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ON A TRANSCENDENCE PROBLEM OF K. MAHLER 
K. K. KUBOTA 

K. Mahler [8] has proposed the following problem. Let 12r for r ^ 1 be a 
sequence of n X n non-negative rational integer matrices. Each iïr — (o)rij) 
defines a map fir : Cn —-> O by 

z = (*i,... ,zn) - > Q ^ = ( n * r i y , . . . , n *r B ' ) . 
Let so = (soi, . . • , ZoJ be an algebraic point and/ r (s ) for r ^ 0 be a sequence 
of convergent power series satisfying recursive relations of the form 

fr(z) = aT(z)fr+i(Qr+lz) + br(z) 

where the ar(z) and br(z) are rational functions. For certain special classes of 
matrices, find conditions on the zoj and ft which imply tha t /o (20) is trans
cendental. 

For example, Mahler [6; 7] has shown that for integers p ^ 2, the trans
cendental function f(z) = Y^=o z?h which satisfies 

f(z) = /(*') + z 

(corresponding to the case n = 1, iïr = (p), fr = / , ar — 1, and br = z) takes 
on transcendental values at all algebraic points z0 in the punctured open unit 
disc. To generalize this situation, one might take a sequence pi, p2, . . . of 2's 
and 3's and consider the functions 

frit) = £ S»"-'* 
k=r 

which satisfy the functional equations 

fr(z) = fT+i(Qr+iz) + Z 

where tir = (pr). Then as a special case of the theorem proved below, it will be 
shown that the function 

oo 

fc=0 

where p w = pip2 . . . pk takes on transcendental values at all algebraic points 
in the punctured open unit disc. 

Results along these same lines have been obtained independently by Loxton 
and van der Poorten. Their very strong Theorem 1 in [4, III] amply contains 
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TRANSCENDENCE 639 

most of the examples, including tha t of the last paragraph, which can be 

obtained using the theorem given below. However, the approach given here 

has a t least the advantage tha t it generalizes readily to give an algebraic 

independence result [2]. Fur ther references and details can be found in the 

survey article [5]. 

1. General f u n c t i o n a l e q u a t i o n s . Let n be a positive integer and z = 
(zi, . . . , zn) be an n-tuple of indeterminants . The ring C[[z]] of w-variable 
complex formal power series is topologized with its 951-adic topology [9] where 
ffll is the ideal generated by zi, . . . , zn. 

LEMMA. Let D be a polydisc containing the origin in Cn, and ft for i ^ 0 be a 
sequence of power series converging in D, with coefficients in a sub field K of C, 
and satisfying 

(1) sup/<(z) < oo, z £ D,i^0. 

Suppose that there is a subsequence j ' ^ for j ^ 1 of theft which is compact and 
such that the set of limit points of the subsequence is not a finite set of algebraic 
functions. Let pi for i ^ 1 be a sequence of integers all larger than one. Let ZQ = 
(zoi, • • • , Zon) G Cn be a point with 0 < |z0*| < 1 for i = 1, . . . , n and such 
that the |zoz| are multiplicatively independent. Then, for every p G N + , there is a 
polynomial Slf (z, y) G K[zi, . . . , zn, y] of degree at most p in each of its n + 1 
variables and such that for infinitely many k G N + , one has the inequality 

(2) 0 ^ | j / ( * o w , A W ) ) l < exp ( - C l p i + y * > ) 

where p(fe) = pip2 . . . pk, ZQ{1C) = (zoip{k , . . . , Zon
p(k ), and c\ > 0 is a positive 

real number independent of both p and k. 

Proof. Since F = {/*(;)} is compact, its elements lie in a t most finitely many 
cosets of C[[z]] modulo 99?" where 9» = (zu . . . , zn) and K = [£1+n_1] + 1. 
Therefore, there is an m G N + such tha t the subsequence F C\ {fi{m) + 50?"} 
has a set of limit points which is other than a finite set of algebraic functions. 

There is a non-zero polynomial s/(z, y) G K[z, y] of degree a t most p in 
each of the n + 1 variables and such tha t for every h G C[[z]] with h = 
/< ( m)(mod 9JlK), one h a s J ^ ( z , h(z)) G $ftK. In fact, comparing coefficients in 

<&(?, Hz)) = £ a,, . . ,^1 . . .^", 
il... in 

one can express the ailm,.in as linear forms in the (p + l ) w + 1 coefficients of 
se {z, y). Fur ther , if 0 ^ i\ + . . . in ^ p1+n~\ then the coefficients of the form 
describing atl...in do not depend on the choice of h in the coset f^m) + <$flK. 
Now there are a t most (pl+n~l + l)n such ^-tuples of indices, and 

(£H*-i + 1)» < (p+ 1)«+1. 

Therefore the existence of s</(z, y) amounts to the existence of a non-trivial 
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solution of a homogeneous system of linear equations with more variables than 
equations. 

By the choice of m, there is a subsequence \fj(k)} ol F C\ {fum) + WlK} which 
converges $ft-adically to a formal power series g which is not a root of se {z, y) = 
0. The gi(z) = s/{z, fi(z)) are defined for z Ç D and are bounded above in 
absolute value uniformly in D and independently of i by Equation (1). By 
Cauchy's inequality, there exist positive real numbers RQ, R\, . . . , Rn with 

|g«l...»„| ^ RoRl"1 • • • RnK 

for all hi, . . . , ha ^ 0 where gihl h„ denotes the coefficient of Zihl. . . z*n in 

g<(z). 
Let 5 be the set of non-zero monomials of g partially ordered via Az\l. . . zn

hn 

S Bzijl. . . zn
jn <=> hi S ji for i = 1, . . . , n. The set T of minimal elements of 

S is finite [1, Lemma 3]. Since the |soi|, • • • , \zon\
 a r e multiplicatively indepen

dent, one can order T via 

n 

AZ\ . . . Zn S BZ\ . . . Zn <=> 11 \Zok\ ^ I-

Let Az™1 . . . zn
mn denote the largest element of T. 

If one defines ZQ1 = (zoif, . . . , Zon
l), then 

(3) H: ImW) 
k->a> A (Zoi 
t-$oo 

m1 .zCnY 
l. 

In fact, there is a positive integer k0 such that for all k ^ ko, one ha.sfj(k) = g 
(mod $JlT) where r is some fixed integer larger than the total degrees of all 
the elements of T. Letting 

H{1...in(z) = £ . . . D R0R1»...Rn
1'z1

il-tl h-in 

one has the obvious majorization 

gi(k)(zo') 
A(z01

mi ...z0n
m") t - 1 ^ £ — 

n i2ori
("-mr>' 

Ml 
^ i . . . i n ( [ s o | ' ) 

(MO 

for k ^ ko where |zo| = (|soi|, • • • » \zon\) and the first summation is over all 
Bziil . . . zn

in in T except for Az™1 . . . zn
mn. Since the z0j are in the open unit 

disc, the ^^...^(l^olO and the i?mi...Wr+i...mn(|zo|*) are bounded for / large, 
and \zor\l —> 0 as t -* oo . By the choice of the m*, we also have (IÏJ=i|sor| ir~mr)l 

—> 0 as £ —> oo which proves Equation (3). 
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By the construction of the auxiliary polynomial s/(zf y), one knows that 
Wi + . . . + mn ^ K > p1+n~\ Therefore 

\A\ n KrU(h)) à i^i*xp(-^i+"-ip(ia)))èexp(-2C2/>i+'!-v^)) 
where c2 > 0 is independent of p and k, and where the second inequality is 
claimed only for k larger than some function of p. Combining this last in
equality with Equation (3) gives the assertion of the lemma. 

THEOREM. Let D, K, fi} pt and zo be as in the statement of the lemma and 
suppose in addition that K is a number field and the zoj are algebraic numbers. 
For î ' è 1, let Ti : An X Pm —• Aw X Pw be a rational map of the product of 
affine n-space An and projective m-space Vm. Assume that Tt is defined by 

(zi, . . . , zn, Wo, . . . , wm) *-> OipS . . . , zn
p\ ti0(z, w), . . . , tim(z, w)) 

where the tij(z, w) Ç K[z, w] are of total degree at most b in the variables Zi, . . . , zn, 
have algebraic integer coefficients in K} and are forms in the variables Wo, . . . , wm 

of degree dt. Suppose, in addition, that the maximum Bt of the absolute values of 
the conjugates of the coefficients of the ta(w) satisfies 

(4) \ogBt«P^ 

where p(i) = pip2 . . . pi, and that there is a\ > 1 with 

(5) Pt/dt è X > 1. 

let Wo = (woi, . . . jWom) be such that for all k ^ 0, 

r w (z0> Wo) = Tk o . . . o Ti(zo, Wo) 

= (zo/k\...,zon>
(k),WoSk\...,WomM) 

is defined and 

(6) h(zo/k\...,zon>
{k)) -Woi^/wooM. 

Then Wo is a transcendental point. 

Proof. If not, then by extending K if necessary, it may be assumed that K 
contains the coordinates of Zo and w0. By multiplying through by a common 
denominator, it may be assumed that the Woj are algebraic integers. For each 
positive integer p, apply the lemma to obtain an auxiliary polynomialsxf (z, y). 
Clearly by multiplying s/(z, y) by a common denominator of its coefficients, 
it may be assumed thatJ^(z, y) has algebraic integer coefficients. 

The idea of the proof being to use the Liouville inequality to obtain a 
contradiction with Equation (2), we make a slight digression to review the 
properties of size. Recall [3] that the size s (a) of a G K is defined by 

s (a) = max (log den a, log \~a\) 

where den a is the denominator of a and \â\ is the maximum of the absolute 
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values of the conjugates of a. If «i, . . . , ar 6 K, then clearly 

(7) s(ll a) ^ t s(at). 

If, in addition, there is a set of P ^ 1 primes containing every prime divisor 
of n ^ = i den at, then it is easy to verify that 

(8) M ]C ai) ^ Pmax $(«*)+log r. 
\ i=i / t 

Finally, the fact that the norm of a non-zero algebraic integer is no smaller 
than 1 implies the Liouville inequality [3] 

(9) log \a\ ^ -2[K:Q]s(a) 

fora G A ( 0 ) . 
If h Ç Q[XU . . . , Xr] and k £ R[-X\, . . . , Xr] are polynomials with alge

braic and real coefficients respectively, then we write h <<C k to indicate that 
the maximum of absolute values of the conjugates of each coefficient of h(X) 
is no larger than the corresponding coefficient of k(X). The ct appearing below 
are assumed to be appropriately chosen positive real numbers not depending 
on the integer parameters p and k. 

By composing the TVs, one obtains 

r<*>(z, w) = {z/k\ . . . , z/k\ *„<*>(*, « / ) , . . . , tm^(z, w)). 

If Bt' = (m + \)Bt and L(z) = 1 + z-, + . . . + zn, then 

ttj(z, w) « — - j — 5/L(z)6(wo + . . . + wm)di 

for ? ' ^ 1 and j = 0, . . . , m. By induction on k, it follows that 

hik\z,w)<<^ri ( n ^/^- i - d i + i ) |n L(2p('V*-d'+i|6 

X ( W o + . . . + W m ) d l - * 
where *»0) = ( s / j ) , . . . , z/'}). 

Note that Equation (5) implies that 

* i 
s n (pi/di) k k k 

j =v= i = z n (di/Pi) ^ z A*-* 
n (Pi/do 

X ~ * - 1 . 1 _ _ 
X " 1 - 1 = 1 - A " 1 " C3 

is bounded independently of k. Therefore, since clearly 

L(z"u))«L(z)"(i\ 

https://doi.org/10.4153/CJM-1977-065-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-065-2


TRANSCENDENCE 643 

one has 

I I L(zpJ)dk-'dj+1«L(zY 

where 
k j 

«r = (d! . . . d») £ El W<*<) ^ C3 p t t ). 
j = l *=1 

Similarly, using Equation (4), one obtains 

k Ik \di...dk 

n Bt'
dk-dï+i £ n ^/wi-^)"1 

g exp ((di...<**) g k 4 p ( i ) / ( d i . . . d « ) } ) 

^ exp (c3c4p a )) . 

Substituting these estimates into the result of the last paragraph gives 

*/*>(*, w) « ~^j exp (c, c4 p
(W)L(2) W % 0 + . . . + a»»)*1-**. 

In particular, one has 

(10) |*/*>(z0,Wo)| ^ exp fcpw) 

for & ^ 0 and j = 0, 1, . . . , m. 
The prime factors of the denominators of the t/k) (z0, w0) are amongst those 

of the denominators of the z0i and so are contained in a set of, say, P ^ 1 
primes. Tracing through the argument of the last paragraph to estimate the 
exponents of these primes in the denominators of the tj(k)(zo, Wo), one easily 
obtains 

log den */*>(z0,Wo) « p ( * \ 

and hence 

(11) *(//*>(*„, wo)) gc6p<*>. 

Let the polynomials Ai(z) be defined by 

s/(z,y) = £ ,4 ,(*)/. 
i=0 

Then the ^4z(z) are of degree at most p in each variable zt and have algebraic 
integer coefficients lying in K. If 5 denotes the maximum of the sizes of the 
coefficients of the At(z), then the majorization 

At{/k))«esf[ (l+z/k)y«e4fl (l+Si)}"U> 

1=1 V i=\ ) 
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implies that 

^«(20^)1 Û exp (S + a pP<*>) 
and 

logdenAi(z/k))«pP™. 

Therefore, 

(12) s^Atizo^)) ûS + CsPpW 

where S depends on p but not k. 
Define the quantity Ep(k) by 

(13) Ep(k) = t»w(zo,w«ysZ(Z/0Jk(Z/k))) 

= t , Ai(zop{k))kik)(zo,wo)%(k)(zo,woY-i 

where we have used Equation (6). By Equations (7, 8, 11, 12), one has the 
estimate 

s(EP(k)) £ P{S + cs pP™ + cQ ppW] + log (p + 1). 

Therefore, for all k larger than some function of p, one has 

(14) s(Ep(k)) Sc.PpM. 

Finally the Liouville inequality (9) together with Equations (10, 14) imply 
that for all k larger than some function of p and satisfying Equation (2), 
one has 

log \sf(z^\h(z/k)))\ = log \Ep(k)\ - p log |*o<*>(*o, wo)| 

^ -2\K : Q]c9£p<*> - cbpP™ = -cupp*\ 
and so 

| j*W*\/ t (zo '<*> ) ) | ^ exp ( - C l , M ) . 

But if p is chosen sufficiently large, this contradicts Equation (2), and so 
the theorem is proved. 

2. Linear functional equations. The most interesting applications of the 
theorem occur when the functional equations are linear. To fix the notation, 
le t /o , / i , /2 , . . . be an infinite sequence of power series converging in a neigh
borhood D of the origin in Cn, having coefficients in a number field K, and 
satisfying Equation (1). Assume further that theft satisfy functional equations 
of the form 

(15) ft(z) = a*(s ) JViOW) + bt(z) 

where iïi+i = pt+il is a scalar matrix with pi+i ^ 2 an integer, Sli+\Z is the 
map defined in the introduction, and the at(z) and bt(z) are rational functions 
with coefficients in K and at(0) ^ 0. Note that Equation (15) is a substitute 
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for the map Ti+i of the theorem; more precisely, the corresponding map 
Ti+l : An X P1 -> An X P1 is defined by 

(zh . . . , zn, w0, wi) i-> (zipi+1, . . . , zn
pi+1, Ci(z)w0, 

Ci{z)ai{z)-l(wi - bi(z)wo)) 

where ct(z) is a common denominator for ai{z)~l and ai(z)~1bi(z). 
The functional equations (15) can be composed to obtain relations 

(16) /,(*) = Air{z)fi+r{W)z) + Bir(z) 

where 

(17) Air(z) = fl a^fQ^z) 

(18) Bir(z) = £ 4„(2)6«-y(Q( '"^) 

(19) niur)z = Ql+T^ni+T^...a, = ( f t P < « K = P^1-
\ j=o ! 

Since the /* and a* are holomorphic at the origin, Equation (15) shows that 
the hi satisfy the same condition, and hence so do the Air(z) and the Bir(z). 
Now Equations (16, 19) shows that 

(20) /,(*) s Air(z)fi+r(0) + Bir(z) (mod W(i'r)). 

This last congruence allows one to construct transcendental numbers by 
judicious repetition of the at{z)} bt(z) and 12{ in the functional equation (15). 
For example, let 

/<oo = n (i - *p(<+i,'}/»«.,) 
where the Uj <C 2J" and the pj ^ 2 are rational integers. The fi(z) are defined 
in the open unit disc, are dominated in absolute value by 

n (i + *") = (i-*rx 

and satisfy the functional equations 

ft(z) = (1 - ^ M + i X A + i ( ^ + 1 ) . 

Now the function A(z) = II%=o (1 — zp3) is transcendental [6] for every fixed 
integer p ^ 2. Therefore, if we suppose that there is an integer p ^ 2 such 
that the sequence of (njt Pj) for j ^ 1 contains arbitrarily long segments of 
repetitions of the term (1, p), then the sequence ft(z) has h(z) as an 5D?-adic 
limit point by Equation (20). By the theorem, it follows that if s0 is an alge
braic point of the punctured open unit disc satisfying zopU'J ^ Uj for all j , 
thenjf(zo) is a transcendental number. 

https://doi.org/10.4153/CJM-1977-065-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-065-2


646 K. K. KUBOTA 

Suppose in addition to the hypotheses of the first paragraph of this section 
that the set 

{ a , ( ^ ) , & , ( 2 ) , 1 2 m , / m ( 0 ) | ^ 0 } 

is finite. Then for each fixed r ^ 0, the set 

{AiT(z)fi+r(0) +BiT(z)\i è 0} 

is also finite and hence {fi(z)\ is compact in the SDî-adic topology. Suppose 
that the set of SK-adic limit points of {fi(z)} consists of finitely many power 
series, say gi, . . . , gm. Let {fm)} be a subsequence of {/f} converging 9Jf-adically 
to gi. By induction on N, one can choose a sequence {&(s)|s ^ 1) of non-
negative integers such thas for each N ^ 1, there are infinitely many j with 

(ai(j)-s, °i(j)-s, &i(j) + l-s) = (#]fc(s)> &*(*)» AA;(S) + I ) 

for ^ = 1, 2, . . . , N. By Equation (16), one has for these j , 

fiM-Az) = 4̂ i(i)-^.^(2)/*(i) (î2C*ci)-^.^)z) +BiU).N>N(z) 

where Ai{j)-NtN, Bi{j)-NjNy and ÇI^U)-N,N) a r e independent of j . It follows that 
these fi(j)-N(z) converge 9W-adically to 

hN{z) = AiU)_N,N{z)gl{^i^~N^z) +BiU).N,N{z), 

and so there is a t(N) with hN(z) = gt(N)(z). If v is an index occurring more 
than once in the sequence {t(N)}, then 

gv(z) = ^ i r (z)g,(0^ ' r )z) + B<r(s) 

where Air, Bir, 12(*,r) are obtained from a sequence of (ai? bj, fi^+i) of length r 
whose corresponding functional equation sequence occurs infinitely often in 
(15). The above discussion together with the theorem implies the following 
result. 

COROLLARY. Let fu au bif D, Çlu Air, Bir, and U(i,r) be as in the first two 
paragraphs of this section. Assume that the set 

( f l i W , J < W , Q ^ / i ( 0 ) | t ^ 0} 

is finite and that there are no algebraic solutions of any of the functional equations 

(21) f(z) =A(z)f(Qz)+B(z) 

where (A, B, fi) ranges through the triples occurring infinitely often in the doubly 
indexed sequence of (Air, Bir, 12(*,r)). Let zG = (soi, . • . , zon) be an algebraic 
point with each z0i lying in the punctured open unit disc and with |z0i|, . . . , 
|;son| multiplicatively independent. Suppose that for every k ^ 0, the point zQ

p * = 
(zoip(fc , . . . , so/^ ) is not a root of the numerator nor of the denominator of any 
dj(z) and is not a root of the denominator of any bj(z). Then the ft(zo) are trans
cendental numbers. 
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For example, suppose that n = 1, the at{z) are non-zero constants, and the 
bi(z) are non-constant polynomials of degree less than pi+i. By replacing the 
fi(z) and bt(z) by ft{z) — ft(0) and bi(z) — bt(0) respectively, we may sup
pose tha t / i (0 ) = bt(0) = 0 for all i ^ 0. By Equations (17, 18), we know 
that the Air(z) are non-zero constant polynomials and the Bir(z) are non
zero polynomials of degree less then p(i,r\ In fact, the degree condition on 
bi+j implies that each term of bi+j(&

i,jz) in Equation (18) has degree in the 
range \p(iJ), p(iJ+1)) and so Bir(z) ^ 0. By [1, Proposition 3], the functional 
equation (21) therefore can have an algebraic solution only if one (and hence 
all) its solutions are rational. Counting poles in each member of Equation (21) 
shows that rational solutions are polynomial, and degree considerations rule 
out polynomial solutions. Thus we conclude that the functional equations 
(21) have no algebraic solutions, and so the corollary may be applied. As a 
special case, one obtains the assertion made in the introduction. 
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