
PARTITION RELATIONS FOR ORDINAL NUMBERS 

E. C. MILNER 

1. I n t r o d u c t i o n . Capi tal letters denote sets and the cardinal of A is \A\. 
Greek letters always denote ordinal numbers and, unless s ta ted otherwise, 
small latin let ters denote non-negative integers. T h e symbol [A]r is used to 
denote the set {X: X (Z A; \X\ = r) of all subsets of A with r elements. 
If A is a simply ordered set with the order relation < , then the order type 
of A with this ordering is wri t ten as tp< A or simply as t p A when there is 
no ambigui ty abou t the intended order relation. A graph G = (A,E) is an 
ordered pair with A as the set of vertices and E C [A]2 as the set of edges. 
In particular, if A is simply ordered, we call G a graph of type tp A. A complete 
subgraph of G = (A, E) is a set B C A such t h a t [B]2 C E; a set C C A is 
independent if [C]2 P\ E = 0. 

T h e part i t ion symbol 

(1.1) a —> {av)
r
v<K, 

by definition, means t h a t the following s ta tement is t rue. / / A is an ordered 
set of type a and if 

[A]r = \JE, 

is any partition of [A]r into disjoint sets Ev {y < K), then there are v < K and 
A' C A such that t p A' = av and \A'\T C Ev. T h e negation of (1.1) is wri t ten as 

a -A (av)
r
v<K. 

In this paper, we are mainly concerned with a simple form of (1.1) in which 
r = K = 2 and a, a0j a\ are denumerable and we write, instead of (1.1), 

(1.2) c* ->(ao ,a i ) 2 . 

There is an obvious graph-theoretic interpretat ion of (1.2). For, if G = (A, E) 
is any graph of type a, then (1.2) asserts t h a t either there is a complete 
subgraph of type a0, or there is an independent set of type «i. 

Par t i t ion relations were first introduced by Erdôs and Rado in (3), and 
in (4) they established a wide variety of such relations and studied certain 
generalizations. Since then, Erdôs, Hajnal , and Rado (7) have given a remark
ably comprehensive analysis of relations (1.1) when a, av {y < K) are cardinal 
numbers (i.e., initial ordinals) which are not all finite; comparat ively few open 
questions remain in this case; see (7, Problem 2) . Compared with this, l i t t le 

Received September 8, 1967. 

317 

https://doi.org/10.4153/CJM-1969-034-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-034-2


318 E. C. MILNER 

seems to be known about such relations when the ordinals are not initial 
numbers. 

I t is clear from the definition that, if (1.1) holds and a! ^ a, then 
a' —* (OLV)V<K

T also holds and the problem is to determine the least a which 
satisfies (1.1) when r, K, and av (v < K) are given. The simplest case is when 
r = 1 and K, ao, . . . , aK-i are finite as this corresponds to the ordinary pigeon
hole principle of elementary arithmetic. The extension of this to the case 
when the ordinals K and av (v < K) are arbitrary has been completely analyzed 
in (11) so that interest remains only for the case r > 1. A well-known theorem 
of Ramsey (12) states that if r, &, mi, . . . , mk are finite, then there is a (least) 
integer q = q(r, mi, . . . , mk) such that q —» (mi, . . . , mk)

r. The problem of 
determining the finite Ramsey function q(r, mi, . . . , mk) is an extremely 
difficult one; a few special values are known (see 8; 9) and various estimates 
of the magnitude have been given (see 5-8). In view of this difficulty, there 
can be little hope of providing a complete analysis for (1.1) with arbitrary 
ordinals (and r > 1). I t is just possible, however, that the least ordinal 
satisfying (1.1), when r, K, and av (v < K) are given, is expressible in terms of 
the unknown Ramsey function and certain other finite combinatorial rules. 
A few simple results in this direction are established here (see the remarks 
following Theorems 4 and 5 and also Theorem 7). 

The convenient symbolism of the partition calculus was developed in order 
to study various extensions and analogues of another, transfinite, theorem of 
Ramsey (12) which states that1 

(1.3) co—> (co, . . . , a>)/. 

In one sense, (1.3) cannot be extended for denumerable ordinals since it has 
been proved (see 4 and 14) that 

a Y> (co, œ + l ) 2 if a < coi. 

Furthermore (see 10), 

a -T^ (r + 1, co + l ) r if a < o)i and r ^ 3. 

From these negative results it follows that the only relations of the form (1.2) 
which are of interest in the case of denumerable ordinals are those of the form 

(1.4) a —> (m, y)2 

with 3 ^ m < c o < 7 ^ a < c o i . 
Previously known relations of the form (1.4) are the following. In (4) it is 

proved that 

(1.5) cam —> (m, w + p)2, 

(1.6) com-T^ (m + 1, co + l ) 2 . 

lco is the first infinite ordinal and coi is the first non-denumerable ordinal. 
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Furthermore, a finite rule is given in (4) for calculating an integer / = /(m, n) 
such that 

(1.7) id-^ (m, œn)2 

and this result is best possible in the sense that 

a -/> (ra, con)2 if a < co/. 

In (14), Specker proved that (1.7) remains valid in the limiting case when 
I = n = co, i.e. 

(1.8) co2 —> (w, co2)2 /or an^ m < co. 

Specker (14) also noted that co2 cannot be replaced by any higher finite power 
of co in (1.8), i.e. 

(1.9) co*-/> (3, co*)2 if2<k<a>. 

An interesting unresolved question is whether or not the relation 

(?) cow —> (w , co")2 

holds for any m > 2. 
I t is proved in Theorem 1 that 

(1 .10) c o 4 - * (3 , co3)2, 

and Theorem 2 (which generalizes (1.9)) shows that this is best possible in the 
following two ways: 

(1 .11) co4^> (3 , c o 3 + l ) 2 , 

(1.12) a-T^ (3, co3)2 ifa<o>\ 

The method used to prove (1.10) can be modified to determine some a < cow 

so that (1.4) holds for given m < u and y < cow. However, stronger results 
than these (except for (1.10) itself) can be obtained by a different type of 
argument. It will be shown elsewhere (2) that 

(1.13) co1+^ -> (2\ co1+")2 ifh<a>andv< cox. 

For example, (1.13) yields 

œ**+l-> (4)C02A;+i)2 

and this should be contrasted with the negative relation 

co3*,A (3, co2*+1)2 

given by Theorem 2. The simplest problem we have been unable to solve is 
whether (1.10) is best possible in a third sense, namely whether2 

(?) co4-> (4, co3)2. 

2Since this paper was written, A. Hajnal (and later F. Galvin) proved that co4 —> (4, co3)2 

and co4 T ^ (5, co3)2 (written communications). 
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2. Additional notation. The obliterates sign - above any symbol 
indicates that that symbol is to be disregarded. Thus, we sometimes write 
Ao U . . . U Âa instead of \Jv<aAv. The symbols {x0, . . . , xa}< or {xv: v < a}< 

are both used to denote the set 5 = {xv: v < a} and at the same time express 
the fact that S is ordered by < so that xv < xM whenever v < /z < a. Similarly, 
{xo, . . . , xa}^ means that xv ^ xM if v < n < a. If 5 is a simply ordered set, 
we write 

S = So U . . . U Sa (tp) or S= V Sv (tp) 
v<C.a 

to indicate that 5 is the union of disjoint sets Sv (v < a) and that the elements 
of Sv precede the elements of 5M in the ordering of S if v < ju < a. In this 
case, t p 5 = X"<«tp Sv. 

If G = (A, E) is a graph and x € A, we let E(x) denote the set 
{y £ A: {x, y) £ E) of vertices joined to x by edges of the graph. Similarly, 
we define £ '(*) = {;y € ,4: {x,:y}^ g £ } . If 0 ^ X C A, we write 

£ p 0 = H £(*) and E'(X) = fl £'(*)• 

It is proved in (12) that coa —» (co", co")1 for any a ^ 0. From this, it follows 
that T = {X: X CS; tpX < co«} is a proper ideal of ^ ( 5 ) , the set of all 
subsets of S, which is contained in a maximal ideal T*. The function m defined 
on 0>(S) by putting m{X) = 0 (X £ T*), m(Z) = 1 (X g r*) is a non-
trivial, two-valued finitely additive measure (see, e.g., 14). 

3. Theorem 1. co4 -» (3, co3)2. 

Proof. We shall assume that G = (5, £ ) is a graph of type co4 which con
tains no triangle and no independent set of type co3, and deduce a contradiction. 

Since tp 5 = co4, we may write S = U K « 2 5y (tp), where tp5„ = 
co2 (y < co2). Let mv be a two-valued measure function defined on â?{Sv) such 
that mv(Sv) = 1 and mv(X) = 0 whenever X d Sv and tp X < co2. Since the 
sets Sv are mutually disjoint, we shall henceforth omit the suffix from mv and 
simply write m. 

For short, we write N = {v\ v < co2} and we define 

A(a,0) = {x G S«: *»(£(*) HS/,) = 1} (a, 0 £ iV). 

Suppose that «i, a2, «3 G iV and that 

(3.1) w( i4(a„a , ) ) = 1 (1 ^ î < j ^ 3). 

Then elements Xi, x2, and x3 can be chosen successively so that 

Xi e A(alfa2) r\A(ai, a3), ^2 £ £(*i) H 4 (a2, a3), x3 G E({*i, *2}) H ^ . 

This is possible since the right-hand sides of these relations are sets of measure 1, 
and thus non-empty. This implies that {xu x2, x3}^ is a complete triangle 
of the graph G, contrary to our initial assumption. This proves that at least 
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one of the equations in (3.1) is false. In particular, since we did not assume 
that the a* are distinct, it follows that 

(3.2) m(A(a,a)) = 0 (a g N). 

Consider the partition [iV]2 = L0 VJ Llf where {a, /3}^ £ L0 if and only if 
m (A (a, fi)) + m(A (/?, a)) ^ 0. By the special case 

co2-> (4, co2)2 

of Specker's theorem (1.8), it follows that either 

(3.3) there is {ft, ft, ft, ft},* C N such that {ft, ft}^ G L0 

or 

(3.4) there is N0 C iV ŝ cfe /Aa/ tp iV0 = co2 awd [iV0]
2 C i i . 

Suppose that (3.3) holds. Put ptj = m(.4(ft, ft)). Then p 0 £ {0, 1} and 

Po + P,< ^ 0 if 1 ^ * < j ^ 4. 

By symmetry we can assume that P12 = P13 = p £ {0, 1} and that p23 = 1. 
If p = 1, then (3.1) holds with at = ft (i = 1,2,3) and this contradicts the 
falsity of (3.1). A similar contradiction follows if p = 0 for, in this case, (3.1) 
holds with on = ft, a2 = ft, and az = ft. Therefore, (3.4) must hold. Com
bining this with (3.2) we deduce that 

(3.5) m (A (a, 0)) = 0 for a, $ 6 N0. 

Since No is a subset of N of type co2 we may write 

No = {<*„«»: v < co2}<. 

Let (TV)V<W be any sequence which repeats every ordinal y < co2 infinitely 
often, i.e. y„ < co2 (*> < co2) and 

(3.6) \{v: v < co;y„ = y}\ = Xo jfor any y < co2. 

Let <<C be any well-ordering of N as an co-sequence which is such that 

(3.7) r « 7T whenever T < 7 T < T + CO<CO2. 

For example, such an ordering is defined by the relation <<C, where 

cow + n <<C com' + n' 

if and only if m, n, m', n' < oo and (m + n} m) alphabetically precedes 
(mf + n', mf). For i < co we define y(i) to be the least ordinal y which has 
the property that 

y j <3C7 for all j ^ i. 

I t is easy to see that y(i) < co2 for i < co. 
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We shall show that elements xt G 5 and sets Nt C ^o can be chosen for 
i < co so that the following conditions are satisfied. 

(3.8) Ni+1 = {«,<*+»: v < co2}< C Nu 

(3.9) «/*+" = a„(i) /ar v « 7 ( i ) , 

(3.10) ^i Ç Sa i, where at = ayi^\ 

(3.11) [{xo x ^ F H E = 0. 

Suppose that this has already been done and that xu Nt have been defined 
so that (3.8)-(3.11) all hold for i < co. Let X = {x0, . . . , * „ } and N* = 
}a0, . • . ,âa}. If i, j < co and 7 ^ 7 ^ then by (3.8), (3.9), and the 
definition of aiy we have that 

(3.12) at = ayiW = ^ .C^ i ) g ^.(H-fl = «,/*> = ajy 

and there is strict inequality if yt < yj. I t follows from this that 

tp<iV* = tp<{7i: i < co} = co2. 

If a 6 N*, then a = ak for some k < co. I t follows from (3.12) that a t = ak = a 
if Tz = 7A» and therefore, by (3.6), 

\{i < a>: at = a}\ = Ko. 

This, together with (3.10), implies that \X C\ Sa\ = Ko (a É N*). Since the 
xt are distinct by (3.11), it follows that 

t p X è cotpiV* = co3. 

This yields the desired contradiction since (3.11) also implies that X is an 
independent set. 

To complete the proof of the theorem it remains to show that xt and Nt 

can be chosen so that (3.8)-(3.11) hold for all i < co. 
If x G S, then there is a unique a = a(x) < co2 so that x G Sa and we define 

M(x) = {(3 G N: x G A(a,p)}. 

Suppose that |ikf (x)| = Ko for some x G 5. Then the set 

T= U £(x)nS,3 
P€M(t) 

has order type greater than or equal to co2 tp M(x) ^ co3 since m(E(x) Pi S/j) = 
1 for /3 G -M(x). The initial assumption that there is no independent set of 
type co3 implies that there is an edge of the graph G in T. This edge, together 
with x, forms a complete triangle in the graph, contrary to our assumption. 
This proves that 

(3.13) \M(x)\ < Ko (x G S). 
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W e shall define the xu Nt so tha t , in addition to (3 .8)- (3 .11) , 

(3.14) Ni+1r\M(Xi) = 0 

also holds for i < co. Le t j < œ and suppose t h a t x0, . . . , x ; and iV0, . . . , Nj 
have already been defined so t h a t (3.8)-(3.11) and (3.14) hold for i < j . Le t 

Yj= U A (aj9 av
(i)) U U (SaJ H E(xt)). 

If i < j , then aj Ç iV, C Ni+Ï by (3.8) and a , g M(x , ) by (3.14). Therefore, 

nt(Sajr\E(xi)) = 0 (t < i ) . 

Since m (A (aJf av
U))) = 0 by (3.5) and there are only finitely many v <<C 7 (7 ) , 

i t follows t h a t Yj is a subset of Sa of zero measure. Hence, Xj may be chosen 
so t h a t 

(3.15) Xj É 5 a y - F , U {x0, . . . , £ , } . 

Now, define iV^+i = iV̂ - — M ( ^ ) . 
Wi th these definitions of Xj and Nj+i i t is immediately clear t h a t (3.10), 

(3.11), and (3.14) remain t rue with i = j . Fur thermore , (3.8) holds with 
i — j since t p Nj = co2 and M(xj) is a finite set. Thus , i t only remains to 
verify tha t , if Nj+1 = {av

u+1): v < co2}<, then 

a, ( '+ 1 ) = av^ for v « 7(7) . 

If this is false, then there is a least ordinal number T (<CO 2 ) such t h a t IT <K 7(7) 
and aT

(y+1) 7^ a*-U). By (3.15) and the definition of Yj9 we see t h a t 
Xj $ A (aj, aT

U)), and hence aT
U) £ Nj — M(xj) = Nj+i. Since M(xj) is finite, 

i t follows t h a t there is r < co2 such t h a t 

av
U) = a T

( m ) and r < IT < r + co. 

Hence, r <<C 7r by (3.7) and, by the minimal proper ty of 71-, we deduce t h a t 
aT

(;) = aT
u+1) = a*-(^. This is a contradiction since r < T implies t h a t 

aT
U) < a^j). This completes the inductive definitions of xt and Nt so t h a t 

(3 .8)-(3.11) and (3.14) all hold for i < co. 

4. A n e g a t i v e re su l t . Theorem 2 generalizes Specker's theorem (1.9). 

T H E O R E M 2. If k, I < co awci p G {1, 2}, ^ew 

(4.1) co3*/-/> (3, co2*+1)2 

and 

(4.2) co3*+'-^> (3, co2*+'+ l ) 2 . 

Remark. Formula (4.2) is valid for any positive integer p; however, (4.2) 
is weaker than (4.1) if 2 < p < co; (4.2) is false when p = 0 since we have 
the positive relation co22 + 1 —> (3, co2 + l ) 2 (see Theorem 3) . 
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Proof of Theorem 2. The proofs of (4.1) and (4.2) are very similar and we 
shall prove these results simultaneously and distinguish between them, where 
necessary, by referring to cases (i) and (ii), respectively. 

We define ô and X in the two cases as follows: 
Case (i). ô = 0 and X = I; 
Case (ii). ô = p — 1 and X = co. 
Since (4.1) holds trivially when / = 0, we may assume that X > 0. Further

more, we may assume that k > 0. 
Let S = \Jm<\Smi where Sm is the set of all (3k + 5 + l)-tuples of the 

form (m, #i, . . . , XU+Ô) with xv < co (0 < *> ^ 3k + ô). If 5 is ordered 
alphabetically, then tp Sm = co3*4"5 (m < X) and tp 5 = co3fc+ôX. The typical 
element (x0, . . . , Xu+s) of 6* is denoted by x and we write x' = (x0', . . . , XSAHV ), 
etc. We shall consider the graph G = (S, E) defined on 5 in which 
{x, x'}< £ E if and only if 

2fc k U+8 2k 

(4.3) X) *p < IL XV < J2 xv < X) */• 

Suppose that [{x, x', x"}<]2 C E. Then (4.3) holds and so also do the 
inequalities 

k 3k+8 2fc fc 

]C x"" < X "̂ and S xv < X) #/'» 

which are inconsistent with the final inequality of (4.3). This shows that the 
graph G contains no complete triangle. 

Now, let X be any subset of S such that 
Case (i). t p X = co2*+1; 
Case (ii). t p X = œ2k+» + 1. 

The proof of the theorem will be complete if we show that X is not an 
independent set; i.e., there is an edge of the graph joining two elements of X. 

We first show that (in both cases (i) and (ii)) there are mo < X and 
X0 C X Pi Smo such that 

(4.4) tp X0 = co2*+s+1. 

Case (i). Since X is finite, it follows that w2k+1 —» (œ2k+l)\l (see, e.g., 11), 
and hence there is m0 < X so that t p X P i Smo = oo2k+1. Then (4.4) holds with 
Xo = X r^ Smo since, in this case, 5 = 0. 

Case (ii). Since tp X = u2k+p + 1, X has a last element, i.e., X = X' \J {x*} 
and x < x* for all x G X'. There is Wi < X such that x* Ç SmiJ and hence 
X' C Um^mi Smi. I t follows in the same way as in Case (i) that there is 
m0 = mx such that tp X' C\ Smo = co2*+<\ Then (4.4) holds with X0 = X' C\ Smo. 

For fixed integers au . . . , ak we put 

A(au . . . , ak) = {x G X0 : x = (x0, . . . , x3A;+5); x, = av (I ^ v S h)}. 

It is clear that tp A (a±y . . . , ak) ^ o2k+ô for any ai, . . . , ak (for if 
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(#o, . . . , xZk+$) Ç X0, then x0 = m0). We shall show that the set of ^-tuples 

V = {(alt...,ak): av < œ (1 S v g *) ; tp 4 (alf . . . , ak) £ «*+«+*} 

is infinite. Let 

Xi = U A (oi, . . . , a*) and X2 = U -4 (ai, . . . , ak). 
(oi,. . . ,ojfc)€V (ai a*)£V 

Then X0 = Xi W X2. For fixed integers ai, . . . , ak with (ai, . . . , ak) $ V, 
we have that 

tp{x e X2: x = (wo, ai, . . . , ak, xk+h . . . , XU+Ô)} < œk+5+1. 

Therefore, since S is ordered alphabetically, 

tp X2 = ]£„<«* ôM 

for certain 5M < co*4"5*1. For y. < œk there is ^ < co such that ôM < c/+%, and 
hence 

tp X 2 ^ £ M « / co*+5/M ^ co2*+5 < t p Xo. 

If F is a finite set with n elements, then 

tp Xi ^ co2*+% < tp Xo. 

This is a contradiction since tp X0 = w2k+8+1 —> (tp Xo, tpXo)1 . This proves 
that 

(4.5) \V\ = Ko. 

For given integers a\, . . . , a2A;, we define 

^ (a i , . . . , a2k) = {x 6 X0: x = (ra0, ai, . . . , a2kl x2k+i, . . . , x3fc+o)}. 

Furthermore, for fixed (ax, . . . , ak), we define 

W(ai, . . . , ak) = {(ak+i, . . . , a2k): tp B(au . . . , a2*) ^ co5+1}. 

We shall show that 

(4.6) \W(al9 . . . , a»)I = Ko if (au . . . , ak) 6 F. 

Suppose that this is false and that there is (&i, . . . , ak) Ç F such that 
W = W(ai, . . . , ak) is a finite set containing q elements. Let 

Ai = U £(<2i, . . . , a2k) and ^42 = U J5(ai, . . . , a2k). 
(«A +i «2 yfc) €TF (a* + i . • • • . a 2 fc )#^ 

By reasoning in a similar way as in the proof of (4.5), we see that 

tp Ax S o>k+8q < c/+ 5 + 1 and tp A2 = X) /.<«* <* 

for certain €M < com , and hence tp A2 < w*+*+1. We now have a contradiction 
since A\\J A2 = A (oi, . . . , afc) and 

t p ^ ( a 1 , . . . , a » ) è c o * + * + 1 - > ( « * + , + V . 
This proves (4.6). Let (xi(0), . . . , xk

(0)) be the yÊrs/ element of V (ordered 
alphabetically). By (4.6) there is 0 W ° \ • • • , *2*(0)) £ W(tfi(0),. . . , x*(0)). 
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Since F i s infinite, there is (xi(1), . . . , xk
(1)) Ç F different from (x i ( 0 ) , . . . , xk

(0)) 
such that 

(4.7) i > , ( 1 > > E *,(0). 

The set ^(xi ( 0 ) , . . . , x2k
(0)) is infinite, and hence there is 

x<°> = (mo, *i<°>, . . . , x3,+5(0)) G B{xx*\ . . . , s2*
(0)) C X0 

such that 
3*;+5 fc 

(4.8) E *™>Ex, ( 1 ) . 

Again, since TF(xi(1), . . . , xk
(1)) is infinite, it follows that there is 

( W 1 } , • • • > *2*(1)) G T^W1), . . . , **<«) so that 
2k Zk+8 

(4.9) E x*m > E *>(0)-
v=A:+l v=2k+l 

Since 5(xi ( 1 ) , . . . , x2£
(1)) 9e 0, there is some element 

x»> = (mo, *i<», . . . , xs*+a(1)) 

in this set. 
From the construction, x(0), x(1) £ X0 <Z X and x(0) < x(1) since 

(xi(0), . . . , xk
w) alphabetically precedes (xi(1), . . . , x/c

(1)). The inequalities 
(4.7), (4.8), and (4.9) now imply that {x(0), x(1)} is an edge of the graph. 
This shows that X is not an independent set and completes the proof of 
Theorem 2. 

5. Two lemmas on matrices. We call the n X k matrix B = (blj) 
nulliplex if btj G {0, 1} and the columns of B are different from the null 
vector. Corresponding to such a matrix B, we define 

FBVU • • • , ir) = {j: 1 ^ j ^ k; bipj = 0 (1 S p < r);birj = 1} 

for l ^ r ^ w and \i\, . . . , i r }^ C {£ 1 ^ i ^ w ) . 

LEMMA 1. If B is a nulliplex n X k matrix, then 

Z W l , 2 , . . . , r ) | =*. 
r= l 

Proof. The w sets FB(1, 2, . . . , r) (1 ^ r g w) are mutually disjoint and, 
if 1 S j S k, then there is some r such that 1 S r S n and bu = 0 (1 ^ i < r), 
brJ = 1. 

The next lemma is a result in the opposite direction. 

LEMMA 2. 7/" the integers k±, . . . , kn are strongly monotonie, i.e., 

(5.1) ^ E t - i r r V - 0 ( l g r g n ) , 
5=0 \ S / 
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then there is a nulliplex n X (ki + . . . + kn) matrix B such that 

(5.2) \FB(ii, . . . ,ir)\ = h-r+i 

whenever 1 ^ r ^ n and {ih . . . , ir\^ C {̂ : 1 û i S n). 

Proof. Consider a nulliplex matrix B = (6^) which contains exactly lT 

columns of the form (eu . . . , ôn)' (the transpose of (di,. . . , ôn)) whenever 
5i, . . . , ô» £ {0, 1} and 1 ^ ô± + . . . + ôn = r ^ n. The matrix J5 is uniquely 
determined apart from interchange of columns, and the total number of 
columns is 

*-5(;>-£(:)5<-»{'71>~ 

We now verify that (5.2) holds. If A C {1, • • • , «}, let 

gB(A) = {j: l è j è k ; bti = 0 {id A);bi} = 1 (t € A)). 

The definition of 5 implies that 

\gB(A)\ =lT (A C[{h...,n}V;l Sr^n). 

If 1 g r ^ « and C = {Î'I, . . . , î r } * C {1, 2 , . . . , »}, then 

| /*(* ' l , . . . ,*r ) | = U g B (^W{î r }) 
I A C { 1 w } - C 

s(-r) 5+1 

=s("7')s<-"<:K-

This proves Lemma 2. 

6. I t is easy to verify the following generalization of (1.6) 

(6.1) a>an-& (« + 1, œa + l ) 2 

by considering the n-partite graph G = (S, £ ) , where S = S0VJ . . .KJ Sn (tp), 
tp 5„ = of (v < n) and \x, y} 6 £ if and only if x G 5M, 3/ 6 S„ and \x < v < n. 
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Also, by using the same argument used in (4) to prove (1.5), one can show 
more generally that 

(6.2) if coa -» (n + 1, coa)2, then œa(n + 1) -> (n + 1, coa + p)2. 

A stronger result than (6.2) is established in Theorem 3. 
We first prove a simple lemma. 

LEMMA 3. If y ^ 2 and a y> (0, T ) 2 , then a + 1 y> (fi + 1, y)2. 

Proof. Let A = {v: v < a} and A' — A U {a}. The hypothesis implies that 
there is a graph G = (.4, E) which contains no complete subgraph of type /3 
and no independent set of type y. The graph G' = (A',Ef), where 
E' = EVJ {{v,ct}: v < a}, clearly contains no complete subgraph of type 
j3 + 1 and no independent set of type y (since y > 1). 

THEOREM 3. Suppose that a ^ 0, 1 S n, p < to, 

(6.3) kt + 1 -> (i + 1, £)2 (1 ^ * g n) 

(6.4) coa-> in + 1, coa)2. 

(6.5) o?n + k! + . . . + kn + 1 -» (n + 1, co- + £)2 . 

Remark. Up = 1, then (6.3) holds with &* = 0 and Specker's theorem (1.8), 
together with Theorem 3, yields 

(6.6) œ2n + 1 -* (n + 1, co2 + l ) 2 . 

This justifies the remark after the statement of Theorem 2. 

Proof of Theorem 3. Let k < co and suppose that 

(6.7) œan + k Y> {n + 1, co" + p)2. 

We shall deduce that 

(6.8) k ^ kx + . . . + kn. 

LetS = A!VJ...yjAnVJB (tp), t p i F = co« (1 Sv^n),B = {bu... A}<. 
By (6.7) there is a graph G = (5, £ ) which contains no complete sub
graph with n + 1 elements and no independent subset of type coa + p. From 
the hypothesis (6.4) it follows that there are independent sets A J C A „ such 
that tpA/ = œa (1 ^ v ^ w). Let ra„ be a two-valued measure defined on 
the subsets of A J such that mv(AJ) = 1 and mv(X) = 0 if X C -4 / and 
tp X < co". Let 

C,M = {x: x 6 4 / ; wM(i4/ Pi E ' (s) ) - 1} (1 ^ /* < v ^ ») . 

https://doi.org/10.4153/CJM-1969-034-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-034-2


ORDINAL NUMBERS 329 

If X is a finite subset of Cvit, then {AJ C\ Ef(X)) U X is an independent set 
of order type of + t p X . Therefore, by our assumption, 

(6.9) \CVfi\ <p (1 ^ M < v S n). 

I t follows from the definition of the Cvli that the sets 

Ai9 = Av
f - U C,„ (l£v£n) 

satisfy 

(6.10) mMJ' n E'W) = 0 if x £ Av" and 1 ^ n < v g> n. 

If a > 0, it follows immediately from (6.9) that 

(6.11) m,(Av") = 1 ( l ^ g n ) . 

Now suppose that a = 0, in which case \AV\ = 1 (1 ^ p fg #). By the finite 
Ramsey theorem there is some integer a such that g —* (w + 1, 1 + p)2, and 
therefore we can assume in this case that the integer k which satisfies (6.7) is 
maximal. Then, by Lemma 3, n + k —» (n, 1 + p)2, and therefore the graph G 
contains a complete subgraph of n elements. Since S is finite we may, in this 
case, re-order the elements of S so that A i \J . . . \J An is a complete subgraph 
of G. Now7 (6.11) holds in this case also since CV]1 = 0 (1 ^ fx < v ^ n) and 

Consider the n X k matrix B = (6^), where 

&*, = mMi" niE'Q),)) ( l g i ^ w; 1 ^ j ^ fe). 

Let frra+i,; = 1 (1 ^ j ^ fe) and let 

Fr = {j: 1 ^j^k;bij = 0 (1 £ * < r ) ; & r i = 1} (1 £ r £ n + 1). 

We shall prove that 

(6.12) \Fr\ ûK-T+i ( U r ^ » + 1 ) , 

where k0 = 0. 
Suppose that (6.12) is false for some r (1 ^ r ^ « + 1). Since kn-r+i + 

1 —» (n — r + 2, p)2, it follows that either (i) there is F' C FT such that 
\F'\ = n — r + 2 and {6^:j G i7'} is a complete subgraph of G, or (ii) r ^ n 
and there is i7" C Fr such that IF"! = p and {èj: j £ i7"} is an independent 
set. If (i) holds, then by (6.10) and the fact that btJ = 0 (1 S i < r; j £ F') 
we can choose xi, . . . ,xT successively so that 

xt e Ar-t" - ( U E'(*x) W U £'(&,)) ( U i < r), 

for the set on the right-side of this relation is a subset of AT-" of measure 1. 
This yields a contradiction since the set {xu . . . , xr] U {6 :̂ j G F'} is a 
complete subgraph with n + 1 elements. Now, suppose that (ii) holds. Since 
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F" C Fr, we have that brj = 1 (j Ç F") and (since r S n) mr{Y) = 1, where 

r = n A/'nE'ib,). 
j€F" 

We now have the contradiction that F U {6 :̂ j Ç F7'} is an independent 
subset of type coa + p. This proves (6.12). 

Since Fn+i = 0 by (6.12), it follows that B is a nulliplex. Therefore, by 
Lemma 1 and (6.12), it follows that k ^ ki + . . . + kn. This proves (6.8) 
and Theorem 3 follows. 

Condition (6.4) of Theorem 3 is known to hold in the following cases: 
(1) a = 0 (trivially); (2) a = 1 (by Ramsey's theorem (1.5)); (3) a = 2 
(Specker's theorem (1.8)); (4) a = co# (/3 > 0), the initial ordinal of cardinal 
X/9, since oufi = cô  —> (co0, co )̂2 by a theorem of Dushnik and Miller (1). 
The case a = 0 is not without interest since, in this case, Theorem 3 imme
diately yields the inequality 

q(2,n+ hp + 1) £ £ < Z ( 2 , * \ £ ) , 
i=l 

where q(r, wi, . . . , mk) is the finite Ramsey function mentioned in § 1. A 
simple induction argument on this yields the result of Erdôs and Szekeres (6) 

(6.13) g(2,s,t)^(K
S+^~2). 

I t is known (9) that (6.13) does not give best possible results; e.g., it is easy 
to verify that 

(6.14) 9 - * (4, 3)2. 

Conditions (6.3) and (6.4) are satisfied, in particular, when a = 0, n = 3, 
p = 2, and kt = i (1 S i S 3) so that (6.5) yields 10-> (4, 3)2. Thus, 
Theorem 3 does not yield the best result in this case by (6.14). However, in 
view of Lemma 2, it may be that Theorem 3 does yield best possible partition 
relations when a > 0. That is to say, if a > 0 and 

(6.15) kt^(i+ l,p)\ 

does it follow that 

(6.16) a>an + Ai + . . . + kn -^ {n + 1, co« + p)2? 

By (6.1), we see that this conjecture is true if (1) p — \ and kt — 
0 (1 S i S n)\ it is also true (trivially) when (2) n = 1 and ki = p — 1. In 
Theorems 4 and 5 we shall show that the conjecture also holds in the cases 
(3) p = 2 and (4) n = 2. 

THEOREM 4. / / a > 0, then œan + \n{n + 1) V> (n + 1, coa + 2)2. 

Remark, lî p — 2 and kt = i (1 ^ i S n), then (6.3) holds, and con
sequently 

coaw + \n(n + 1) + 1 -» (» + 1, co* + 2)2, 
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provided (6.4) also holds. In this case, the strong monotonicity condition (5.1) 
is satisfied trivially. 

Proof of Theorem^. Let 5 = S0 U . . . U SnKJX U Y (tp), t p S , = <**(y<n), 
X = {x0, . . . , xn}^ Y = {ytj: i < j < n}^. Then tp S = œan + \n{n + 1). 
For k < n, let Yk = \ytj: k £ {i,j}}. Consider the graph G = (S, E) in which 
{X, jLt}< £ E if and only if one of the following holds: 

(i) X (E St, M € Sj, and i < j < n; 
(ii) X 6 S„ M G (X - {x,}) U ( F - F,), t < »; 

(iii) X = xu ix Ç Yi9 i < n; 
(iv) X, fM G F f , i < w. 
Suppose that 4̂ = {a0j . . . , an}< C 5 is a complete subgraph of G. Then 

M ^ ^1 ^ 1 (i < w) and there are r < n and io, . . . , 2r such that io < . . . < 
îr < n and ap G 5 î p (p < r) and 

(6.17) {ar, . . . , an} C \X - U {**P}) U ( r - U F«p) . 

Also, from the definition of C, there is k < ^ such that 

(6.18) AC\ (XU Y) C {xk} \J Yk. 

From (6.17) and (6.18), it follows that h ^ ip (p < r) and 

(6.19) {<*r, . . . , an} C {**} U F . - U F,p. 
P<r 

Since the r sets F^ P Yip are mutually disjoint and each is a singleton, the 
set on the right-hand side of (6.19) contains only n — r elements and (6.19) 
is impossible. 

Now, suppose that the graph contains an independent set, B, of type 
œa + 2. Since a > 0, there is i < n such that tp B P St = of1. Then (i) 
implies that B P Sj = 0 (j ^ 0 , and hence \B P (X U F) | = 2. From (ii) 
and (iii), J5 P (X U F) C F* and this is impossible by (iv). 

THEOREM 5. If a > 0, awd g -/> (3, £)2 , //^w 

(6.20) co«2 + £ + g - 1 ^> (3, co« + £)2 . 

Remark. If (6.4) holds and if g is the largest integer consistent with the 
hypothesis, i.e. 

(6.21) q + l - + ( 3 , £ ) 2 , 

then, by Theorem 3, 

(6.22) co«2 + p + q -» (3, co* + p)\ 

Proof of Theorem 5. The hypothesis g-/> (3, £) 2 implies that p > 0. If 
£ = 1, then q = 0 and (6.20) is a special case of (6.1). We now assume that 
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p > 1 and also that q is the largest integer satisfying the hypothesis, i.e. 
(6.21) holds. Then, by Lemma 3, 

(6.23) 2 - > ( 3 , £ - l ) 2 . 

Let 5 = SQVJSXVJ A (tp), t p S , = œa (v < 2), A = {au . . . }âv,bu.. . ,&,}<. 
Then tp S = coa2 + p + q — 1. There is a partition 

[ { l , . . . , s } ] ' = L o U L 1 

such that, if P C {1, . . • , q], then 

(6.24) [P]2 C Po iwp/ww |P | < 3 

and 

(6.25) [P]2 C Pi implies \T\ < p. 

From (6.23) and (6.24) it follows that there is U C {1, . . . , q) such that 
| U\ = p — 1 and [U]2 C Pi, and there is no loss of generality if we assume 
that U = {1, . . . , £ } . 

Consider the graph G = (S, E) in which {x1y}<Q E ii and only if one of 
the following holds: 

(i) x G S0, y G -5*1 \J {a,!,; . . , <zp} ; 
(ii) x G Su y G {&i, . . . , & „ } ; 

(hi) x = ax, y = 6MÎ {X, /x}^ G P0 ; 
(iv) x = fcx, y = &„, {X, /x}^ G L0. 
Suppose t h a t X = {x, ;y, s}< is a complete subgraph of G. Then jX P\ S„| g 

l(v < 2). If x G -So, y G Si, then (i) and (ii) imply the contradiction that 
z Ç {ai, . . . , ûp} H {6i, . . . , bv) = 0. If x G So and y G Si, then {y, s} C 
{ai, . . . , âp} and is not an edge of the graph. If x G Si, then y = b\, z = frM 

and 1 ^ X < M < ^; this also implies that {y, z\< is not an edge of the graph 
since [U]2 C Pi. If x = a\, then by (iii) and (iv) y = 6M, z = 6„, and 
[{X, /z, *>}̂ ]2 C Po, a contradiction against (6.24). Finally, ii x = b\, y = &M, 
2 = &„, then by (iv) [{X, ju, P}^] 2 C Po and this again contradicts (6.24). 

Suppose that Y is an independent subset of type œa + p. Then Y = Z \J 
P( tp ) , where tp Z = coa and tp P = p. Since a > 0, there is ir < 2 such that 
t p Z n & = coa and ? n & = 0. If 7T = 0, then by (i), P = {&,: ^ G P}, 
where P C {1, . . . , #} and |P | = £. Since P contains no edge of the graph, 
it follows from (iv) that [P]2 C Pi and this contradicts (6.25). Now suppose 
that 7T = 1. Then by (ii), P = {at: i G V) \J {&,: j G W], where 
7 C ( 1 ^ | , WC{P,...,q], and | F U LF| = p. Since P is an inde
pendent set and [{1, . . . , p}]2 C Pi, it follows from (iii) and (iv) that 
[V\J W}2 C Pi, and this again contradicts (6.25). 

In contrast to (6.22), we establish the following negative result. 

THEOREM 6. If 0 < /3 ^ a < a>i and 7 < cfi, 2&e» 

co«3 + T ^ > (3, co«+ co*5)2. 
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Proof. Let 5 = S0 U Sx U S2 (tp), tp Sp = co* (p < 2), and tp S2 = coa + y. 
Since a > 0, we may write Sp = U*<WSP„ (tp) (p < 2), where 0 < tp Sp„ < of1. 
Let S2 = {xo, . . . , xu}^. Consider the graph G = (S, E) , with {u, v}< 6 E if 
and only if either (i) u G S0x, fl 6 SiM, and \x < X < co, or (ii) z> = x„ and 
^ € Ux<*S()X U UP</I»SI/I. 

If £/ = {#, v, ?£>}< is a complete subgraph of G, then | U P\ Sp| = 1 (p ^ 2) 
and there are X, /x, z> < co such that w € Sox, fl G SiM, w = x„. By (i), p < X, 
and by (ii), X < ? < /*, a contradiction. 

Suppose that F is an independent subset of S of type coa + aA Since 7 < cô , 
there is 7r < 2 such that t p F P\ ST = coa, and hence there is L = 
{Xo, . . . , Xw}< C {X: X < co} such that F H STX ^ 0 (X G L). If TT = 0, then 
(i) implies that F H Si = 0, and hence F H S2 is infinite and there is v > X0 

such that xv G F. Condition (ii) implies that there is an edge of the graph 
joining xv and a point of F C\ S^x; i.e., F is not independent. I t follows that 
t p F P \ S o < coa, and therefore ir = 1 and F P \ S 2 ?£ 0. Hence, there are v 
and n such that x„ £ F and *> < \n, and it follows from (ii) that F is not 
independent, 

We conclude by establishing certain extensions of (1.10) and (1.11) which 
are analogous to (6.20) and (6.21). 

THEOREM 7. If q ^ (3, p)2 and q + 1 -> (3, p)\ then 

(6.26) co4 + g + l -*(3 ,co 3 + £)2 , 

and 

(6.27) co4 + g-7^ (3, co3 + £)2 . 

Proof. Let S = A KJ B (tp), tp A = co4, tp £ = q + 1. Suppose that 
G = (S, £ ) is a graph containing no complete subgraph with three elements 
and no independent subset of type co3 + p. Then for any x £ S, E(x) is an 
independent set and t p £ ( x ) < co3 + £ < co4. Since co4 —» (co4)^1, it follows 
that ^4r = 4̂ — U X Ç B ^ ( ^ ) has order type co4. By Theorem 1, there is an 
independent set A" C A' of type co3. Furthermore, since q + 1 —> (3, £)2 , 
there is an independent set Br CZ B such that |J5'| = £. Then A" \J B' is an 
independent set of type co3 + p. This contradiction proves (6.26). 

Now consider the set A \J C (tp), where tp A = co4 and tp C = q. From 
the special case (1.11) of Theorem 2 and the fact that q -fr (3, p)2, it follows 
that there are graphs Gi = (A,Ei) and G2 = (C, E2) neither of which 
contain complete subgraphs of three elements, G\ contains no independent 
set of type co3 + 1, and G2 contains no independent set of p elements. Let G 
be the graph (A U C , £ i U E2). 

If X is a complete subgraph of G, then either X C A or X C C, and X is a 
complete subgraph of G\ or G2. Hence, \X\ < 3. If F is an independent subset 
of the graph G, then Y C\ A and Y C\ C are independent subsets of Gi and 
G2, respectively. Therefore, t p F = t p ( F H 4 ) + t p ( F H C) ^ co3 + (£ - 1). 
This proves (6.27). 
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