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Abstract. Functorial semi-norms on singular homology give refined ‘size’
information on singular homology classes. A fundamental example is the �1-semi-
norm. We show that there exist finite functorial semi-norms on singular homology
that are exotic in the sense that they are not carried by the �1-semi-norm.
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1. Introduction. Functorial semi-norms on singular homology give refined
‘size’ information on singular homology classes. On the one hand, functorial semi-
norms lead to obstructions for mapping degrees. On the other hand, mapping
degrees allow to construct functorial semi-norms on singular homology. A
fundamental example of a finite functorial semi-norm on singular homology is
the �1-semi-norm underlying the definition of simplicial volume (see Section 2 for
the definitions).

While the general classification of functorial semi-norms on singular
homology is out of reach, one can ask for the role of the �1-semi-norm amongst
all finite functorial semi-norms [1, Question 5.8]. A simple rescaling manipulation
shows that not all finite functorial semi-norms on singular homology are
dominated by a multiple of the �1-semi-norm [1, Section 5]. Relaxing the
domination condition, we introduce the following relation between functorial
semi-norms:

DEFINITION 1.1 (carriers of functorial semi-norms). Let d ∈ N. A functorial
semi-norm | · | on Hd( · ; R) carries a functorial semi-norm | · |′ if for all topological
spaces X and all α ∈ Hd(X; R), we have

|α| = 0 =⇒ |α|′ = 0.

In these terms, the current paper is concerned with the question whether every
finite functorial semi-norm on singular homology is carried by the �1-semi-norm.
All finite functorial semi-norms on Hd( · ; R) that are multiplicative under finite
coverings are carried by the �1-semi-norm in a strong sense [1, Proposition 7.11].
However, if the multiplicativity condition is dropped, then exotic finite functorial
semi-norms appear.

THEOREM 1.2. Let d ∈ {3} ∪ N≥5. Then, there exists a finite functorial semi-norm
on Hd( · ; R) that is not carried by the �1-semi-norm.
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In particular, this answers a question by Crowley and Löh on ‘maximality’ of
the �1-semi-norm in the negative [1, Question 5.8].

Our construction of exotic finite functorial semi-norms is based on the parallel
observation about mapping degrees of manifolds:

THEOREM 1.3. Let d ∈ {3} ∪ N≥5. Then, there exists a strongly inflexible oriented
closed connected d-manifold M with ‖M‖ = 0. Moreover, we can choose M to be
aspherical.

In contrast, Theorem 1.3 is clearly wrong in dimension 2. However, it is an
open problem to decide whether all finite functorial semi-norms on H2( · ; R) are
carried by the �1-semi-norm. In the case of dimension 4, both Theorems 1.2 and 1.3
remain open.

1.1. Organisation of this paper. We recall the basic terminology for
functorial semi-norms in Section 2. Strongly inflexible manifolds are discussed
in Section 3. The proof of Theorem 1.3 is given in Section 3.3 and Theorem 1.2 is
then derived in Section 4. Moreover, we briefly explain the relation with secondary
simplicial volume in Section 3.4.

2. Functorial semi-norms. We begin by recalling the terminology for
functorial semi-norms and the �1-semi-norm in particular.

2.1. Terminology. In the following, semi-norms are allowed to have values
in R≥0 ∪ {∞}, where we use the usual conventions that a + ∞ = ∞ and b · ∞ = ∞
holds for all a ∈ R≥0 and all b ∈ R>0, respectively.

DEFINITION 2.1 (functorial semi-norm). Let d ∈ N. A functorial semi-norm
on Hd( · ; R) is a lift of the functor Hd( · ; R) : Top −→ VectR to a functor Top −→
Vectsn

R , where Vectsn
R denotes the category of semi-normed R-vector spaces with

norm non-increasing R-linear maps. More concretely, a functorial semi-norm
on Hd( · ; R) consists of a choice of a semi-norm | · | on Hd(X; R) for every
topological space such that the following compatibility holds: If f : X −→ Y is a
continuous map, then

∀α∈Hd (X;R)
∣∣Hd( f ; R)(α)

∣∣ ≤ |α|.

A functorial semi-norm on Hd( · ; R) is finite if |α| < ∞ for all singular
homology classes α in degree d.

REMARK 2.2. If | · | is a functorial semi-norm on Hd( · ; R) and if f : N −→ M
is a continuous map between oriented closed connected d-manifolds, then

|deg f | ·
∣∣[M]R

∣∣ ≤ ∣∣[N]R
∣∣.

In particular: If 0 < |[M]R| < ∞, then M is strongly inflexible (Definition 3.1).

The classical example of a finite functorial semi-norm on Hd( · ; R) is the
�1-semi-norm (see Section 2.2 below). Other examples of functorial semi-norms
can be constructed by means of manifold topology, e.g., the products-of-surfaces
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semi-norm [1, Sections 2, 7] or infinite functorial semi-norms that exhibit exotic
behaviour on certain classes of simply connected spaces of high dimension [1,
Theorem 1.2]; such a construction principle via manifold topology will be recalled
in Section 4.1.

2.2. The �1-semi-norm and simplicial volume. For the sake of complete-
ness, we include the definition of the �1-semi-norm on singular homology and
simplicial volume.

DEFINITION 2.3 (�1-semi-norm). Let d ∈ N and let X be a topological space.
For a singular chain c = ∑m

j=1 aj · σj ∈ Cd(X; R) (in reduced form), we define

|c|1 :=
m

∑
j=1

|aj|.

That is, | · |1 is the �1-norm on Cd(X; R) associated with the basis given by
all singular d-simplices in X. The semi-norm ‖ · ‖1 on Hd(X; R) induced by the
norm | · |1 via

‖ · ‖1 : Hd(X; R) −→ R≥0

α �−→ inf
{
|c|1

∣∣ c ∈ Cd(X; R), ∂c = 0, [c] = α
}

is the �1-semi-norm on Hd(X; R).

A straightforward calculation shows that the �1-semi-norm indeed is a
functorial semi-norm on Hd( · ; R). Applying this semi-norm to fundamental
classes of manifolds gives rise to Gromov’s simplicial volume [4]:

DEFINITION 2.4 (simplicial volume/Gromov norm). The simplicial volume of
an oriented closed connected manifold M is defined by

‖M‖ :=
∥∥[M]R

∥∥
1 ∈ R≥0.

Geometrically speaking, simplicial volume measures how many singular
simplices are needed to reconstruct (the real fundamental class of) the given
manifold. Simplicial volume allows for interesting applications, linking topology
and geometry of manifolds [4,9]. Useful algebraic tools in the context of simplicial
volume are so-called bounded cohomology [4, 5] and �1-homology [8].

3. Strongly inflexible manifolds. We will now focus on the manifold
aspects, discussing the basic terminology of (strong) inflexibility and proving
Theorem 1.3. Moreover, we will discuss the meaning of this result in terms of
secondary simplicial volume (Section 3.4).

3.1. Terminology. We first recall the definition of (strong) inflexibility [1].

DEFINITION 3.1 (inflexibility). Let M be an oriented closed connected
manifold of dimension n ∈ N. For oriented closed connected n-manifolds N, we
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write

D(N, M) :=
{

deg f
∣∣ f ∈ map(N, M)

}
.

We call M inflexible if D(M, M) is finite. We call M strongly inflexible if for every
oriented closed connected n-manifold N the set D(N, M) is finite. Conversely, we
call M weakly flexible if it is not strongly inflexible, i.e., if there exists an oriented
closed connected n-manifold N such that D(N, M) is infinite.

For example, spheres and tori are flexible (i.e., not inflexible). Oriented
closed connected hyperbolic manifolds are strongly inflexible [1, 4]. In fact, all
oriented closed connected manifolds with non-zero simplicial volume are strongly
inflexible. More conceptually, all finite functorial semi-norms provide obstructions
to strong inflexibility and vice versa [1, 10]. We will discuss this relation in more
detail in Section 4.1.

3.2. Products of strongly inflexible manifolds. In many examples, it is
known that products of inflexible manifolds are inflexible [1]. However, it is not
clear that this holds in general. In the case of strongly inflexible manifolds, the
situation simplifies as follows.

PROPOSITION 3.2 (products of strongly inflexible manifolds). Let M1 and M2
be oriented closed connected strongly inflexible manifolds. Then, also M1 × M2 is strongly
inflexible.

The proof is based on Thom’s representation of homology classes
by manifolds and straightforward calculations in singular homology and
cohomology; similar arguments appear in related work on domination of/by
product manifolds [6, 7, 12].

Proof. We abbreviate n1 := dim M1, n2 := dim M2 and n := dim M1 × M2 =
n1 + n2. Let N be an oriented closed connected n-manifold. We need to show that
D(N, M1 × M2) is finite.

As first step, we will prove that the sets

F1 :=
{

Hn1( f1; Q)
∣∣ f1 ∈ map(N, M1)

}
⊂ HomQ

(
Hn1(N; Q), Hn1(M1; Q)

)
F2 :=

{
Hn2( f2; Q)

∣∣ f2 ∈ map(N, M2)
}
⊂ HomQ

(
Hn2(N; Q), Hn2(M2; Q)

)

are finite.
Because N is a closed manifold we know that Hn1(N; Q) is finite dimensional.

Let B1 ⊂ Hn1(N; Q) be a Q-basis. Let β ∈ B1. In view of Thom’s representation
of homology classes by manifolds [13] there exists an oriented closed connected
n1-manifold Nβ, a continuous map gβ : Nβ −→ N and a kβ ∈ Q \ {0} with

Hn1(gβ; Q)[Nβ]Q = kβ · β ∈ Hn1(N; Q).

Because M1 is strongly inflexible, the set D(Nβ, M1) is finite. Composition
with gβ shows, therefore, that also the set

{
d ∈ Z

∣∣ ∃ f1∈map(N,M1) Hn1( f1; Q)(β) = d · [M1]Q
}
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is finite. Because B1 is a finite Q-basis of Hn1(N; Q), we hence obtain that the set
F1 is finite. For the same reason also F2 is finite.

As second step, we will now combine the finiteness of F1 and F2 with the
cohomological cross-product to derive finiteness of D(N, M1 × M2).

To this end, let f ∈ map(N, M1 × M2). We write

f1 := p1 ◦ f ∈ map(N, M1) and f2 := p2 ◦ f ∈ map(N, M2),

where p1 : M1 × M2 −→ M1 and p2 : M1 × M2 −→ M2 are the projections onto
the factors. We then obtain for the cohomological fundamental classes with Q-
coefficients that

deg f · [M1 × M2]∗Q = Hn( f ; Q)[M1 × M2]∗Q
= ε · Hn( f ; Q)

(
[M1]∗Q × [M2]∗Q

)
= ε · Hn( f ; Q)

(
Hn1(p1; Q)[M1]∗Q ∪ Hn2(p2; Q)[M2]∗Q

)
= ε · Hn1( f1; Q)[M1]∗Q ∪ Hn2( f2; Q)[M2]∗Q,

where ε := (−1)n1·n2 . In particular, the degree deg f is uniquely determined
by Hn1( f1; Q) and Hn2( f2; Q), which in turn (by the universal coefficient theorem)
are uniquely determined by Hn1( f1; Q) ∈ F1 and Hn2( f2; Q) ∈ F2. Because the sets
F1 and F2 are finite by the first step, we obtain that also D(N, M1 × M2) is finite. �

3.3. Strongly inflexible manifolds with trivial simplicial volume. We will
now give examples of stronlgy inflexible aspherical manifolds whose simplicial
volume is zero. We start with the case of dimension 3 and then use inheritance of
strong inflexibility under products to deal with the general case.

EXAMPLE 3.3 (dimension 3). Let M be the total space of an orientable non-
trivial S1-bundle over an oriented closed connected surface of genus at least 2.
Then, M is strongly inflexible (see Corollary 3.9 below) and aspherical. On the
other hand, it is known that ‖M‖ = 0 [4, 5].

In combination with Proposition 3.2, we can now prove Theorem 1.3.

Proof of Theorem 1.3. Let M1 be an oriented closed connected aspherical 3-
manifold that is strongly inflexible and satisfies ‖M1‖ = 0; such manifolds exist
by Example 3.3.

If d ≥ 5, we take an oriented closed connected hyperbolic manifold M2 of
dimension d − 3. Then, M2 is aspherical and M2 is strongly inflexible.

In view of Proposition 3.2 also the product M1 × M2 is strongly inflexible.
Moreover, by construction, M1 × M2 is an oriented closed connected aspherical
d-manifold and we have [4]

‖M1 × M2‖ ≤
(

d
3

)
· ‖M1‖ · ‖M2‖ = 0,

as desired. �
REMARK 3.4. Using fundamental properties of �1-homology, one can see that

the examples of strongly inflexible manifolds M constructed in the proof of
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Theorem 1.3 do not only have trivial simplicial volume but also are �1-invisible,
i.e., the image [M]�

1 ∈ H�1
∗ (M; R) of [M]R in �1-homology is the zero class [8,

Example 6.7]. In other words, �1-invisibility of manifolds does not imply weak
flexiblity. Notice that it is an open problem whether all manifolds with trivial
simplicial volume are �1-invisible.

We conclude this section with some open problems on strong inflexibility.
Generalising Example 3.3, one could ask:

QUESTION 3.5. Let B be an oriented closed connected hyperbolic manifold and let
M −→ B be a non-trivial circle bundle over B. Under which conditions will M be strongly
inflexible?

In general, the fundamental class of B cannot be lifted to M, and hence does
not provide a useful obstruction on M. However, one could try to use a lift in �1-
homology. More concretely: Let p : M −→ B be a circle bundle. Then, the induced
map H�1

∗ (p; R) : H�1
∗ (M; R) −→ H�1

∗ (B; R) is an isometric isomorphism [8]. In
particular, if M and B are oriented closed connected manifolds of dimension n
and n − 1, respectively, we obtain the codimension 1 class

α := H�1

n−1(p; R)−1([B]�
1
) ∈ H�1

n−1(M; R)

in �1-homology of M. For example, in the case that B is a hyperbolic surface and
p is a non-trivial bundle, this class was considered by Derbez in the study of local
rigidity of aspherical 3-manifolds [2]. More generally, if B is an oriented closed
connected hyperbolic manifold, the class α will be non-trivial – it will even have
non-zero �1-semi-norm. Can this class be used as an obstruction to prove strong
inflexibility of M ?

At the other extreme, it also remains an open problem to determine
whether there exist simply connected strongly inflexible manifolds (of non-zero
dimension).

3.4. Secondary simplicial volume. Secondary simplicial volume is a
refinement of simplicial volume that allows to give refined information about
vanishing of simplicial volume.

DEFINITION 3.6 (secondary simplicial volume). Let M be an oriented closed
connected manifold of dimension n ∈ N. The secondary simplicial volume of M is
defined to be the integral sequence

Σ(M) :=
(∥∥k · [M]Z

∥∥
1,Z

)
k∈N

,

where ‖ · ‖1,Z is the semi-norm on Hn( · ; Z) induced by the Z-valued �1-norm
on Cn( · ; Z).

REMARK 3.7. For all oriented closed connected manifolds M, the following
holds [10, Remark 5.4]:

||M|| = inf
k∈N>0

1
k
·
∥∥k · [M]Z

∥∥
1,Z.
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In particular, vanishing of the simplicial volume of M can be expressed in terms
of the growth behaviour of the sequence Σ(M).

The strongest vanishing of simplicial volume occurs if the secondary
simplicial volume contains a bounded subsequence. We recall the complete
geometric characterisation of such manifolds in Propositions 3.8 and 3.11 in terms
of flexibility.

PROPOSITION 3.8 ([10, Corollary 5.5]). Let M be an oriented closed connected
manifold of dimension n ∈ N. Then, the following are equivalent:

(1) The manifold M is weakly flexible.
(2) The secondary simplicial volume Σ(M) contains a bounded subsequence.
(3) All finite functorial semi-norms on Hn( · ; R) vanish on [M]R.

We will now focus on the 3-dimensional case. The classification of weakly
flexible 3-manifolds by Derbez, Sun, and Wang [3] translates into the following
result.

COROLLARY 3.9. Let M be an oriented closed connected 3-manifold. Then, the
following are equivalent:

(1) The secondary simplicial volume Σ(M) contains a bounded subsequence.
(2) Each prime summand of M is covered by a torus bundle over S1, by a trivial S1-bundle

or by S3.
In particular, the 3-manifolds from Example 3.3 are strongly inflexible.

REMARK 3.10. In the previous section, we observed that the 3-manifolds
from Example 3.3 even give examples for �1-invisible manifolds with non-
trivial secondary simplicial volume. In contrast, we asked whether all manifolds
with trivial secondary simplicial volume are �1-invisible. In dimension 3, this
easily follows from the characterisation above and the following two facts [8,
Example 6.7]:

– Total spaces of fibrations of oriented closed connected manifolds with fibre an
oriented closed connected manifold that has amenable fundamental group are
�1-invisible.

– The connected sum of two �1-invisible 3-manifolds is �1-invisible.

PROPOSITION 3.11 ([11, Theorem 3.2]). Let M be an oriented closed connected
manifold of dimension n ∈ N>0. Then, the following are equivalent:

(1) The secondary simplicial volume Σ(M) contains a bounded subsequence with
bound 1.

(2) The manifold M is dominated by Sn (i.e., there exists a map Sn −→ M of non-zero
degree) and n is odd.

COROLLARY 3.12. Let M be an oriented closed connected 3-manifold. Then, the
following are equivalent:

(1) The secondary simplicial volume Σ(M) contains a bounded subsequence with
bound 1.

(2) The manifold M is spherical, i.e., finitely covered by S3.

293

https://doi.org/10.1017/S0017089518000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000216


DANIEL FAUSER AND CLARA LÖH

Proof. If f : N −→ M is a map of non-trivial degree between oriented closed
connected manifolds of the same dimension, then the image of π1( f ) is a finite
index subgroup in π1(M). Therefore, it follows by the Elliptization Theorem, that
domination by S3 and being finitely covered by S3 is equivalent for oriented closed
connected 3-manifolds. �

4. Exotic finite functorial semi-norms. We will first recall how strongly
inflexible manifolds generate interesting functorial semi-norms (Section 4.1).
Combining this construction with Theorem 1.3 will then complete the proof of
Theorem 1.2 (Section 4.2).

4.1. Generating functorial semi-norms via manifolds. We will apply the
following principle to generate exotic functorial semi-norms.

PROPOSITION 4.1 (domination semi-norm associated with a manifold [1,
Section 7.1]). Let d ∈ N and let M be an oriented closed connected d-manifold. Then,
there exists a functorial semi-norm | · |M on Hd( · ; R) satisfying

∣∣[N]R
∣∣

M = sup
{
|D|

∣∣ D ∈ D(N, M)
}
∈ R≥0 ∪ {∞}

for all oriented closed connected d-manifolds N. The functorial semi-norm | · |M is finite if
and only if M is strongly inflexible.

For instance, in this way, functorial semi-norms on H64( · ; R) have been
constructed that are non-trivial on certain classes of simply connected spaces [1,
Theorem 1.2]. However, it is not known whether these are examples of finite
functorial semi-norms.

4.2. Construction of exotic finite functorial semi-norms. We finally
complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Let d ∈ {3} ∪ N≥5. By Theorem 1.3 there exists a strongly
inflexible oriented closed connected d-manifold M with ‖M‖ = 0. Let | · |M be the
associated domination semi-norm on Hd( · ; R); because M is strongly inflexible,
this functorial semi-norm is indeed finite. By construction, we have

∣∣[M]R
∣∣

M = sup
{
|D|

∣∣ D ∈ D(M, M)
}

= 1,

but
∥∥[M]R

∥∥
1 = ‖M‖ = 0. In particular, | · |M is not carried by the �1-semi-norm in

the sense of Definition 1.1 (this holds even on fundamental classes of aspherical
manifolds). �

QUESTION 4.2. Does there exist a finite functorial semi-norm on Hd( · ; R) that
carries all other finite functorial semi-norms on Hd( · ; R) ?
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