REPRESENTATION OF p-LATTICE SUMMING OPERATORS

BEATRIZ PORRAS POMARES

Abstract

In this paper we study some aspects of the behaviour of p-lattice summing operators. We prove first that an operator T from a Banach space E to a Banach lattice X is p-lattice summing if and only if its bitranspose is. Using this theorem we prove a characterization for 1-lattice summing operators defined on a $C(K)$ space by means of the representing measure, which shows that in this case 1-lattice and ∞-lattice summing operators coincide. We present also some results for the case $1 \leq p<\infty$ on $C(K, E)$.

1. Introduction. In this paper we present some results concerning the behaviour of p-lattice summing operators on spaces of continuous functions. In the first section, using the Local Reflexivity Principle and some properties of Banach lattices, we prove that an operator is p-lattice summing if and only if its bitranspose is p-lattice summing also. This is an important result related to the representation of p-lattice summing operators defined on spaces of continuous functions by means of a vector measure. The relation between an operator and its representing measure has been considered by many authors (see for instance [2], [3], [4], [5] and [6]).

In the second section we obtain some results in the case where the operators are defined on a $C(K)$ space (space of real continuous functions on a compact Hausdorff space K) by means of the representing measure: we characterize 1 -lattice summing operators and prove that they coincide with ∞-lattice summing operators. For $1<p<\infty$ we show necessary conditions for an operator on $C(K)$ and $C(K, E)$ to be p-lattice summing. We give also some examples and partial results for operators defined on a $C(K, E)$ space (space of vector-valued continuous functions, from a compact Hausdorff space K to a Banach space E).

Throughout this paper E and F will be Banach spaces, and X, Y will be Banach lattices. We will denote by E^{\prime} the topological dual of E, B_{E} the closed unit ball in E, and $J_{E}: E \longrightarrow$ $E^{\prime \prime}$ will be the natural inclusion. We will consider only real vector spaces.

For $p \in R$, let $q=p /(p-1)$, so that $\frac{1}{p}+\frac{1}{q}=1$. An operator T (linear and continuous) from a Banach space E to a Banach lattice X is p-lattice summing (p l. s.) if there is a constant $K>0$ such that for each finite family $\left\{x_{1}, \ldots, x_{n}\right\}$ in E we have:

$$
\begin{gathered}
\left\|\left(\sum_{i=1}^{n}\left|T x_{i}\right|^{p}\right)^{\frac{1}{p}}\right\|_{X} \leq K \omega_{p}\left(\left(x_{i}\right)_{i=1}^{n}\right) \text { if } 1 \leq p<\infty \\
\left\|\bigvee_{i=1}^{n}\left|T x_{i}\right|\right\|_{X} \leq K \max \left\{\left\|x_{i}\right\|, 1 \leq i \leq n\right\} \text { if } p=\infty
\end{gathered}
$$

[^0]where
\[

$$
\begin{aligned}
\omega_{p}\left(\left(x_{i}\right)_{i=1}^{n}\right) & =\sup \left\{\left(\sum_{i=1}^{n}\left|\left\langle x_{i}, x^{\prime}\right\rangle\right|^{p}\right)^{\frac{1}{p}}, x^{\prime} \in B_{E^{\prime}}\right\} \\
& =\sup \left\{\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|_{E}, a_{i} \in R, 1 \leq i \leq n, \sum_{i=1}^{n}\left|a_{i}\right|^{q} \leq 1\right\}
\end{aligned}
$$
\]

and

$$
\left(\sum_{i=1}^{n}\left|T x_{i}\right|^{p}\right)^{\frac{1}{p}}=\sup \left\{\sum_{i=1}^{n} a_{i} T x_{i}, a_{i} \in R, 1 \leq i \leq n, \sum_{i=1}^{n}\left|a_{i}\right|^{q} \leq 1\right\}
$$

in the form described by Krivine's calculus for 1-homogeneous continuous functions ([8]).

The smallest constant K satisfying the inequalities above is denoted by $\lambda_{p}(T)$ (or $\left.\lambda_{\infty}(T)\right)$, and defines a Banach norm in the space $\Lambda_{p}(E, X)$ of p l. s. operators from E to X. Operators in $\Lambda_{\infty}(E, X)$ are called also majorizing operators ([12]).

Some general results about these classes of operators can be found in Nielsen and Szulga's papers [9], [15] (in which they compare these operators with the absolutely summing operators defined by Pietsch ([10], [11])), or in Schaefer's book [12].

If T is an operator between two Banach lattices X and Y, T is called order-bounded if it maps order bounded sets of X into order bounded sets of $Y . T$ is called regular if there exist positive operators T_{1} and T_{2} from X to Y such that $T=T_{1}-T_{2}$. If Y is an order complete Banach lattice (for example the dual of a Banach lattice), regular and order bounded operators are the same for all lattices X, and it is possible to define the modulus of T :

$$
|T|(x)=\sup \{|T z|,|z| \leq x\} \text { for any } x \geq 0 \text { in } \mathrm{X} .
$$

The class of regular operators between X and $Y, L^{r}(X, Y)$, is a Banach space with respect to the norm

$$
\|T\|_{r}=\inf \left\{\left\|T_{1}+T_{2}\right\|, T_{1}, T_{2} \geq 0, T_{1}-T_{2}=T\right\}
$$

and in the case where Y is an order complete Banach lattice, $L^{r}(X, Y)$ is a Banach lattice too, and $\|T\|_{r}=\||T|\|$ for all T in $L^{r}(X, Y)$.

Other properties of these operators are given in references [1], and [12].
Now let K be a compact Hausdorff space, $\beta_{0}(K)$ the Borel σ-algebra of K, and $C(K)$ the space of real-valued continuous functions on K. The representation theorem shows that each operator $T: C(K) \longrightarrow F$ (F a Banach space) determines a unique vector measure $m: \beta_{0}(K) \longrightarrow F^{\prime \prime}$, such that for each $f \in C(K), T(f)=\int f d m$, with some special regularity properties. This measure is defined by $m(A)=T^{\prime \prime}(\chi(A))$, where $\chi(A)$ is the characteristic function of $A\left(A \in \beta_{0}(K)\right)$, and is called the representing measure of T.

And there is also a representation theorem for operators defined on a space of vector valued continuous functions: if E and F are Banach spaces, and $T: C(K, E) \longrightarrow F$ is an operator, there is a vector measure m on $\beta_{0}(K)$, with values in $L\left(E, F^{\prime \prime}\right)$ such that for each $f \in C(K, E), T(f)=\int f d m$. In this case the measure is defined by $m(A)(x)=T^{\prime \prime}(\chi(A) \cdot x)$ for each $x \in E$ and each Borel set A in K, and has also some regularity properties which make it unique. m is called again the representing measure of T.

Classical references for this theory are [2], [3] and [5].
2. Bitranspose of p-lattice summing operators. For the proof of the main result in this section, we use the Local Reflexivity Principle, in a version of Pietsch ([11]). And we shall use also two standard properties of Banach lattices. As a consequence of Krivine's calculus for 1-homogeneous continuous functions in Banach lattices we have the following property: let X be a closed sublattice of a Banach lattice Y, and $J: X \longrightarrow Y$ the inclusion; for each 1-homogeneous continuous function $f: R^{n} \longrightarrow R$ and for each finite family $\left\{x_{1}, \ldots, x_{n}\right\}$ in X, we have that

$$
J\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=f\left(J\left(x_{1}\right), \ldots, J\left(x_{n}\right)\right)
$$

because of the unicity of Krivine's calculus.
The second property is called the Fatou property: let X^{\prime} be the topological dual of a Banach lattice X, and let $\left\{y_{\alpha}\right\}$ be an upwards directed family in X^{\prime} with $y_{\alpha} \geq 0$ and $\left\|y_{\alpha}\right\| \leq M$; then there exists $y=\sup \left\{y_{\alpha}\right\}$ in $X^{\prime},\|y\|=\sup \left\{\left\|y_{\alpha}\right\|\right\}$ and y_{α} converges to y in the weak* topology.

Classical references for the theory of Banach lattices are [8] and [12].
Theorem 1. Let E be a Banach space and $T: E \longrightarrow F$ an operator. Then, given p, $1 \leq p<\infty, T$ is p l. s. if and only if $T^{\prime \prime}: E^{\prime \prime} \longrightarrow F^{\prime \prime}$ is. Moreover, $\lambda_{p}(T)=\lambda_{p}\left(T^{\prime \prime}\right)$.

PROOF. Using the remarks above it is obvious that if $T^{\prime \prime}: E^{\prime \prime} \longrightarrow F^{\prime \prime}$ is p 1. s., T must be p l. s. too, and $\lambda_{p}(T) \leq \lambda_{p}\left(T^{\prime \prime}\right)$.

So, take $x_{1}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}$ in $E^{\prime \prime}$. We have to find a suitable estimate for the norm $\left\|\left(\sum_{i=1}^{n}\left|T^{\prime \prime} x_{i}^{\prime \prime}\right|^{p}\right)^{\frac{1}{p}}\right\|$.

For each finite set C in the closed unit ball B_{q} of $\left(R^{n},\|\cdot\|_{q}\right)$, we define

$$
y_{C}^{\prime \prime}=\sup \left\{\sum_{i=1}^{n} a_{i} T^{\prime \prime} x_{i}^{\prime \prime}, a=\left(a_{1}, \ldots, a_{n}\right) \in C \cup\{0\}\right\}
$$

Then

$$
\left(\sum_{i=1}^{n}\left|T^{\prime \prime} x_{i}^{\prime \prime}\right|^{p}\right)^{\frac{1}{p}}=\sup _{C} y_{C}^{\prime \prime}
$$

The family $\left\{y_{C}^{\prime \prime}\right\}_{C}$ is an increasing net of positive vectors in $X^{\prime \prime}$, bounded in norm (by the norm of the supremum), and therefore by the Fatou property there exists $y_{0}^{\prime \prime}=\sup _{C} y_{C}^{\prime \prime}$ and $\left\langle y_{C}^{\prime \prime}, y^{\prime}\right\rangle$ converges to $\left\langle y_{0}^{\prime \prime}, y^{\prime}\right\rangle$ for all y^{\prime} in X^{\prime}.

So given $\epsilon>0$ there exists y^{\prime} in $X, y^{\prime} \geq 0$, with $\left\|y^{\prime}\right\| \leq 1$ and such that

$$
\left\|\left(\sum_{i=1}^{n}\left|T^{\prime \prime} x_{i}^{\prime \prime}\right|^{p}\right)^{\frac{1}{\eta}}\right\|=\left\|y_{0}^{\prime \prime}\right\| \leq\left\langle y_{0}^{\prime \prime}, y^{\prime}\right\rangle+\epsilon \leq\left\langle y_{C_{0}}^{\prime \prime}, y^{\prime}\right\rangle+2 \epsilon
$$

for some finite set $C_{0}=\left\{a^{1}, \ldots, a^{m}\right\}$ in B_{q}, with $0 \in C_{0}$. By [12] II.5.5. and II.4.2,

$$
\begin{aligned}
\left\langle y_{0}^{\prime \prime}, y^{\prime}\right\rangle & =\left\langle\sup \left\{\sum_{i=1}^{n} a_{i}^{j} T^{\prime \prime} x_{i}^{\prime \prime}, 1 \leq j \leq m\right\}, y^{\prime}\right\rangle \\
& =\sup \left\{\sum_{j=1}^{m}\left(\sum_{i=1}^{n} a_{i}^{j}\left\langle T^{\prime \prime} x_{i}^{\prime \prime}, y_{j}^{\prime}\right\rangle\right), \sum_{j=1}^{m} y_{j}^{\prime}=y^{\prime}, y_{j}^{\prime} \geq 0\right\} \\
& \leq \sum_{j=1}^{m}\left(\sum_{i=1}^{n} a_{i}^{j}\left\langle x_{i}^{\prime \prime}, T^{\prime} y_{j}^{\prime}\right\rangle\right)+\epsilon
\end{aligned}
$$

for some $y_{1}^{\prime}, \ldots, y_{m}^{\prime}$ in X^{\prime}, with $y_{j}^{\prime} \geq 0,1 \leq j \leq m$, and $\sum_{j=1}^{m} y_{j}^{\prime}=y^{\prime}$.
We use now the Local Reflexivity Principle: given the linear spans $G=\left[x_{1}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}\right]$ in $E^{\prime \prime}$, and $H=\left[T^{\prime} y_{1}^{\prime}, \ldots, T^{\prime} y_{m}^{\prime}\right]$ in E^{\prime}, and given $t>0$, there is an operator $R: G \longrightarrow E$ such that $\|R\| \leq 1+t$, and $\left\langle x_{i}^{\prime \prime}, x^{\prime}\right\rangle=\left\langle R x_{i}^{\prime \prime}, x^{\prime}\right\rangle$ for every x^{\prime} in H and $1 \leq i \leq n([11])$.

Writing $x_{i}=R x_{i}^{\prime \prime}$, we have for any $1 \leq i \leq n$ and any $1 \leq j \leq m$

$$
\left\langle x_{i}^{\prime \prime}, T^{\prime} y_{j}^{\prime}\right\rangle=\left\langle x_{i}, T^{\prime} y_{j}^{\prime}\right\rangle=\left\langle T x_{i}, y_{j}^{\prime}\right\rangle
$$

and

$$
\begin{aligned}
\left\|y_{0}^{\prime \prime}\right\|_{x^{\prime \prime}} & \leq \sum_{j=1}^{m}\left(\sum_{i=1}^{n} a_{i}^{j}\left\langle T x_{i}, y_{j}^{\prime}\right\rangle\right)+3 \epsilon \\
& \leq\left\langle\sup \left\{\sum_{i=1}^{n} a_{i}^{j} T x_{i}, 1 \leq j \leq m\right\}, y^{\prime}\right\rangle+3 \epsilon \\
& \leq\left\|\left(\sum_{i=1}^{n}\left|T x_{i}\right|^{p}\right)^{\frac{1}{p}}\right\|_{X}+3 \epsilon
\end{aligned}
$$

As by hypothesis T is p l. s.,

$$
\left\|y_{0}^{\prime \prime}\right\|_{X^{\prime \prime}} \leq \lambda_{p}(T) \cdot \omega_{p}\left(\left(x_{i}\right)_{i=1}^{n}\right)+3 \epsilon
$$

Finally

$$
\begin{aligned}
\omega_{p}\left(\left(x_{i}\right)_{i=1}^{n}\right) & =\sup \left\{\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|_{E}, a_{i} \in R, \sum_{i=1}^{n}\left|a_{i}\right|^{q} \leq 1\right\} \\
& =\sup \left\{\left\|R\left(\sum_{i=1}^{n} a_{i} x_{i}^{\prime \prime}\right)\right\|_{E}, a_{i} \in R, \sum_{i=1}^{n}\left|a_{i}\right|^{q} \leq 1\right\} \\
& \leq\|R\| \cdot \omega_{p}\left(\left(x_{i}^{\prime \prime}\right)_{i=1}^{n}\right) \leq(1+t) \cdot \omega_{p}\left(\left(x_{i}^{\prime \prime}\right)_{i=1}^{n}\right)
\end{aligned}
$$

Consequently, we have obtained that for every $\epsilon>0$ and every $t>0$

$$
\left\|\left(\sum_{i=1}^{n}\left|T^{\prime \prime} x_{i}^{\prime \prime}\right|^{p}\right)^{\frac{1}{p}}\right\|_{X^{\prime \prime}} \leq \lambda_{p}(T) \cdot(1+t) \cdot \omega_{p}\left(\left(x_{i}^{\prime \prime}\right)_{i=1}^{n}\right)+3 \epsilon .
$$

Thus $T^{\prime \prime}$ is p l. s. Also we have obtained that $\lambda_{p}(T) \geq \lambda_{p}\left(T^{\prime \prime}\right)$, and we have finished the proof.

Remarks. 1. The Local Reflexivity Principle can be used in the same way to give a direct proof of the well known result of Pietsch which asserts that for every operator T between two Banach spaces E and F, T is absolutely (p, r)-summing if and only if $T^{\prime \prime}$ from $E^{\prime \prime}$ to $F^{\prime \prime}$ is: one has just to bound the expression $\left(\sum_{i=1}^{n}\left\|T^{\prime \prime} x_{i}^{\prime \prime}\right\|^{r}\right)^{\frac{1}{r}}$ with another one of the form $\left(\sum_{i=1}^{n}\left|\left\langle T^{\prime \prime} x_{i}^{\prime \prime}, y_{i}^{\prime}\right\rangle\right|^{r}\right)^{\frac{1}{r}}+\epsilon$ with $y_{i}^{\prime} \in F^{\prime},\left\|y_{i}^{\prime}\right\| \leq 1,1 \leq i \leq n([11],[13])$.
2. With the same technique we can give a direct proof of Theorem 1 in the case $p=\infty$. This case is proved in [12] using the duality between ∞-lattice summing operators and cone-absolutely summing operators.
3. p-Lattice summing operators on spaces of continuous functions. In this section we are going to study the behaviour of p l. s. operators defined on $C(K)$ and $C(K, E)$ spaces. We shall denote by $S(K)$ the space of simple Borel functions on K, and by $B(K)$ the space of functions which are uniform limits of simple functions, with the supremum norm. $B(K)$ is a closed subspace of $C(K)^{\prime \prime}$. By considering $C(K)$ as a Banach lattice (with the pointwise order), $C(K)$ is a closed sublattice of $B(K)$, and $B(K)$ is a closed sublattice of $C(K)^{\prime \prime}$.

It is easy to see that Theorem 1 in the first section can be slightly modified in the case of operators defined on $E=C(K)$, in this form:

Theorem 2. Let E be $C(K), X$ a Banach lattice and $T: E \longrightarrow X$ an operator. Then, given $1 \leq p \leq \infty, T$ is p l. s. if and only if $\bar{T}=\left.T^{\prime \prime}\right|_{B(K)}$ is p l. s. too. Moreover, $\lambda_{p}(T)=\lambda_{p}(\bar{T})=\lambda_{p}\left(T^{\prime \prime}\right)$.

Beside this theorem, we shall use two lemmas, which are essentially known:
Lemma 1. Let E be a Banach space, X be a Banach lattice and T from E to X an operator. Then the following are equivalent:

1. T is ∞l. s.
2. T is $p l$. s. for every $p \geq 1$, and there exists a constant $L \geq 0$ such that $\lambda_{p}(T) \leq L$ for every $p \geq 1$.

Lemma 2. Let K be a compact Hausdorff space, X a Banach lattice and T from $B(K)$ to X an operator. If T is positive, then T is ∞l. s. The same result is true for positive operators $T: C(K) \longrightarrow X$. And it is also true for regular operators. For positive operators we have $\lambda_{\infty}(T)=\|T\|$, and for regular operators we have $\lambda_{\infty}(T) \leq\|T\|_{r}$.

Nielsen and Szulga proved in [9] that it is always true that given E a Banach space and X a Banach lattice,

$$
\Lambda_{\infty}(E, X) \subseteq \Lambda_{p}(E, X) \subseteq \Lambda_{2}(E, X)
$$

for any $p, 1 \leq p \leq \infty$. In the case where $E=C(K)$ we have obtained the next result, using only lattice techniques and representation theory, which is the main theorem in this section. As a consequence it holds that 1-lattice summing operators and majorizing operators on $C(K)$ coincide.

Theorem 3. Let K be a compact Hausdorff space, X be a Banach lattice, T an operator from $C(K)$ to X, and m the representing measure of T. Then the following statements are equivalent:

1. T is $1 \mathrm{l} . \mathrm{s}$.
2. There is a constant $L \geq 0$ such that for any finite family $\left\{B_{1}, \ldots, B_{n}\right\}$ of pairwise disjoint Borel subsets of K,

$$
\left\|\sum_{i=1}^{n}\left|m\left(B_{i}\right)\right|\right\|_{X^{\prime \prime}} \leq L
$$

3. $\bar{T}=\left.T^{\prime \prime}\right|_{B(K)}: B(K) \longrightarrow X^{\prime \prime}$ is order-bounded (or regular since $X^{\prime \prime}$ is order complete).
Proof. 1) $\Rightarrow 2$) Assume that T is 11 .s. Then $T^{\prime \prime}: C(K)^{\prime \prime} \longrightarrow X^{\prime \prime}$ is also 11 . s. Let us take B_{1}, \ldots, B_{n} in $\beta_{0}(K)$, pairwise disjoint. Then

$$
\begin{aligned}
\left\|\sum_{i=1}^{n}\left|m\left(B_{i}\right)\right|\right\|_{X^{\prime \prime}} & =\left\|\sum_{i=1}^{n}\left|T^{\prime \prime}\left(\chi\left(B_{i}\right)\right)\right|\right\| \\
& \leq \lambda_{1}\left(T^{\prime \prime}\right) \sup \left\{\sum_{i=1}^{n}\left|\left\langle\chi\left(B_{i}\right), \nu\right\rangle\right|, \nu \in B(K)^{\prime},\|\nu\| \leq 1\right\} \\
& \leq \lambda_{1}\left(T^{\prime \prime}\right) \sup \left\{\operatorname{var}(\nu), \nu \in B(K)^{\prime},\|\nu\| \leq 1\right\} \leq \lambda_{1}\left(T^{\prime \prime}\right),
\end{aligned}
$$

so $L=\lambda_{\mathrm{I}}\left(T^{\prime \prime}\right)$.
2) \Rightarrow 3) We have now to prove that $T^{\prime \prime}$ maps order intervals of $B(K)$ into order intervals of $X^{\prime \prime}$. But any order interval of $B(K)$ is contained in a scalar multiple of the unit ball $[-\chi(K), \chi(K)]$, and so it is enough to prove that the image of this interval is order bounded in $X^{\prime \prime}$.

Let $f=\sum_{i=1}^{n} a_{i} \chi\left(B_{i}\right)$ be a simple function, where $\left\{B_{i}, 1 \leq i \leq n\right\}$ is a family of pairwise disjoint Borel sets of K, and such that f belongs to $[-\chi(K), \chi(K)]$. Taken for each $i, t_{i} \in B_{i}$, we have $\left|a_{i}\right|=\left|f\left(t_{i}\right)\right| \leq 1$ for all $i, 1 \leq i \leq n$, and thus

$$
|\bar{T}(f)|=\left|T^{\prime \prime}(f)\right|=\left|\sum_{i=1}^{n} a_{i} T^{\prime \prime}\left(\chi\left(B_{i}\right)\right)\right| \leq \sum_{i=1}^{n}\left|T^{\prime \prime}\left(\chi\left(B_{i}\right)\right)\right|
$$

Consider Φ the class of all finite disjoint partitions of K by sets in $\beta_{0}(K)$, ordered by inclusion, and define for each $P \in \Phi$

$$
y_{P}=\sum_{B \in P}\left|T^{\prime \prime}(\chi(B))\right| \in X^{\prime \prime}
$$

$\left\{y_{P}\right\}_{P \in \Phi}$ is an increasing net in $X^{\prime \prime}$, and $\left\|y_{P}\right\|=\left\|\sum_{B \in P}|m(B)|\right\|$, less or equal than L by Hypothesis 2.

Then using the Fatou property, there exists $y_{0}^{\prime \prime}=\sup \left\{y_{P}, P \in \Phi\right\}$ which is the weak* limit of $\left\{y_{P}, P \in \Phi\right\}$.

Thus, there exists $y_{0}^{\prime \prime} \in X^{\prime \prime}$ such that for any simple function f in the unit ball $[-\chi(K), \chi(K)],\|\bar{T}(f)\| \leq y_{0}^{\prime \prime}$. But \bar{T} is continuous, simple functions are dense in $[-\chi(K), \chi(K)]$ (in $B(K)$) and $\left[-y_{0}^{\prime \prime}, y_{0}^{\prime \prime}\right]$ is closed in $X_{0}^{\prime \prime}$, so we have $\bar{T}([\chi(K), \chi(K)]) \subseteq$ [$-y_{0}^{\prime \prime}, y_{0}^{\prime \prime}$].

Hence, \bar{T} is order-bounded.
Observe that, moreover, $\left\|y_{0}^{\prime \prime}\right\| \leq L$.
3) \Rightarrow 1) We suppose now that $T: B(K) \longrightarrow X^{\prime \prime}$ is order-bounded; then \bar{T} is regular since $X^{\prime \prime}$ is order complete, and by Lemma $2 \bar{T}$ is ∞ l. s., and also 1 1. s. Now Theorem 2 proves that T is 1 l . s.

We have the equivalence of 1), 2) and 3). Now we study the norms: following the steps of the proof above

$$
\lambda_{\infty}(\bar{T}) \leq\|\bar{T}\|_{r}=\||\bar{T}|\|=\sup \{\||\bar{T}|(f)\|,\|f\| \leq 1, f \geq 0\}
$$

with $|\bar{T}|(f)=\sup \{|\bar{T}(g)|,|g| \leq f\}$. Then $\|g\| \leq\|f\| \leq 1$ and $|\bar{T}(g)| \leq y_{0}^{\prime \prime}$.
So $|\bar{T}|(f) \leq y_{0}^{\prime \prime}$ and $\|\bar{T}\|_{r} \leq\left\|y_{0}^{\prime \prime}\right\| \leq L=\lambda_{1}\left(T^{\prime \prime}\right)=\lambda_{1}(T)$.
So that,

$$
\lambda_{\infty}(T)=\lambda_{\infty}(\bar{T}) \leq\|\bar{T}\|_{r} \leq \lambda_{1}(T) \leq \lambda_{\infty}(T),
$$

and all are the same.
As a consequence, if E is an AM space, 11 . s. operators from E to X and $\infty 1$. s., or majorizing, operators are the same for any Banach lattice X. This result somehow reminds us of the result of Pietsch ([10]) which asserts that for any $C(K)$ space absolutely summing and dominated operators coincide; and, as in that case, it is not possible to extend the result to operators on spaces of vector valued continuous functions, as we shall see later.

If X has the property $\mathrm{P}([12])$, i. e. there exists a continuous positive (and contractive) projection from $X^{\prime \prime}$ to X, any 1 l . s. operator from an AM space to X is regular, and $\lambda_{1}(T)=\lambda_{\infty}(T)=\|T\|_{r}$. Lattices with this property are, for example, those which do not contain c_{0}.

Reasoning in a similar way as in the first part of the theorem, for $1<p<\infty$ we have:

Proposition 4. Let K be a compact Hausdorff space, X a Banach lattice and T an operator from $C(K)$ to X. Let m be the representing measure of T, and let $1<p<\infty$. If T is p-lattice summing, there exist a constant $L>0$ such that for every finite family of Borel sets, A_{1}, \ldots, A_{n}, pairwise disjoint,

$$
\left\|\left(\sum_{i=1}^{n}\left|m\left(A_{i}\right)\right|^{p}\right)^{\frac{1}{p}}\right\|_{X^{\prime \prime}} \leq L
$$

Another example of the particular behaviour of $C(K)$ is the following:
If X and Y are Banach lattices, Krivine's generalization of Grothendieck's inequality for lattices shows that for any operator $T: X \longrightarrow Y$ and any finite set $\left\{x_{1}, \ldots, x_{n}\right\}$ in X

$$
\left\|\left(\sum_{i=1}^{n}\left|T x_{i}\right|^{2}\right)^{\frac{1}{2}}\right\|_{Y} \leq K_{G} \cdot\|T\| \cdot\left\|\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}\right\|_{X}
$$

where K_{G} is Grothendieck's constant ([8]).
So that we have readily:
PROPOSITION 5. Any operator from a $C(K)$ space to a Banach lattice is 2 l. s.
Let us show now some results for operators defined on spaces of vector valued continous functions $C(K, E)$ (space of E-valued continuous functions on K, where E is a Banach space, with the supremum norm).

First of all, as it occurs in the scalar case, an operator T from $C(K, E)$ to a Banach lattice X is p 1. s. for some $p, 1 \leq p \leq \infty$, if and only if the restriction $\bar{T}=\left.T^{\prime \prime}\right|_{B(\beta(K), E)}$ is p l. s. too, where $B(\beta(K), E)$ is the space of functions which are uniform limit of E-valued measurable simple functions on K.

We shall use also a general result on p l.s. operators:

LEMMA 3. Let E be a Banach space, X be a Banach lattice, and T an operator from E to X. If there exists a dense subspace F of E such that the restriction $\left.T\right|_{F}$ is $p l$. s., then Tispl.s. too.

PROOF. Let $x_{1}, \ldots x_{n}$ be in E, and let $K=\omega_{p}\left(\left(x_{i}\right)_{i=1}^{n}\right)$. We choose for each $i, 1 \leq i \leq$ $n, z_{i} \in F$ such that

$$
\left\|z_{i}-x_{i}\right\| \leq \frac{K}{(1+\|T\|) 2^{i}}
$$

Then,

$$
\begin{aligned}
\left\|\left(\sum_{i=1}^{n}\left|T x_{i}\right|^{p}\right)^{\frac{1}{p}}\right\| & \leq\left\|\left(\sum_{i=1}^{n}\left|T x_{i}-T z_{i}\right|^{p}\right)^{\frac{1}{p}}\right\|+\left\|\left(\sum_{i=1}^{n}\left|T z_{i}\right|^{p}\right)^{\frac{1}{p}}\right\| \\
& \leq\left\|\sum_{i=1}^{n}\left|T x_{i}-T z_{i}\right|\right\|+\left\|\left(\sum_{i=1}^{n}\left|T z_{i}\right|^{p}\right)^{\frac{1}{p}}\right\| \\
& \leq \sum_{i=1}^{n}\left\|T x_{i}-T z_{i}\right\|+\lambda_{p}\left(\left.T\right|_{F}\right) \cdot \omega_{p}\left(\left(z_{i}\right)\right) \\
& \leq K+\lambda_{p}\left(\left.T\right|_{F}\right) \cdot \omega_{p}\left(\left(z_{i}\right)\right)
\end{aligned}
$$

Now, for any $x^{\prime} \in B_{F^{\prime}}$, let \hat{x}^{\prime} be an extension to E with the same norm. Then

$$
\begin{aligned}
\left(\sum_{i=1}^{n}\left|<z_{i}, x^{\prime}>\right|^{p}\right)^{\frac{1}{p}} & =\left(\sum_{i=1}^{n}\left|<z_{i}, \hat{x}^{\prime}>\right|^{p}\right)^{\frac{1}{p}} \\
& \leq\left(\sum_{i=1}^{n}\left|<z_{i}-x_{i}, \hat{x}^{\prime}>\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{n}\left|<x_{i}, \hat{x}^{\prime}>\right|^{p}\right)^{\frac{1}{p}} \\
& \leq \sum_{i=1}^{n}\left|<z_{i}-x_{i}, \hat{x}^{\prime}>\right|+\left(\sum_{i=1}^{n}\left|<x_{i}, \hat{x}^{\prime}>\right|^{p}\right)^{\frac{1}{p}} \\
& \leq \frac{K}{1+\|T\|}+K \leq 2 K \leq 2 \omega_{p}\left(\left(x_{i}\right)\right)
\end{aligned}
$$

And thus,

$$
\left\|\left(\sum_{i=1}^{n}\left|T x_{i}\right|^{p}\right)^{\frac{1}{p}}\right\| \leq\left[1+2 \lambda_{p}\left(\left.T\right|_{F}\right)\right] \cdot \omega_{p}\left(\left(x_{i}\right)\right)
$$

so T is p 1.s.
Now, we can prove the following theorem, which gives sufficient conditions on the representing measure of T to be p l. s.

Theorem 6. Let K be a compact Hausdorff space, E be a Banach space, X a Banach lattice and $T: C(K, E) \longrightarrow X$ an operator. Let m be the representing measure of T, and let be $1 \leq p<\infty$. Assume that

1. For every Borel subset A of K the operator $m(A)$ from E to $X^{\prime \prime}$ is p-lattice summing.
2. The variation of m with the norm λ_{p} is finite. That is, there is a constant $L>0$ such that for every finite family of pairwise disjoint Borel subsets B_{1}, \ldots, B_{n} in $\beta_{0}(K)$

$$
\sum_{i=1}^{n} \lambda_{p}\left(m\left(B_{i}\right)\right) \leq L
$$

Then T is p-lattice summing.
Proof. Using the remarks above, it is enough to prove that $\left.T^{\prime \prime}\right|_{S(\beta(K), E)}$ is p 1. s. So, take f_{1}, \ldots, f_{k} in $S(\beta(K), E)$. There is a finite family of pairwise disjoint Borel subsets of K, B_{1}, \ldots, B_{n}, and a finite family of vectors in $E,\left\{x_{i j}\right\}, 1 \leq i \leq k, 1 \leq j \leq n$, such that

$$
f_{i}=\sum_{j=1}^{k} x_{i j} \chi\left(B_{j}\right), \text { for all } 1 \leq i \leq k
$$

Then

$$
\left\|\left(\sum_{i=1}^{k}\left|T^{\prime \prime} f_{i}\right|^{p}\right)^{\frac{1}{p}}\right\|=\left\|\left(\sum_{i=1}^{k}\left|\sum_{j=1}^{n} m\left(B_{j}\right) x_{i j}\right|^{p}\right)^{\frac{1}{p}}\right\|
$$

where

$$
\begin{aligned}
\left(\sum_{i=1}^{k}\left|\sum_{j=1}^{n} m\left(B_{j}\right) x_{i j}\right|^{p}\right)^{\frac{1}{p}} & =\sup \left\{\sum_{i=1}^{k} a_{i}\left(\sum_{j=1}^{n} m\left(B_{j}\right) x_{i j}\right), a=\left(a_{i}\right)_{i=1}^{k} \in B_{p^{\prime}}\right\} \\
& =\sup \left\{\sum_{j=1}^{n} \sum_{i=1}^{k} a_{i} m\left(B_{j}\right) x_{i j}, a=\left(a_{i}\right)_{i=1}^{k} \in B_{p^{\prime}}\right\} \\
& \leq \sum_{j=1}^{n}\left(\sum_{i=1}^{k}\left|m\left(B_{j}\right) x_{i j}\right|^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left\|\left(\sum_{i=1}^{k}\left|T^{\prime \prime} f_{i}\right|^{p}\right)^{\frac{1}{p}}\right\| & \leq\left\|\sum_{j=1}^{n}\left(\sum_{i=1}^{k}\left|m\left(B_{j}\right) x_{i j}\right|^{p}\right)^{\frac{1}{p}}\right\| \\
& \leq \sum_{j=1}^{n}\left\|\left(\sum_{i=1}^{k}\left|m\left(B_{j}\right) x_{i j}\right|^{p}\right)^{\frac{1}{p}}\right\| \\
& \leq \sum_{j=1}^{n} \lambda_{p}\left(m\left(B_{j}\right)\right) \cdot \omega\left(\left(x_{i j}\right)_{i=1}^{k}\right)
\end{aligned}
$$

Now, for each $j \in\{1, \ldots, n\}$ fixed, taken $t_{j} \in B_{j}$ we have

$$
\begin{aligned}
\omega_{p}\left(\left(x_{i j}\right)_{i=1}^{k}\right) & =\sup \left\{\left(\sum_{i=1}^{k}\left|<x_{i j}, x^{\prime}>\right|^{p}\right)^{\frac{1}{p}}, x^{\prime} \in B_{E^{\prime}}\right\} \\
& =\sup \left\{\left(\sum_{i=1}^{k}\left|<f_{i}, x^{\prime} \circ \delta_{t_{j}}>\right|^{p}\right)^{\frac{1}{p}}, x^{\prime} \in B_{E^{\prime}}\right\} \\
& \leq \omega_{p}\left(\left(f_{i}\right)_{i=1}^{k}\right)
\end{aligned}
$$

As a consequence

$$
\left\|\left(\sum_{i=1}^{k}\left|T^{\prime \prime} f_{i}\right|^{p}\right)^{\frac{1}{p}}\right\| \leq L \cdot \omega_{p}\left(\left(f_{i}\right)_{i=1}^{k}\right)
$$

from where we deduce that $\left.T^{\prime \prime}\right|_{S(\beta(K), E)}$ is p 1. s. Then $\hat{T}=\left.T^{\prime \prime}\right|_{B(\beta(K), E)}$ and T are p l. s. too.

REmARKs. 1 -For $p \neq 2$, there are examples that prove that there are operators defined in $C(K)$ spaces which are not p l. s. Concretely, in [9] Nielsen and Szulga, for $1<p<2$, construct operators defined on c_{0}, with image in $L^{1}[0,1]$, which are not p 1. s.: knowing that for $1<p<2$, ℓ^{p} is not of p -stable type, given a sequence $\left(f_{n}\right)_{n}$ of p-stable independent randon variables in $[0,1]$, with the Lebesgue measure, there is a sequence $\left(a_{n}\right)_{n}$ in ℓ^{p} such that $\sum_{i=1}^{\infty}\left|a_{n} f_{n}(t)\right|^{p}$ diverges in a set with strictly positive measure. We can assume that $a_{n} \geq 0$ and $\left\|f_{n}\right\|=1$ for all $n \in N$, so that the map

$$
\ell^{p} \longrightarrow L^{1}[0,1]:\left(b_{n}\right)_{n} \longrightarrow \sum b_{n} f_{n}
$$

is an isometry. If we define

$$
T: c_{0} \longrightarrow L^{1}[0,1]: T\left(e_{n}\right)=a_{n} f_{n}
$$

(where $\left(e_{n}\right)_{n}$ is the canonical basis of c_{0}), T is not p 1 . s., since given any $m \in N$, $\omega_{p}\left(\left(e_{n}\right)_{n=1}^{m}\right) \leq 1$ but

$$
\left\|\left(\sum_{n=1}^{m} a_{n}^{p}\left|f_{n}\right|^{p}\right)^{\frac{1}{p}}\right\|_{L^{\prime}[0,1]}=\int_{0}^{1}\left(\sum_{n=1}^{m}\left|a_{n} f_{n}\right|^{p}\right)^{\frac{1}{p}} d t
$$

diverges when m tends to infinity.
As for any metrizable infinite compact space $K, C(K)$ contains a complemented subspace isomorphic to c_{0}, at least in these cases it is possible to define operators on $C(K)$ which are not p l. s.

For $p>2$, in the same paper it is shown that, as a consequence of Kwapien's theorem ([Kwapien]), there are operators from ℓ^{∞} to ℓ^{p} which are not p l. s..
2-The results obtained for $C(K)$ spaces are not true in general for $C(K, E)$ spaces, when E is a Banach space.

In fact, if E is a Banach lattice and every positive operator from $C(K, E)$ to any Banach lattice is 21 . s., this is equivalent to saying that the identity map $I: E \longrightarrow E$ is 21 . s. So, taking $E=\ell^{p}$, with $1<p<2$, there has to be an operator $C(K, E) \longrightarrow \ell^{p}$ which is not 21 .s.

Neither is it true in general that on $C(K, E) 11$. s. operators and $\infty 1$. s. coincide: just choose a Banach space E, a Banach lattice X and an operator $T: E \longrightarrow X$ that is 1 1. s. but not $\infty 1$. s. and extend T to $C(K, E)$ by means of a continuous projection from $C(K, E)$ to E.

3-The converse of theorem 5 is not true: It is obvious that when T is a p l. s. operator from $C(K, E)$ to X, for every Borel subset A of K the operator $m(A)$ from E to $X^{\prime \prime}$ is p l. s., since $m(A)(x)=T^{\prime \prime}(\chi(A) \cdot x)$ for all $x \in E$. But m may not satisfy condition 2 : consider the operator T from $C\left(N^{*}, \ell^{1}\right)$ to $c_{0}\left(N^{*}\right.$ is the Alexandroff compactification of N) associated with the measure m defined by $m(A)(x)=\sum_{n \in A} x_{n} e_{n} \in \ell^{\infty}$ for any $x=\left(x_{n}\right)_{n}$ in ℓ^{1} and any subset A of N not empty, and $m(\emptyset)=0=m(\infty) . T$ is p-lattice summing for every $p, 1 \leq p \leq \infty$, since ℓ^{∞} is an AM space (see [12]), but it does not satisfy condition 2 .

References

1. C. D. Aliprantis and O. Burkinshaw, Positive Operators. Academic Press, 1985.
2. J. Batt and E. J. Berg, Linear bounded transformations on the space of continuous functions, J. of Functional Analysis 4(1969), 215-239.
3. R. Bilyeu and P. Lewis, Some mapping properties of representing measures, Ann. di Mat. Pura APl. 109(1976), 273-287.
4. J. K. Brooks and P. W. Lewis, Linear operators and vector measures, Trans. Amer. Math. Soc. 192(1974), 139-162.
5. J. Diestel and J. J. Uhl, Vector measures. Amer. Math. Soc. Mathematical Surveys 15, Providence, R. I., 1977.
6. N. Dinculeanu, Vector measures. Pergamon Press, Oxford, 1967.
7. S. Kwapien, On a theorem of L. Schwartz and its applications to absolutely summing operators, Studia Math. 38(1970), 193-201.
8. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II. Springer, Berlin, 1979.
9. N. J. Nielsen and J. Szulga, P-lattice summing operators Math. Nach. 119(1984), 219-230.
10. A. Pietsch, Nuclear locally convex spaces. Springer-Verlag, 1972.
11. \qquad Operator ideals. VEB, Berlin, 1978.
12. H. H. Schaefer, Banach lattices and positive operators. Springer, 1984.
13. S. Simons, Local reflexivity and (p, q)-summing maps, Math. Annalen 198(1973), 335-344.
14. C. Swartz, Absolutely summing and dominated operators on spaces of vector valued continuous functions, Trans. Amer. Math. Soc.179(1973), 123-131.
15. J. Szulga, On lattice summing operators, Proc. Amer. Math. Soc. 87(1983), 258-262.

Dto. de Matemáticas, Estadística y Computación
Facultad de Ciencias, Universidad de Cantabria
39071 Santander, Spain

[^0]: Received by the editors April 2, 1900; revised May 3, 1991
 AMS subject classification: 47B38, 47B55.
 (C) Canadian Mathematical Society 1992.

