ON A TRANSCENDENGE PROBLEM OF K. MAHLER

K. K. KUBOTA

K. Mahler [8] has proposed the following problem. Let Ω_{r} for $r \geqq 1$ be a sequence of $n \times n$ non-negative rational integer matrices. Each $\Omega_{r}=\left(\omega_{r i j}\right)$ defines a map $\Omega_{r}: \mathbf{C}^{n} \rightarrow \mathbf{C}^{n}$ by

$$
z=\left(z_{1}, \ldots, z_{n}\right) \rightarrow \Omega_{r} z=\left(\prod_{j=1}^{n} z_{j}^{\omega_{r 1 j}}, \ldots, \prod_{j=1}^{n} z_{j}^{\omega_{r n j}}\right) .
$$

Let $z_{0}=\left(z_{01}, \ldots, z_{0 n}\right)$ be an algebraic point and $f_{r}(z)$ for $r \geqq 0$ be a sequence of convergent power series satisfying recursive relations of the form

$$
f_{r}(z)=a_{r}(z) f_{r+1}\left(\Omega_{r+1} z\right)+b_{r}(z)
$$

where the $a_{r}(z)$ and $b_{r}(z)$ are rational functions. For certain special classes of matrices, find conditions on the $z_{0_{j}}$ and f_{i} which imply that $f_{0}\left(z_{0}\right)$ is transcendental.

For example, Mahler $[\mathbf{6} ; 7]$ has shown that for integers $\rho \geqq 2$, the transcendental function $f(z)=\sum_{k=0}^{\infty} z^{\rho^{k}}$ which satisfies

$$
f(z)=f\left(z^{\rho}\right)+z
$$

(corresponding to the case $n=1, \Omega_{r}=(\rho), f_{r}=f, a_{r}=1$, and $b_{r}=z$) takes on transcendental values at all algebraic points z_{0} in the punctured open unit disc. To generalize this situation, one might take a sequence $\rho_{1}, \rho_{2}, \ldots$ of 2 's and 3's and consider the functions

$$
f_{\tau}(z)=\sum_{k=\tau}^{\infty} z^{\rho_{r+1} \ldots \rho_{k}}
$$

which satisfy the functional equations

$$
f_{r}(z)=f_{r+1}\left(\Omega_{r+1} z\right)+z
$$

where $\Omega_{r}=\left(\rho_{r}\right)$. Then as a special case of the theorem proved below, it will be shown that the function

$$
f_{0}(z)=\sum_{k=0}^{\infty} z^{\rho^{(k)}}
$$

where $\rho^{(k)}=\rho_{1} \rho_{2} \ldots \rho_{k}$ takes on transcendental values at all algebraic points in the punctured open unit disc.

Results along these same lines have been obtained independently by Loxton and van der Poorten. Their very strong Theorem 1 in [4, III] amply contains

[^0]most of the examples, including that of the last paragraph, which can be obtained using the theorem given below. However, the approach given here has at least the advantage that it generalizes readily to give an algebraic independence result [2]. Further references and details can be found in the survey article [5].

1. General functional equations. Let n be a positive integer and $z=$ $\left(z_{1}, \ldots, z_{n}\right)$ be an n-tuple of indeterminants. The ring $\mathbf{C}[[z]]$ of n-variable complex formal power series is topologized with its \mathfrak{M}-adic topology [$\mathbf{9}$] where \mathfrak{M} is the ideal generated by z_{1}, \ldots, z_{n}.

Lemma. Let D be a polydisc containing the origin in \mathbf{C}^{n}, and f_{i} for $i \geqq 0$ be a sequence of power series converging in D, with coefficients in a subfield K of \mathbf{C}, and satisfying
(1) $\sup f_{i}(z)<\infty, \quad z \in D, i \geqq 0$.

Suppose that there is a subsequence $f_{i(j)}$ for $j \geqq 1$ of the f_{i} which is compact and such that the set of limit points of the subsequence is not a finite set of algebraic functions. Let ρ_{i} for $i \geqq 1$ be a sequence of integers all larger than one. Let $z_{0}=$ $\left(z_{01}, \ldots, z_{0_{n}}\right) \in \mathbf{C}^{n}$ be a point with $0<\left|z_{0 i}\right|<1$ for $i=1, \ldots, n$ and such that the $\left|z_{0 i}\right|$ are multiplicatively independent. Then, for every $p \in \mathbf{N}^{+}$, there is a polynomial $\mathscr{A}(z, y) \in K\left[z_{1}, \ldots, z_{n}, y\right]$ of degree at most p in each of its $n+1$ variables and such that for infinitely many $k \in \mathbf{N}^{+}$, one has the inequality

$$
\begin{equation*}
0 \neq\left|\mathscr{A}\left(z_{0}^{(k)}, f_{k}\left(z_{0}^{k}\right)\right)\right|<\exp \left(-c_{1} p^{1+n} \rho^{(k)}\right) \tag{2}
\end{equation*}
$$

where $\rho^{(k)}=\rho_{1} \rho_{2} \ldots \rho_{k}, z_{0}{ }^{(k)}=\left(z_{01}{ }^{\left({ }^{(k)}\right.}, \ldots, z_{0 n}{ }^{\rho^{(k)}}\right)$, and $c_{1}>0$ is a positive real number independent of both p and k.

Proof. Since $F=\left\{f_{i(j)}\right\}$ is compact, its elements lie in at most finitely many cosets of $\mathbf{C}[[z]]$ modulo \mathfrak{M}^{κ} where $\mathfrak{M}=\left(z_{1}, \ldots, z_{n}\right)$ and $\kappa=\left[p^{1+n^{-1}}\right]+1$. Therefore, there is an $m \in \mathbf{N}^{+}$such that the subsequence $F \cap\left\{f_{i(m)}+\mathfrak{M}^{\kappa}\right\}$ has a set of limit points which is other than a finite set of algebraic functions.

There is a non-zero polynomial $\mathscr{A}(z, y) \in K[z, y]$ of degree at most p in each of the $n+1$ variables and such that for every $h \in \mathbf{C}[[z]]$ with $h \equiv$ $f_{i(m)}\left(\bmod \mathfrak{M}^{\kappa}\right)$, one has $\mathscr{A}(z, h(z)) \in \mathfrak{M}^{\kappa}$. In fact, comparing coefficients in

$$
\mathscr{A}(z, h(z))=\sum_{i_{1} \ldots i_{n}} a_{i_{1} \ldots i_{n}} z_{1}^{i_{1}} \ldots z_{n}^{i_{n}}
$$

one can express the $a_{i_{1} \ldots i_{n}}$ as linear forms in the $(p+1)^{n+1}$ coefficients of $\mathscr{A}(z, y)$. Further, if $0 \leqq i_{1}+\ldots i_{n} \leqq p^{1+n^{-1}}$, then the coefficients of the form describing $a_{i_{1} \ldots i_{n}}$ do not depend on the choice of h in the coset $f_{i(m)}+\mathfrak{M}^{\kappa}$. Now there are at most $\left(p^{1+n^{-1}}+1\right)^{n}$ such n-tuples of indices, and

$$
\left(p^{1+n^{-1}}+1\right)^{n}<(p+1)^{n+1}
$$

Therefore the existence of $\mathscr{A}(z, y)$ amounts to the existence of a non-trivial
solution of a homogeneous system of linear equations with more variables than equations.

By the choice of m, there is a subsequence $\left\{f_{j(k)}\right\}$ of $F \cap\left\{f_{i(m)}+\mathfrak{M}^{\star}\right\}$ which converges \mathfrak{M}-adically to a formal power series g which is not a root of $\mathscr{A}(z, y)=$ 0 . The $g_{i}(z)=\mathscr{A}\left(z, f_{i}(z)\right)$ are defined for $z \in D$ and are bounded above in absolute value uniformly in D and independently of i by Equation (1). By Cauchy's inequality, there exist positive real numbers $R_{0}, R_{1}, \ldots, R_{n}$ with

$$
\left|g_{i h_{1} \ldots h_{n}}\right| \leqq R_{0} R_{1}^{h_{1}} \ldots R_{n}^{h_{n}}
$$

for all $h_{1}, \ldots, h_{n} \geqq 0$ where $g_{i h_{1} \ldots h_{n}}$ denotes the coefficient of $z_{1}^{h_{1}} \ldots z_{n}^{h_{n}}$ in $g_{i}(z)$.

Let S be the set of non-zero monomials of g partially ordered via $A z_{1}{ }^{h_{1}} \ldots z_{n}{ }^{h_{n}}$ $\leqq B z_{1}{ }^{j_{1}} \ldots z_{n}^{j_{n}} \Leftrightarrow h_{i} \leqq j_{i}$ for $i=1, \ldots, n$. The set T of minimal elements of S is finite [1, Lemma 3]. Since the $\left|z_{01}\right|, \ldots,\left|z_{0_{n}}\right|$ are multiplicatively independent, one can order T via

$$
A z_{1}^{h_{1}} \ldots z_{n}^{h_{n}} \leqq B z_{1}^{j_{1}} \ldots z_{n}^{j_{n}} \Leftrightarrow \prod_{k=1}^{n}\left|z_{0 k}\right|^{h_{k}-j_{k}} \leqq 1
$$

Let $A z_{1}^{m_{1}} \ldots z_{n}^{m_{n}}$ denote the largest element of T.
If one defines $z_{0}{ }^{t}=\left(z_{01}{ }^{t}, \ldots, z_{0_{n}}{ }^{t}\right)$, then

$$
\begin{equation*}
\lim _{\substack{k \rightarrow \infty \\ t \rightarrow \infty}} \frac{g_{j(k)}\left(z_{0}^{t}\right)}{A\left(z_{01} 1_{1}^{m_{1}} \ldots z_{0 n}^{m_{n}}\right)^{t}}=1 . \tag{3}
\end{equation*}
$$

In fact, there is a positive integer k_{0} such that for all $k \geqq k_{0}$, one has $f_{j(k)} \equiv g$ $\left(\bmod \mathfrak{M}^{r}\right)$ where τ is some fixed integer larger than the total degrees of all the elements of T. Letting

$$
H_{i_{1} \ldots i_{n}}(z)=\sum_{j_{1}=i_{n}}^{\infty} \ldots \sum_{j_{n}=i_{n}}^{\infty} R_{0} R_{1}^{j_{1}} \ldots R_{n}^{j_{n}} z_{1}^{j_{1}-i_{1}} \ldots z_{n}^{j_{n}-i_{n}},
$$

one has the obvious majorization

$$
\begin{aligned}
&\left|\frac{g_{j(k)}\left(z_{0}^{t}\right)}{A\left(z_{01}{ }^{m_{1}} \ldots z_{0_{n}}{ }^{m_{n}}\right)^{t}}-1\right| \leqq \sum \frac{\prod_{r=1}^{n}\left|z_{0 r}\right|^{(i r-m r) t}}{|A|} H_{i_{1} \ldots i_{n}}\left(\left|z_{0}\right|^{t}\right) \\
& \quad+\sum_{r=1}^{n} \frac{\left|z_{0}\right|^{t}}{|A|} H_{m_{1} m_{2} \ldots m_{r}+1 \ldots m_{n}}\left(\left|z_{0}\right|^{t}\right)
\end{aligned}
$$

for $k \geqq k_{0}$ where $\left|z_{0}\right|=\left(\left|z_{01}\right|, \ldots,\left|z_{0 n}\right|\right)$ and the first summation is over all $B z_{1}^{i_{1}} \ldots z_{n}^{i_{n}}$ in T except for $A z_{1}^{m_{1}} \ldots z_{n}^{m_{n}}$. Since the $z_{0 j}$ are in the open unit disc, the $H_{i_{1} \ldots i_{n}}\left(\left|z_{0}\right|^{t}\right)$ and the $H_{m_{1} \ldots m_{r}+1 \ldots m_{n}}\left(\left|z_{0}\right|^{t}\right)$ are bounded for t large, and $\left|z_{0}\right|^{t} \rightarrow 0$ as $t \rightarrow \infty$. By the choice of the m_{i}, we also have $\left(\prod_{r=1}^{n}\left|z_{0 r}\right|^{i_{r}-m_{r}}\right)^{t}$ $\rightarrow 0$ as $t \rightarrow \infty$ which proves Equation (3).

By the construction of the auxiliary polynomial $\mathscr{A}(z, y)$, one knows that $m_{1}+\ldots+m_{n} \geqq \kappa>p^{1+n^{-1}}$. Therefore

$$
|A| \prod_{i=1}^{n}\left|z_{0 i}\right|^{m_{i \rho}(j(k))} \geqq|A| * \operatorname{xp}\left(-c_{2} p^{1+n^{-1}} \rho^{(j(k))}\right) \geqq \exp \left(-2 c_{2} p^{1+n^{-1}} \rho^{(j(k))}\right)
$$

where $c_{2}>0$ is independent of p and k, and where the second inequality is claimed only for k larger than some function of p. Combining this last inequality with Equation (3) gives the assertion of the lemma.

Theorem. Let D, K, f_{i}, ρ_{i} and z_{0} be as in the statement of the lemma and suppose in addition that K is a number field and the $z_{0 j}$ are algebraic numbers. For $i \geqq 1$, let $T_{i}: \mathbf{A}^{n} \times \mathbf{P}^{m} \rightarrow \mathbf{A}^{n} \times \mathbf{P}^{m}$ be a rational map of the product of affine n-space \mathbf{A}^{n} and projective m-space \mathbf{P}^{m}. Assume that T_{i} is defined by

$$
\left(z_{1}, \ldots, z_{n}, w_{0}, \ldots, w_{m}\right) \mapsto\left(z_{1}^{\rho i}, \ldots, z_{n}^{\rho i}, t_{i 0}(z, w), \ldots, t_{i m}(z, w)\right)
$$

where the $t_{i j}(z, w) \in K[z, w]$ are of total degree at most b in the variables z_{1}, \ldots, z_{n}, have algebraic integer coefficients in K, and are forms in the variables w_{0}, \ldots, w_{m} of degree d_{i}. Suppose, in addition, that the maximum B_{i} of the absolute values of the conjugates of the coefficients of the $t_{i j}(w)$ satisfies
(4) $\log B_{i} \ll \rho^{(i)}$
where $\rho^{(i)}=\rho_{1} \rho_{2} \ldots \rho_{i}$, and that there is $a \lambda>1$ with

$$
\begin{equation*}
\rho_{i} / d_{i} \geqq \lambda>1 \tag{5}
\end{equation*}
$$

Let $w_{0}=\left(w_{01}, \ldots, w_{0 m}\right)$ be such that for all $k \geqq 0$,

$$
\begin{aligned}
& T^{(k)}\left(z_{0}, w_{0}\right)=T_{k} \circ \ldots \circ T_{1}\left(z_{0}, w_{0}\right) \\
& =\left(z_{01}{ }^{{ }^{(k)}}, \ldots, z_{0 n}{ }^{(k)}, w_{01}{ }^{(k)}, \ldots, w_{0 m}{ }^{(k)}\right)
\end{aligned}
$$

is defined and

$$
\begin{equation*}
f_{k}\left(z_{01}{ }^{(k)}, \ldots, z_{0 n}{ }^{(k)}\right)=w_{01}{ }^{(k)} / w_{00}{ }^{(k)} . \tag{6}
\end{equation*}
$$

Then w_{0} is a transcendental point.
Proof. If not, then by extending K if necessary, it may be assumed that K contains the coordinates of z_{0} and w_{0}. By multiplying through by a common denominator, it may be assumed that the w_{0} are algebraic integers. For each positive integer p, apply the lemma to obtain an auxiliary polynomial $\mathscr{A}(z, y)$. Clearly by multiplying $\mathscr{A}(z, y)$ by a common denominator of its coefficients, it may be assumed that $\mathscr{A}(z, y)$ has algebraic integer coefficients.

The idea of the proof being to use the Liouville inequality to obtain a contradiction with Equation (2), we make a slight digression to review the properties of size. Recall [3] that the size $s(\alpha)$ of $\alpha \in K$ is defined by

$$
s(\alpha)=\max (\log \operatorname{den} \alpha, \log |\bar{\alpha}|)
$$

where den α is the denominator of α and $|\bar{\alpha}|$ is the maximum of the absolute
values of the conjugates of α. If $\alpha_{1}, \ldots, \alpha_{r} \in K$, then clearly

$$
\begin{equation*}
s\left(\prod_{i=1}^{\tau} \alpha_{i}\right) \leqq \sum_{i=1}^{\tau} s\left(\alpha_{i}\right) . \tag{7}
\end{equation*}
$$

If, in addition, there is a set of $P \geqq 1$ primes containing every prime divisor of $\prod_{i=1}^{r}$ den α_{i}, then it is easy to verify that

$$
\begin{equation*}
s\left(\sum_{i=1}^{r} \alpha_{i}\right) \leqq P \max _{i} s\left(\alpha_{i}\right)+\log r . \tag{8}
\end{equation*}
$$

Finally, the fact that the norm of a non-zero algebraic integer is no smaller than 1 implies the Liouville inequality [3]

$$
\begin{equation*}
\log |\alpha| \geqq-2[K: \mathbf{Q}] s(\alpha) \tag{9}
\end{equation*}
$$

for $\alpha \in K \backslash(0)$.
If $h \in \overline{\mathbf{Q}}\left[X_{1}, \ldots, X_{r}\right]$ and $k \in \mathbf{R}\left[X_{1}, \ldots, X_{r}\right]$ are polynomials with algebraic and real coefficients respectively, then we write $h \ll k$ to indicate that the maximum of absolute values of the conjugates of each coefficient of $h(X)$ is no larger than the corresponding coefficient of $k(X)$. The c_{i} appearing below are assumed to be appropriately chosen positive real numbers not depending on the integer parameters p and k.

By composing the T_{i} 's, one obtains

$$
T^{(k)}(z, w)=\left(z_{1}^{\rho^{(k)}}, \ldots, z_{n}{ }^{(k)}, t_{0}{ }^{(k)}(z, w), \ldots, t_{m}^{(k)}(z, w)\right) .
$$

If $B_{i}{ }^{\prime}=(m+1) B_{i}$ and $L(z)=1+z_{1}+\ldots+z_{n}$, then

$$
t_{i j}(z, w) \ll \frac{1}{m+1} B_{i}^{\prime} L(z)^{b}\left(w_{0}+\ldots+w_{m}\right)^{d i}
$$

for $i \geqq 1$ and $j=0, \ldots, m$. By induction on k, it follows that

$$
\begin{aligned}
& \times\left(w_{0}+\ldots+w_{m}\right)^{d_{1} \ldots d_{k}}
\end{aligned}
$$

where $z^{\rho^{(j)}}=\left(z^{\rho^{(j)}}, \ldots, z_{n}{ }^{{ }^{(j)}}\right)$.
Note that Equation (5) implies that

$$
\begin{aligned}
\frac{\sum_{j=1}^{k} \prod_{i=1}^{j}\left(\rho_{i} / d_{i}\right)}{\prod_{i=1}^{k}\left(\rho_{i} / d_{i}\right)}=\sum_{j=1}^{k} \prod_{i=j+1}^{k}\left(d_{i} / \rho_{i}\right) \leqq \sum_{j=1}^{k} \lambda^{j-k} & \\
& =\frac{\lambda^{-k}-1}{\lambda^{-1}-1} \leqq \frac{1}{1-\lambda^{-\overline{1}}}=c_{3}
\end{aligned}
$$

is bounded independently of k. Therefore, since clearly

$$
L\left(z^{\rho^{(j)}}\right) \ll L(z)^{\rho^{(j)}},
$$

one has

$$
\prod_{j=0}^{k-1} L\left(z^{(j)}\right)^{d_{k} \ldots d_{j+1}} \ll L(z)^{\sigma}
$$

where

$$
\sigma=\left(d_{1} \ldots d_{k}\right) \sum_{j=1}^{k} \prod_{i=1}^{j}\left(\rho_{i} / d_{i}\right) \leqq c_{3} \rho^{(k)}
$$

Similarly, using Equation (4), one obtains

$$
\begin{aligned}
& \prod_{i=1}^{k} B_{i^{\prime}}{ }^{d} \ldots d_{i+1} \leqq\left(\prod_{i=1}^{k}{B_{i}^{\prime}}^{\left(d_{1} \ldots d_{i}\right)^{-1}}\right)^{d_{1} \ldots d_{k}} \\
& \quad \leqq \exp \left(\left(d_{1} \ldots d_{k}\right) \sum_{i=1}^{k}\left\{c_{4} \rho^{(i)} /\left(d_{1} \ldots d_{i}\right)\right\}\right) \\
& \quad \leqq \exp \left(c_{3} c_{4} \rho^{(k)}\right)
\end{aligned}
$$

Substituting these estimates into the result of the last paragraph gives

$$
t_{j}^{(k)}(z, w) \ll \frac{1}{m+1} \exp \left(c_{3} c_{4} \rho^{(k)}\right) L(z)^{c_{3} \rho_{\rho}(k)}\left(w_{0}+\ldots+w_{m}\right)^{d_{1} \ldots d_{k}} .
$$

In particular, one has
(10) $\left|\overline{t_{j}^{(k)}\left(z_{0}, w_{0}\right)}\right| \leqq \exp \left(c_{5} \rho^{(k)}\right)$
for $k \geqq 0$ and $j=0,1, \ldots, m$.
The prime factors of the denominators of the $t_{j}{ }^{(k)}\left(z_{0}, w_{0}\right)$ are amongst those of the denominators of the $z_{0 i}$ and so are contained in a set of, say, $P \geqq 1$ primes. Tracing through the argument of the last paragraph to estimate the exponents of these primes in the denominators of the $t_{j}^{(k)}\left(z_{0}, w_{0}\right)$, one easily obtains

$$
\log \operatorname{den} t_{j}{ }^{(k)}\left(z_{0}, w_{0}\right) \ll \rho^{(k)},
$$

and hence
(11) $s\left(t_{j}{ }^{(k)}\left(z_{0}, w_{0}\right)\right) \leqq c_{6} \rho^{(k)}$.

Let the polynomials $A_{i}(z)$ be defined by

$$
\mathscr{A}(z, y)=\sum_{i=0}^{p} A_{i}(z) y^{i} .
$$

Then the $A_{i}(z)$ are of degree at most p in each variable z_{i} and have algebraic integer coefficients lying in K. If S denotes the maximum of the sizes of the coefficients of the $A_{i}(z)$, then the majorization

$$
A_{i}\left(z^{\rho(k)}\right) \ll e^{S} \prod_{i=1}^{n}\left(1+z_{i}^{\rho^{(k)}}\right)^{p} \ll e^{S}\left\{\prod_{i=1}^{n}\left(1+z_{i}\right)\right\}^{p_{\rho}(k)}
$$

implies that
and

$$
\log \operatorname{den} A_{i}\left(z_{0}{ }^{(k)}\right) \ll p \rho^{(k)} .
$$

Therefore,

$$
\begin{equation*}
s\left(A_{i}\left(z_{0}{ }^{(k)}\right)\right) \leqq S+c_{8} p \rho^{(k)} \tag{12}
\end{equation*}
$$

where S depends on p but not k.
Define the quantity $E_{p}(k)$ by

$$
\begin{align*}
E_{p}(k)=t_{0}{ }^{(k)}\left(z_{0}, w_{0}\right)^{p} \mathscr{A}\left(z_{0}{ }^{\rho^{(k)}},\right. & \left.f_{k}\left(z_{0}^{\rho^{(k)}}\right)\right) \tag{13}\\
& =\sum_{i=0}^{p} A_{i}\left(z_{0}{ }^{\rho^{(k)}}\right) t_{1}{ }^{(k)}\left(z_{0}, w_{0}\right)^{i} t_{0}{ }^{(k)}\left(z_{0}, w_{0}\right)^{p-i}
\end{align*}
$$

where we have used Equation (6). By Equations (7, 8, 11, 12), one has the estimate

$$
s\left(E_{p}(k)\right) \leqq P\left\{S+c_{8} p \rho^{(k)}+c_{6} p \rho^{(k)}\right\}+\log (p+1) .
$$

Therefore, for all k larger than some function of p, one has

$$
\begin{equation*}
s\left(E_{p}(k)\right) \leqq c_{9} p \rho^{(k)} . \tag{14}
\end{equation*}
$$

Finally the Liouville inequality (9) together with Equations (10, 14) imply that for all k larger than some function of p and satisfying Equation (2), one has

$$
\begin{aligned}
\log \left|\mathscr{A}\left(z_{0}^{\rho(k)}, f_{k}\left(z_{0}^{\rho^{(k)}}\right)\right)\right|= & \log \left|E_{p}(k)\right|-p \log \left|t_{0}^{(k)}\left(z_{0}, w_{0}\right)\right| \\
& \geqq-2[K: \mathbf{Q}] c_{9} p \rho^{(k)}-c_{5} p \rho^{(k)}=-c_{10} p \rho^{(k)},
\end{aligned}
$$

and so

$$
\left|\mathscr{A}\left(z_{0}^{0^{(k)}}, f_{k}\left(z_{0}^{\rho^{(k)}}\right)\right)\right| \geqq \exp \left(-c_{10} p \rho^{k}\right) .
$$

But if p is chosen sufficiently large, this contradicts Equation (2), and so the theorem is proved.
2. Linear functional equations. The most interesting applications of the theorem occur when the functional equations are linear. To fix the notation, let $f_{0}, f_{1}, f_{2}, \ldots$ be an infinite sequence of power series converging in a neighborhood D of the origin in \mathbf{C}^{n}, having coefficients in a number field K, and satisfying Equation (1). Assume further that the f_{i} satisfy functional equations of the form

$$
\begin{equation*}
f_{i}(z)=a_{i}(z) f_{i+1}\left(\Omega_{i+1} z\right)+b_{i}(z) \tag{15}
\end{equation*}
$$

where $\Omega_{i+1}=\rho_{i+1} I$ is a scalar matrix with $\rho_{i+1} \geqq 2$ an integer, $\Omega_{i+1} z$ is the map defined in the introduction, and the $a_{i}(z)$ and $b_{i}(z)$ are rational functions with coefficients in K and $a_{i}(0) \neq 0$. Note that Equation (15) is a substitute
for the map T_{i+1} of the theorem; more precisely, the corresponding map $T_{i+1}: \mathbf{A}^{n} \times \mathbf{P}^{1} \rightarrow \mathbf{A}^{n} \times \mathbf{P}^{1}$ is defined by

$$
\begin{aligned}
& \left(z_{1}, \ldots, z_{n}, w_{0}, w_{1}\right) \mapsto\left(z_{1}^{\rho i+1}, \ldots, z_{n}^{\rho i+1}, c_{i}(z) w_{0}\right. \\
& \left.c_{i}(z) a_{i}(z)^{-1}\left(w_{1}-b_{i}(z) w_{0}\right)\right)
\end{aligned}
$$

where $c_{i}(z)$ is a common denominator for $a_{i}(z)^{-1}$ and $a_{i}(z)^{-1} b_{i}(z)$.
The functional equations (15) can be composed to obtain relations

$$
\begin{equation*}
f_{i}(z)=A_{i r}(z) f_{i+r}\left(\Omega^{(i, r)} z\right)+B_{i r}(z) \tag{16}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{i r}(z)=\prod_{j=0}^{r-1} a_{i+j}\left(\Omega^{(i, j)} z\right) \tag{17}\\
& B_{i r}(z)=\sum_{j=0}^{r-1} A_{i j}(z) b_{i+j}\left(\Omega^{(i, j)} z\right) \\
& \Omega^{(i, r)} z=\Omega_{i+\tau-1} \Omega_{i+\tau-2} \ldots \Omega_{i}=\left(\prod_{j=0}^{r-1} \rho_{i+j}\right) I=\rho^{(i, \tau)} I .
\end{align*}
$$

Since the f_{i} and a_{i} are holomorphic at the origin, Equation (15) shows that the b_{i} satisfy the same condition, and hence so do the $A_{i r}(z)$ and the $B_{i r}(z)$. Now Equations $(16,19)$ shows that

$$
\begin{equation*}
f_{i}(z) \equiv A_{i r}(z) f_{i+r}(0)+B_{i r}(z) \quad\left(\bmod \mathfrak{M}^{\rho}{ }^{(i, r)}\right) \tag{20}
\end{equation*}
$$

This last congruence allows one to construct transcendental numbers by judicious repetition of the $a_{i}(z), b_{i}(z)$ and Ω_{i} in the functional equation (15). For example, let

$$
f_{i}(z)=\prod_{j=1}^{\infty}\left(1-z^{\rho^{(i+1, j)}} / n_{i+j}\right)
$$

where the $n_{j} \ll 2^{j}$ and the $\rho_{j} \geqq 2$ are rational integers. The $f_{i}(z)$ are defined in the open unit disc, are dominated in absolute value by

$$
\prod_{j=0}^{\infty}\left(1+z^{2 j}\right)=(1-z)^{-1}
$$

and satisfy the functional equations

$$
f_{i}(z)=\left(1-z^{\left.\rho_{i+1} / n_{i+1}\right) f_{i+1}\left(z^{\rho+1+1}\right) .}\right.
$$

Now the function $h(z)=\prod_{j=0}^{\infty}\left(1-z^{\rho}\right)$ is transcendental [6] for every fixed integer $\rho \geqq 2$. Therefore, if we suppose that there is an integer $\rho \geqq 2$ such that the sequence of (n_{j}, ρ_{j}) for $j \geqq 1$ contains arbitrarily long segments of repetitions of the term ($1, \rho$), then the sequence $f_{i}(z)$ has $h(z)$ as an \mathfrak{M}-adic limit point by Equation (20). By the theorem, it follows that if z_{0} is an algebraic point of the punctured open unit disc satisfying $z_{0^{\rho(1, j)}} \neq n_{j}$ for all j, then $f\left(z_{0}\right)$ is a transcendental number.

Suppose in addition to the hypotheses of the first paragraph of this section that the set

$$
\left\{a_{i}(z), b_{i}(z), \Omega_{i+1}, f_{i+1}(0) \mid i \geqq 0\right\}
$$

is finite. Then for each fixed $r \geqq 0$, the set

$$
\left\{A_{i r}(z) f_{i+r}(0)+B_{i r}(z) \mid i \geqq 0\right\}
$$

is also finite and hence $\left\{f_{i}(z)\right\}$ is compact in the \mathfrak{M}-adic topology. Suppose that the set of \mathfrak{M}-adic limit points of $\left\{f_{i}(z)\right\}$ consists of finitely many power series, say g_{1}, \ldots, g_{m}. Let $\left\{f_{i(j)}\right\}$ be a subsequence of $\left\{f_{i}\right\}$ converging \mathfrak{M}-adically to g_{1}. By induction on N, one can choose a sequence $\{k(s) \mid s \geqq 1\}$ of nonnegative integers such thas for each $N \geqq 1$, there are infinitely many j with

$$
\left(a_{i(j)-s}, b_{i(j)-s}, \Omega_{i(j)+1-s}\right)=\left(a_{k(s)}, b_{k(s)}, \Omega_{k(s)+1}\right)
$$

for $s=1,2, \ldots, N$. By Equation (16), one has for these j,

$$
f_{i(j)-N}(z)=A_{i(j)-N, N}(z) f_{i(j)}\left(\Omega^{(i(j)-N, N)} z\right)+B_{i(j)-N, N}(z)
$$

where $A_{i(j)-N, N}, B_{i(j)-N, N}$, and $\Omega^{(i(j)-N, N)}$ are independent of j. It follows that these $f_{i(j)-N}(z)$ converge \mathfrak{M}-adically to

$$
h_{N}(z)=A_{i(j)-N, N}(z) g_{1}\left(\Omega^{(i(j)-N, N)} z\right)+B_{i(j)-N, N}(z),
$$

and so there is a $t(N)$ with $h_{N}(z)=g_{t(N)}(z)$. If v is an index occurring more than once in the sequence $\{t(N)\}$, then

$$
g_{v}(z)=A_{i r}(z) g_{v}\left(\Omega^{(i, r)} z\right)+B_{i r}(z)
$$

where $A_{i r}, B_{i r}, \Omega^{(i, r)}$ are obtained from a sequence of ($a_{j}, b_{j}, \Omega_{j+1}$) of length r whose corresponding functional equation sequence occurs infinitely often in (15). The above discussion together with the theorem implies the following result.

Corollary. Let $f_{i}, a_{i}, b_{i}, D, \Omega_{i}, A_{i r}, B_{i r}$, and $\Omega^{(i, r)}$ be as in the first two paragraphs of this section. A ssume that the set

$$
\left\{a_{i}(z), b_{i}(z), \Omega_{i+j}, f_{i}(0) \mid i \geqq 0\right\}
$$

is finite and that there are no algebraic solutions of any of the functional equations

$$
\begin{equation*}
f(z)=A(z) f(\Omega z)+B(z) \tag{21}
\end{equation*}
$$

where (A, B, Ω) ranges through the triples occurring infinitely often in the doubly indexed sequence of $\left(A_{i r}, B_{i r}, \Omega^{(i, r)}\right)$. Let $z_{0}=\left(z_{01}, \ldots, z_{0_{n}}\right)$ be an algebraic point with each $z_{0 i}$ lying in the punctured open unit disc and with $\left|z_{01}\right|, \ldots$, $\left|z_{0 n}\right|$ multiplicatively independent. Suppose that for every $k \geqq 0$, the point $z_{0}{ }^{\rho^{(k)}}=$ $\left(z_{01}{ }^{(k)}, \ldots, z_{0 n}{ }^{(k)}\right)$ is not a root of the numerator nor of the denominator of any $a_{j}(z)$ and is not a root of the denominator of any $b_{j}(z)$. Then the $f_{i}\left(z_{0}\right)$ are transcendental numbers.

For example, suppose that $n=1$, the $a_{i}(z)$ are non-zero constants, and the $b_{i}(z)$ are non-constant polynomials of degree less than ρ_{i+1}. By replacing the $f_{i}(z)$ and $b_{i}(z)$ by $f_{i}(z)-f_{i}(0)$ and $b_{i}(z)-b_{i}(0)$ respectively, we may suppose that $f_{i}(0)=b_{i}(0)=0$ for all $i \geqq 0$. By Equations (17, 18), we know that the $A_{i r}(z)$ are non-zero constant polynomials and the $B_{i r}(z)$ are nonzero polynomials of degree less then $\rho^{(i, r)}$. In fact, the degree condition on b_{i+j} implies that each term of $b_{i+j}\left(\Omega^{\left(i, j_{z}\right)}\right.$ in Equation (18) has degree in the range $\left\lceil\rho^{(i, j)}, \rho^{(i, j+1)}\right.$) and so $B_{i r}(z) \neq 0$. By $[\mathbf{1}$, Proposition 3], the functional equation (21) therefore can have an algebraic solution only if one (and hence all) its solutions are rational. Counting poles in each member of Equation (21) shows that rational solutions are polynomial, and degree considerations rule out polynomial solutions. Thus we conclude that the functional equations (21) have no algebraic solutions, and so the corollary may be applied. As a special case, one obtains the assertion made in the introduction.

References

1. K. K. Kubota, On the algebraic independence of holomorphic solutions of certain functional equations and their values, to appear, Math. Ann.
2. -_On Mahler's algebraic independence method, to appear.
3. S. Lang, Introduction to transcendental numbers (Addison-Wesley, Reading, Mass., 1966).
4. J. H. Loxton and A. J. van der Poorten, Arithmetic properties of certain functions in several variables $I, I I, I I I$, to appear.
5. Transcendence and algebraic independence by a method of Mahler, to appear in Advances in Transcendence Theory.
6. K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), 342-366.
7. —— Über das Verschwinden von Potenzreihen mehrerer Veränderlichen im speziellen Punktfolgen, Math. Ann. 103 (1930), 573-587.
8. - Remarks on a paper of W. Schwarz, J. Number Theory 1 (1969), 512-521.
9. M. Nagata, Local rings (Interscience, N.Y., N.Y., 1962).

Institut des Hautes Etudes Scientifiques
Bures-sur-Yvette, France;
University of Kentucky, Lexington, Kentucky

[^0]: Received July 13, 1976 and in revised form, January 12, 1977. The author is a Sloan Fellow.

