarks above it is obvious that if T"\ Ef/ —• F" is p 1. s., T must 
be/71. s. too, and \P(T) < \P(T"). 

So, take x"x,...,x"n in E". We have to find a suitable estimate for the norm 

\{YZ=l\r'x!i\py\. 
For each finite set C in the closed unit ball Bq of (Rn , ||. \\q), we define 

/ c = sup{jrair
,x'i',a = (au... ,an) G CU {0}} 

Then 
n , 

(El r*«l )' = supyc 
i=\ C 

The family {/c}c is an increasing net of positive vectors in X", bounded in norm (by 
the norm of the supremum), and therefore by the Fatou property there exists 3^ = supc /£ 
and ( / £ , / ) converges to ( J Q , / ) for all yf in X'. 

So given e > 0 there exists 3/ in X, 3/ > 0, with | | / | | < 1 and such that 

| ( E l ^ r ) ' | | = Iboll < {y'U) +e < {y'U) +2e 
1=1 

for some finite set C0 = {a\ . . . ,am} in Bq , with 0 G C0. By [12] II.5.5. and II.4.2, 

(ylyf) = (supit^r'x'!, I <j <m}J) 
1=1 

= ™pŒ{E4ï'xf!>y'J)\Y,yj = y',yj>o} 

m n 

<UE^«'^y'j)) + e 
j=i i=\ 
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for some / , , . . . , /m in X' , with >/• > 0, 1 <j < m, and Ejli y'j = / . 
We use now the Local Reflexivity Principle: given the linear spans G — \y![,... ,^ '] 

in £", and H = [7*/ , , . . . , r ' / J in Ë , and given t > 0, there is an operator R: G — • E 

such that 11 R\ \ < 1 + t9 and « , V ) = (/&?,*') for every V in H and 1 < / < w ( [ l l ] ) . 

Writing xi — /taf, we have for any \ <i <n and any 1 <j<m 

(^,r^) = (Xi,r^) = (Txi^) 

and 
m n 

< (sup^ajr*,-, 1 < ; < m } , y ) +3e 

<\\ct\Txi\")'\\x + 3f-
i—\ 

As by hypothesis T is p 1. s., 

| | /oV< W-M(*/)?=i) + ^ 

Finally 

^(fe)Li) = SUP{II Z)fl '^IU'a 'G/?> S W 7 < *} 
1=1 1=1 

= supjll^C^Hir, *« É K , £ |fl/|* < l} 
/= l /= l 

Consequently, we have obtained that for every e > 0 and every t > 0 

| ( £ I T^T) ' ||x„ < XP(T) • (1 + 0 • M(^)?=i) + 3e-
/=i 

Thus 7" is /? 1. s. Also we have obtained that XP(T) > \P{T"), and we have finished 
the proof. • 

REMARKS. 1. The Local Reflexivity Principle can be used in the same way to give 
a direct proof of the well known result of Pietsch which asserts that for every operator 
T between two Banach spaces E and F, T is absolutely (/?, r)-summing if and only if T" 
from E" to F" is: one has just to bound the expression (£"=1 || T̂ -xf || r)~ with another one 
of the form (ELi K ^ ^ T ) ' + e with ^ e F*, \\y\W < 1, 1 < i < n( [ l l ] , [13]). 

2. With the same technique we can give a direct proof of Theorem 1 in the case p = oo. 
This case is proved in [12] using the duality between oo-lattice summing operators and 
cone-absolutely summing operators. 
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REPRESENTATION OFp-LATTICE SUMMING OPERATORS 271 

3. /?-Lattice summing operators on spaces of continuous functions. In this sec
tion we are going to study the behaviour of p 1. s. operators defined on C{K) and C(K, E) 
spaces. We shall denote by S(K) the space of simple Borel functions on K, and by B{K) 
the space of functions which are uniform limits of simple functions, with the supremum 
norm. B{K) is a closed subspace of C(K)". By considering C{K) as a Banach lattice (with 
the pointwise order), C(K) is a closed sublattice of B(K), and B(K) is a closed sublattice 
of C{K)". 

It is easy to see that Theorem 1 in the first section can be slightly modified in the case 
of operators defined on E — C(K), in this form: 

THEOREM 2. Let E be C(K), X a Banach lattice and T: E —> X an operator. Then, 
given 1 < p < oo, T is p I. s. if and only ifT — T"\B(K) is p I. s. too. Moreover, 
XP(T) = XP(T) = \P{T"). 

Beside this theorem, we shall use two lemmas, which are essentially known: 

LEMMA 1. Let E be a Banach space, X be a Banach lattice and T from E to X an 
operator. Then the following are equivalent: 

1. T is oo /. s. 
2. T isp I. s. for every p > 1, and there exists a constant L>0 such that XP(T) < L 

for every p > 1. 

LEMMA 2. Let Kbe a compact Hausdorff space, X a Banach lattice and T from B{K) 
to X an operator. IfT is positive, then T is oo /. s. The same result is true for positive 
operators T: C(K) y X. And it is also true for regular operators. For positive operators 
we have \oo(T) — \\T\\, and for regular operators we have Xoo(T) < || T\\r. 

Nielsen and Szulga proved in [9] that it is always true that given E a Banach space 
and X a Banach lattice, 

Aoo(E,X) Ç Ap(E,X) Ç A2(E,X) 

for any /?, 1 < p < oo. In the case where E = C(K) we have obtained the next result, 
using only lattice techniques and representation theory, which is the main theorem in 
this section. As a consequence it holds that 1-lattice summing operators and majorizing 
operators on C(K) coincide. 

THEOREM 3. Let K be a compact Hausdorff space, X be a Banach lattice, T an oper
ator from C(K) toX, and m the representing measure ofT. Then the following statements 
are equivalent: 

1. T is lis. 
2. There is a constant L > 0 such that for any finite family { B\,..., Bn} ofpairwise 

disjoint Borel subsets ofK, 
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3. T = T'\ B(K)'- B(K) > X" is order-bounded (or regular since X" is order com
plete). 

PROOF. 1) => 2) Assume that T is 1 1. s. Then T"\ C(K)" —• X" is also 1 1. s. Let 
us take B\,...,Bn in (3o(K), pairwise disjoint. Then 

IIEI™(fi.-)lllx» = l lE l^ (x(^) ) | | | 
/ = 1 i= 1 

< X^supiitlixiBil^l, is e B(K)\ \\is\\ <1} 

< AK^supIvarCï/), v G B(K)\ \\i/\\ < 1} < \\(T"), 

s o L = \i(T"). 
2) :=> 3) We have now to prove that T" maps order intervals of B(K) into order inter
vals of X". But any order interval of B(K) is contained in a scalar multiple of the unit 
ball [—x(^0, x W L a nd so it is enough to prove that the image of this interval is order 
bounded in X". 

Let / = T!i=\ atx(Bi) be a simple function, where {Bh 1 < / < n} is a family of 
pairwise disjoint Borel sets of AT, and such that/ belongs to [—\(K), x(^0L Taken for 
each /, t[ G Bi , we have \at\ = \f(ti)\ < 1 for all /, 1 < / < n, and thus 

\f(f)\ = \T"(f)\ = | ̂ ^'(xOB;))! < EI^(X(^))|. 
i= 1 / = 1 

Consider O the class of all finite disjoint partitions of K by sets in (3o(K), ordered by 
inclusion, and define for each P G O 

yp= T,\i"(x(B))\ tx" 
BeP 

{yp}p<E<t> is an increasing net in X", and \\yp\\ = || Eflep |/7i(i5)| ||, less or equal than L 
by Hypothesis 2. 

Then using the Fatou property, there exists y^ = sup{ yP, P G O} which is the weak* 
limit of {yP,P G O} . 

Thus, there exists >̂  G X" such that for any simple function/ in the unit ball 
[—\(K),x(K)], || T(f)\\ < )/Q. But T is continuous, simple functions are dense in 
[-X(*0, X(K)] (in B(K)) and [-&)%] is closed in X((, so we have T([X(K), X(K)]) Ç 

Hence, T is order-bounded. 
Observe that, moreover, ||y({|| < L. 

3) =4> 1) We suppose now that T: B(K) —• X" is order-bounded; then T is regular since 
X" is order complete, and by Lemma 2 T is oo 1. s., and also 11. s. Now Theorem 2 proves 
that T is 1 1. s. • 

We have the equivalence of 1), 2) and 3). Now we study the norms: following the 
steps of the proof above 

Aoo(f) < \\T\\r = || |f| || = SUP{ || | f |(f)||, 11/11 < 1,/ > 0} 
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REPRESENTATION OFp-LATTICE SUMMING OPERATORS 273 

with I f | (0 = sup{ \T(g)\, \g\ < / } . Then ||g|| < \\f\\ < 1 and | f(g)\ < yl 
So \T\(f)< f0 and || T\\r < ||yg|| <L= Ai(7") = \{(T). 
So that, 

Xoo(T) = Aoo(7) < ||î| |r < Ai(r) < AooW, 

and all are the same. 
As a consequence, if E is an AM space, 1 1. s. operators from E to X and oo 1. s., 

or majorizing, operators are the same for any Banach lattice X. This result somehow 
reminds us of the result of Pietsch ([10]) which asserts that for any C{K) space absolutely 
summing and dominated operators coincide; and, as in that case, it is not possible to 
extend the result to operators on spaces of vector valued continuous functions, as we 
shall see later. 

If X has the property P ([12]), i. e. there exists a continuous positive (and contractive) 
projection from X" to X, any 1 1. s. operator from an AM space to X is regular, and 
\\(T) — Xoo(T) — || r | | r . Lattices with this property are, for example, those which do 
not contain CQ . 

Reasoning in a similar way as in the first part of the theorem, for 1 < p < oo we 
have: 

PROPOSITION 4. Let K be a compact Hausdorff space, X a Banach lattice and T an 
operator from C(K) to X. Let m be the representing measure of T, and let 1 < p < oo. 
IfT is p-lattice summing, there exist a constant L > 0 such that for every finite family of 
Borel sets, A\,..., An, pairwise disjoint, 

\E\m{Ai)\P)*\ <L 
11 , = i "* 

Another example of the particular behaviour of C(K) is the following: 
If X and Y are Banach lattices, Krivine's generalization of Grothendieck's inequality 

for lattices shows that for any operator T: X —> Y and any finite set { x\,..., xn } in X 

i— 1 / = 1 

where KG is Grothendieck's constant ([8]). 
So that we have readily: 

PROPOSITION 5. Any operator from a C(K) space to a Banach lattice is 2 I. s. 

Let us show now some results for operators defined on spaces of vector valued con-
tinous functions C(K, E) (space of ^-valued continuous functions on K, where E is a 
Banach space, with the supremum norm). 

First of all, as it occurs in the scalar case, an operator T from C(K, E) to a Banach 
lattice X is p 1. s. for some /?, 1 < p < oo, if and only if the restriction f — T"\B(P(K),E) is 
p 1. s. too, where B(/3 (K), E) is the space of functions which are uniform limit of E-valued 
measurable simple functions on K. 

We shall use also a general result on/7 l.s. operators: 
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LEMMA 3. Let E be a Banach space, X be a Banach lattice, and T an operator from 
E to X. If there exists a dense subspace F ofE such that the restriction T\F is p I. s., then 
T is p I. s. too. 

PROOF. Let x\,...xn be in £, and let K = ujp((xi)n
i= x). We choose for each i, 1 < i < 

n, Zi £ F such that 

(1+ || 711)2'' 
Then, 

KÊI^I")'! < ||(E \Txi-Tzi\")'\\ + \\{t \Tz,\")> 
i= 1 i= 1 

^ l E i ^ - ^ i l + KEi^r)'! 
Ï = I 

< £ III Txt - TZl\\ + \P(T\F) - u>p((zù) 
i=\ 

<K+\p(T\F)-u;p((zi)) 

Now, for any x1 G BF, let x! be an extension to E with the same norm. Then 

/= l / = i 
( E I < ^ > l " ) ? = ( E I < ^ > l p ) ? 

< (Ê i< zi - Xij > \py + ( E i< x,j > \py 
i= 1 i= 1 

< £ I < * - * > * > I + ( E I < *i>* > \")lp 

i=\ i = l 

<Yvm+K-2K-2ujp(iXi)) 

And thus, 

| ( è l ^ r ) ' | < [1 + 2Xp(T\F)]-iop((Xi)) 
i—\ 

soTispl .s . • 
Now, we can prove the following theorem, which gives sufficient conditions on the 

representing measure of T to be p 1. s. 

THEOREM 6. Let Kbea compact Hausdorjf space, Ebea Banach space, X a Banach 
lattice and T: C(K, E) • X an operator. Let m be the representing measure of T, and 
let be I < p < oo. Assume that 

1. For every Borel subset A ofK the operator m(A)from E to X" isp-lattice summing. 
2. The variation of m with the norm Xp is finite. That is, there is a constant L > 0 

such that for every finite family ofpairwise disjoint Borel subsets B\,... ,Bn in 
Po(K) 

i=i 
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Then T isp-lattice summing. 

PROOF. Using the remarks above, it is enough to prove that T"\S^{K),E) is p 1. s. So, 
take/i, . . . ,fk in S((3 (K), E). There is a finite family of pairwise disjoint Borel subsets of 
K,B\,...9Bn, and a finite family of vectors in E, {xy}, 1 < i < k, 1 <j< n, such that 

ft = ExijX(Bj), for Ml <i<k 

Then 

IKEm-i^'ihiKeie^B^i")'1! 
i— 1 i = 1 j= 1 

where 

(EI £,m(Bj)*ij\p)lp = SUP { E^(E™(^X)> « = (*«•)?=! ^ ^ } 
1=1 7=1 i = l 7=1 

« A: 

= SUP { EE f l «" w (% f l = (*«•)?= i G ^ } 

7=1 i = l 

7=1 i'=l 

Thus 

|(iinf)'|<|E(Ei'"(^.yip)pl|| 
*=1 7=1 i = l 

<EIKEh(^xr)'ll 

7=1 /=1 

7=1 

Now, for each j G { 1, . . . , n} fixed, taken tj G Bj we have 
up{{xij)k

i=x) = sup { ( £ i < ^ , y > | o ? , ^ G B F } 
i=i 

= sup { (£, I < fiJ °h > I")', x' G BE- } 

< (̂(/;-t,) 
As a consequence 

|(Ëmf)pi||<i-^w)L,) 
it 

E 
' i= l 

from where we deduce that T"\s(p(K),E) is /? 1. S. Then f — T"\B^(K),E) and T are p 1. s. 
too. • 
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REMARKS. 1—For/7 ^ 2, there are examples that prove that there are operators 
defined in C(K) spaces which are not /? 1. s. Concretely, in [9] Nielsen and Szulga, for 
1 < p < 2, construct operators defined on CQ , with image in Ll[0,1], which are not 
p 1. s.: knowing that for 1 < p < 2, tp is not of p-stable type, given a sequence (fn)n 

of p-stable independent randon variables in [0,1], with the Lebesgue measure, there is 
a sequence (an)n in lp such that £ g , \anfn{t)\p diverges in a set with strictly positive 
measure. We can assume that an > 0 and ||/„|| == 1 for all n G N , so that the map 

is an isometry. If we define 

T:c0—->L1[0,l]:r(en) = £ i^ 

(where (£„)„ is the canonical basis of Co), T is not p 1. s., since given any m € N, 
uP({en)^x) < 1 but 

n m i H r i m l 

n=\ [ ' J -70 n=l 

diverges when m tends to infinity. 
As for any metrizable infinite compact space K, C(K) contains a complemented sub-

space isomorphic to CQ , at least in these cases it is possible to define operators on C(K) 
which are not/? 1. s. 

For p > 2, in the same paper it is shown that, as a consequence of Kwapien's theorem 
([Kwapien]), there are operators from i°° to lp which are not/71. s.. 
2—The results obtained for C(K) spaces are not true in general for C(K, E) spaces, when 
E is a Banach space. 

In fact, if E is a Banach lattice and every positive operator from C(K, E) to any Banach 
lattice is 2 1. s., this is equivalent to saying that the identity map /: E —• E is 2 1. s. So, 
taking E — £p, with 1 < p < 2, there has to be an operator C(K,E) — • £p which is 
not 2 1. s. 

Neither is it true in general that on C(K, E) 1 1. s. operators and oo 1. s. coincide: just 
choose a Banach space £, a Banach lattice X and an operator T: E — • X that is 11. s. but 
not oo 1. s. and extend T to C(K, E) by means of a continuous projection from C(K, E) to 
E. 
3—The converse of theorem 5 is not true: It is obvious that when T is a/71. s. operator 
from C(K, E) to X, for every Borel subset A of AT the operator m(A) from E to X" is/? 1. s., 
since m(A)(x) — T"{\ (A) -x) for all x G E. But m may not satisfy condition 2: consider the 
operator T from C(7V*, Il ) to Co (W* is the Alexandroff compactification of AO associated 
with the measure m defined by m(A)(x) = E«GA xnen e I °° for any x — (xn)n in £ l and 
any subset A of N not empty, and m(0) = 0 = ra(oo). T is /7-lattice summing for every 
P, 1 < p < oo, since t °° is an AM space (see [12]), but it does not satisfy condition 2. 
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