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Analytical wind turbine wake models are widely used to predict the wake velocity deficit.
In these models, the wake growth rate is a key parameter specified mainly with empirical
formulations. In this study, a new physics-based model is proposed and validated to
predict the wake expansion downstream of a turbine based on the incoming ambient
turbulence and turbine operating conditions. The new model utilises Taylor diffusion
theory, the Gaussian wake model, turbulent mixing layer theory and the analogy between
wind turbine wake expansion and scalar diffusion. These components ensure that the
model conserves mass and momentum in the far wake and accounts for the ambient
turbulence and turbine-induced turbulence effects on the wake expansion. To account
for the turbulence relevant scales that contribute to the wake expansion, the model uses
the root-mean-square of the low-pass filtered radial velocity component. A simplified
version that only requires the unfiltered velocity standard deviation and turbulence integral
scale is also proposed. In addition, a new relation for the near-wake length is derived.
The model performance is validated using large-eddy simulation data of a wind turbine
wake under neutral atmospheric conditions with a wide range of incoming turbulence
levels. The results show that the proposed model yields reasonable predictions of the wake
width, maximum velocity deficit and near-wake length. In the case with a relatively low
incoming streamwise turbulence intensity of 0.05, the ambient and turbine-induced terms
in the model contribute almost equally to the wake width, rendering them both crucial for
reasonable wake predictions.
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1. Introduction

Wind energy offers significant potential for short-term and long-term reduction of
greenhouse gas emissions (Edenhofer et al. 2011). In order to make use of this potential and
reduce the usage of unsustainable fossil fuels, wind power production and the size of wind
farms continue to grow worldwide. In wind farms, many of the wind turbines are operating
in the wakes of upstream turbines. Thus, they are exposed to lower incoming wind
velocities than those operating under undisturbed conditions. As a result, the inevitable
wake interactions are responsible for significant power losses in wind farms (Sanderse,
Van der Pijl & Koren 2011; Porté-Agel, Bastankhah & Shamsoddin 2020). Moreover,
the wake flow contains the accumulated turbulence from the atmosphere and upstream
turbines (Frandsen 2007; Stevens & Meneveau 2017), which can impose serious structural
and fatigue loads on the downstream turbines. To have a prediction of the wake flow for
applications such as wind farm layout optimisation, analytical wake models, as simple
and computationally efficient tools, are widely used in the wind energy community
(Duckworth & Barthelmie 2008; Göçmen et al. 2016; Porté-Agel et al. 2020). Despite
being less accurate than high-fidelity numerical simulations, analytical models have the
added value of providing fundamental insight into the physics, as their derivation relies on
the basic equations governing the conservation of flow properties (Porté-Agel et al. 2020).
The following subsection provides a brief overview of the existing analytical wake models.

1.1. Review of existing analytical wake models
There exist many studies focused on developing analytical wind turbine wake models.
In one of the pioneering studies, Jensen (1983) proposed an analytical wake model that
assumes a top-hat shape for the velocity deficit and a linear wake growth rate (kt), with
values of 0.04–0.05 for offshore and 0.075 for onshore turbines (Barthelmie et al. 2009;
Göçmen et al. 2016). Despite being very popular in the literature and commercial software
such as WAsP, WindPRO, WindSim and OpenWind, the Jensen model underestimates the
velocity deficit due to the assumption of a top-hat profile and the fact that its derivation is
only based on mass conservation (Bastankhah & Porté-Agel 2014). Frandsen et al. (2006),
based on mass and momentum conservation in a control volume around the turbine,
derived the following relation for the normalised wake velocity deficit, assuming a top-hat
profile:

ΔU(x)
U∞

= 1
2

(
1 −

√
1 − 2CT

βF + αFx/d

)
, (1.1)

where U∞ is the mean incoming wind speed, CT is the turbine thrust coefficient, d is
the rotor diameter and ΔU(x) = U∞ − Uw(x), in which Uw(x) is the wake velocity in
the streamwise direction. In this model, the expansion factor (αF) is of the order of
10kt and βF is defined as the ratio of the cross-sectional area of the wake after the
initial wake expansion to the area swept by the wind turbine blades, and is a function
of CT (βF = 1

2(1 + √
1 − CT)/

√
1 − CT ; a detailed derivation was provided by Frandsen

et al. 2006). The assumption of a top-hat profile for the wake velocity deficit profiles
can lead to substantial errors (underestimation of the velocity deficit at the wake centre
and overestimation at the wake edges) in wind farm power predictions (Bastankhah &
Porté-Agel 2014). Based on different numerical and experimental data (Chamorro &
Porté-Agel 2009; Wu & Porté-Agel 2012), a self-similar Gaussian distribution can provide
an acceptable representation of the wake velocity deficit in the far wake. Following this
observation and based on mass and momentum conservation, Bastankhah & Porté-Agel

943 A49-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

44
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.443


A physics-based model for wind turbine wake expansion

(2014) proposed a Gaussian model for the normalised velocity deficit profiles:

ΔU(x)
U∞

=
(

1 −
√

1 − CT

8(σ (x)/d)2

)
× exp

(
− r2

2σ(x)2

)
, (1.2)

where σ(x) is the wake width and assumed to grow linearly (σ(x) = k∗(x − xNW) + d/
√

8)
with a wake growth rate of k∗ and the wake width of d/

√
8 at the end of the near wake

(xNW ). In order to use the Gaussian model, an estimation of k∗ is required based on the
incoming flow turbulence characteristics (Wu & Porté-Agel 2012; Abkar & Porté-Agel
2015). To close the model, Niayifar & Porté-Agel (2016) proposed an empirical linear
relation between the wake growth rate and the streamwise turbulence intensity (Iu) (k∗ =
0.38Iu + 0.004), based on large-eddy simulation (LES) results of wind turbine wakes
under neutral atmospheric conditions. It should be noted that this relation was derived for
a specific range of streamwise turbulence intensity (0.06 < Iu < 0.15) and for CT ≈ 0.8.
From field measurements, Carbajo Fuertes, Markfort & Porté-Agel (2018) and Brugger
et al. (2019) derived a similar empirical linear relation for the wake growth rate as a
function of streamwise turbulence intensity, with a slope varying between 0.3 and 0.35.
More recently, Teng & Markfort (2020) proposed a calibration procedure for modelling
wind farm wakes using a simple analytical approach and wind turbine operational data
obtained from the Supervisory Control and Data Acquisition (SCADA) system. As part
of this procedure, they derived an empirical linear relation for the wake growth rate as a
function of streamwise turbulence intensity with a slope of 0.26.

Several studies focused on the similarities between the transport of a passive scalar
in the atmosphere and momentum transport in wind turbine wakes. The dominant role
of large-scale atmospheric turbulence and the contribution of the lateral and vertical
velocity fluctuations to the transport are the basis of these similarities. In the dynamic
wake meandering model (Larsen et al. 2008), it is assumed that the velocity deficit in the
wake is transported similarly to a passive scalar in the atmospheric boundary layer (ABL).
Following the same analogy and based on Taylor diffusion theory (Taylor 1922), Cheng
& Porté-Agel (2018) proposed a model for the wind turbine wake width in a turbulent
boundary layer:

σwake,y =
√

Sct〈v2
(T ′/β)〉1/2T ′, (1.3)

where σwake,y represents the wake width in the lateral direction, Sct is the turbulent
Schmidt number (Reynolds 1976), β is the Lagrangian to Eulerian scale factor (defined
in § 2.1.1), 〈v2

(T ′/β)
〉1/2 is the root-mean-square of the lateral velocity component filtered

in time using a filter of size T ′/β and T ′ is the travel time with respect to the virtual origin
proposed in the model (a detailed schematic is provided in Cheng & Porté-Agel 2018,
p. 4). The model can provide reasonable predictions for the wake width in the presence
of high atmospheric turbulence. However, an underestimation of the wake width by the
model is found compared with that obtained from LES data in the case of low ambient
turbulence due to the non-negligible contribution of the turbine-induced turbulence to the
wake growth rate.

Based on numerical and experimental observations (Xie & Archer 2015; Carbajo
Fuertes et al. 2018), the far-wake velocity deficit profiles show a self-similar Gaussian
behaviour. In contrast, the near-wake velocity deficit profiles are strongly affected by the
turbine characteristics (blade and nacelle geometries) and, therefore, show a less universal
behaviour (Bastankhah & Porté-Agel 2016). In order to model the wake velocity deficit
distribution in the near wake and far wake with a single function, several studies proposed
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the use of shape functions such as double-Gaussian (Keane et al. 2016; Schreiber, Balbaa &
Bottasso 2020a; Keane 2021) or super-Gaussian (Shapiro et al. 2019; Blondel & Cathelain
2020) for the wake velocity deficit profile. In the model presented by Shapiro et al.
(2019), the wake diameter (dw) is assumed to expand linearly (dw(x) = 1 + 2kwx/d) with
an expansion coefficient of kw = αu∗/U∞. In this model, the wake expansion rate is a
function of the atmospheric shear velocity (u∗) and α is a tunable parameter based on the
operating condition. The proposed super-Gaussian wake profile is of the form

ΔU(x, t) = δun(x, t)Cf (x) exp

(
− d2

8σ 2
0

(
2r

dw(x)d

)p(x)
)

, (1.4)

in which δun(x, t) is the spatiotemporal evolution of the wake velocity deficit at each
downwind location, σ0 = d/4, p(x) is the smoothness parameter and Cf (x) is the scaling
factor calculated from mass conservation. Based on the evolution of the smoothness
parameter, (1.4) transitions between a top-hat profile in the near wake to a Gaussian
distribution in the far wake. In another model and to predict more details of the near-wake
flow, a double-Gaussian shape function was proposed to resemble more closely the
near-wake velocity deficit profile (including the nacelle effect) and transition to a Gaussian
profile in the far wake (Keane et al. 2016; Schreiber et al. 2020a). In their derivations, these
models follow closely the Gaussian wake model (Bastankhah & Porté-Agel 2014) in the far
wake but with more case-specific parameters tunable based on the operating conditions.

1.2. Motivation of the study
It is important to highlight that many of the aforementioned models require the
specification of the wake growth rate parameter as the main input. This parameter depends
on many factors, including the incoming flow turbulence characteristics (e.g. turbulence
intensity) and turbine operating conditions. Currently, the wake growth rate is either taken
as a constant (Jensen 1983) or calculated from empirical linear relation as a function of
the streamwise turbulence intensity (Niayifar & Porté-Agel 2016; Brugger et al. 2019;
Teng & Markfort 2020). More recently, Schreiber et al. (2020b) introduced a method
to improve the performance of the wake engineering models to predict wind farm flows
by learning the associated parameters (including the wake growth rate) of the baseline
model from operational data. Alongside these data-driven approaches, the importance
of having a robust estimation of the wake model parameters was discussed by Howland
et al. (2020) in the context of optimal closed-loop wake steering approaches. Therefore,
accurate modelling of the wake growth rate is of great importance to the wind energy
community. In this paper, we aim to develop a physics-based model for wind turbine wake
growth rate, which takes into account the effects of the incoming turbulence level and
turbine operating conditions. The proposed model is based on Taylor diffusion theory, the
Gaussian wake model (to conserve mass and momentum in the far wake), turbulent mixing
layer self-similarity and the analogy of wind turbine wake expansion and scalar diffusion
from a disk source. As an integral part of the model, a new relation for the near-wake length
is derived as a function of the ambient turbulence level and turbine operating conditions. In
order to examine the performance of the proposed model, the results are validated against
LES data of a real-scale model wind turbine wake under neutral ABL conditions with
different incoming turbulence intensity levels.

This paper is structured as follows. In § 2, a brief description of the model components
is given, followed by the model derivation. In § 3, the performance of the model is
assessed using LES data. The concluding remarks are presented in § 4. Finally, within
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Appendix A, the reader may find a step-by-step summary of the model as presented in § 2.
This summary includes the required inputs, the outputs, a step-by-step procedure of model
implementation along with the nomenclature of key variables.

2. Wake model

2.1. Model components

2.1.1. Taylor diffusion theory
Taylor diffusion theory was proposed as a model for the mean square of the lateral
distribution of a large number of particles, σ 2

y , behind a point source in a field of stationary
and homogeneous turbulence (Taylor 1922):

1
2

d
dt

σ 2
y = σ 2

v

∫ t

0
Rζ dζ, (2.1)

where σv is the standard deviation of the lateral velocity component and Rζ represents
the auto-correlation function (ACF) of the lateral velocity component. According to (2.1),
the rate of change of σy with time is a decreasing function of travel time for continuous
plumes (Hanna, Briggs & Hosker 1982). Therefore, the contribution of the small scales
to the plume growth decreases as the plume spreads. Instead, much of the diffusion is
associated with eddies with diameters roughly equal to and larger than σy (a detailed
proof is provided by Pasquill & Smith 1983). As described and implemented by Cheng
& Porté-Agel (2018), this effect can be modelled by applying a low-pass filter on the
velocity time series. In addition, Gifford (1955) and Hay & Pasquill (1959) suggested
that the Lagrangian and Eulerian spectra are similar in shape but different in scale. The
scale factor (β) can be formally defined as the ratio of the Lagrangian to the Eulerian time
scales, and it is inversely proportional to the turbulence intensity. This is consistent with
the experimental results of Hanna (1981) who found that, in the daytime ABL,

β = TL

TE
≈ 0.7

Iv(w)

, (2.2)

where TL and TE are the Lagrangian and Eulerian integral time scales, respectively, and
Iv(w) is the lateral (vertical) turbulence intensity. By introducing proper velocity, length and
time scales, one can rewrite (2.1) as a spreading problem with a time-dependent diffusivity:

1
2

d
dt

σ 2
y = KT(t), (2.3)

where KT represents the turbulent diffusivity. Equation (2.3) is the core of the new
analytical model. This approach has been used by several studies (Eames et al. 2011;
Eames, Jonsson & Johnson 2011b) to analyse the ambient turbulence contribution to the
evolution of the wake velocity deficit of different geometries such as spheres and cylinders.

2.1.2. Turbulent mixing layer
Due to the difference in the velocity between the region downstream of the rotor
and the undisturbed incoming flow, a cylindrical shear layer forms at the wake edge
in the region downstream of the rotor. The expansion of this layer while traveling
downstream is considered as one of the sources of the wake velocity distribution
and the generated turbulence in the wake (Crespo, Hernandez & Frandsen 1999). As
described by Pope (2000), the mixing layer is the turbulent flow that forms between
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two uniform nearly parallel streams of different velocities Ul and Uh. The flow depends
on the non-dimensional parameter Ul/Uh and two characteristic velocities defined as
Uc = (Uh + Ul)/2 and Us = Uh − Ul referred to as the convective and shear velocity,
respectively. In addition, an error function profile can be used to model the velocity
distribution of this type of flow (Pope 2000):

U = Uc + Us

2
erf
(

ξ

σe
√

2

)
, (2.4)

where σe is the mixing layer characteristic length and ξ corresponds to the cross-stream
coordinate in the plane of interest. As derived theoretically (from the flow self-similarity)
and also shown experimentally and numerically (Brown & Roshko 1974; Dimotakis
1986; Pope 2000), a mixing layer grows linearly with the downstream distance. If the
characteristic length scale is defined as σe in (2.4), one can define the spreading parameter
as follows:

S′ = Uc

Us

dσe

dx
= 1

Us

dσe

dt
, (2.5)

which has been shown experimentally and numerically to be constant and within the range
of 0.023–0.043 (Dimotakis 1986; Pope 2000). In the context of the new model for wind
turbine wake expansion, (2.5) will be used to include the effect of the turbine-induced
turbulence on the wake expansion, as explained in § 2.2 and summarised in Appendix A.

2.1.3. Scalar diffusion from a disk source
As discussed previously, there exist similarities between the transport of a passive scalar in
the atmosphere and momentum transport in wind turbine wakes (Larsen et al. 2008; Cheng
& Porté-Agel 2018). Based on these similarities, the focus of this study is on the analogy
between the wind turbine wake expansion and the scalar diffusion from a continuous disk
source (Crank 1979). In this case, the diffusing substance is initially distributed uniformly
in a disk with a radius of R and left to diffuse throughout the surrounding medium. By
assuming a constant diffusion coefficient Dc (Crank 1979, p. 28), the following relation
defines the distribution of the scalar with time:

C(r, t) =
∫ t

0

(
C0

2Dct
exp

( −r2

4Dct

)∫ R

0
exp

(−r′2

4Dct

)
I0

(
rr′

2Dct

)
r′ dr′

)
dt, (2.6)

where C0 is the initial concentration, I0 is the modified Bessel function of the first kind of
order zero and r is the radial coordinate. The integral in (2.6) does not have an analytical
solution, except on the axis r = 0, where (2.6) becomes

C(0, t) = C0

(
1 − exp

(−R2

4Dct

))
. (2.7)

Figure 1(a) shows the numerical solution of (2.6) for different values of the normalised
scalar mixing layer characteristic length (σe/D = √

2tDc/D, characteristic length of the
error function solution of a planar mixing layer) with D the source diameter, while
figure 1(b) shows the analytical solution of the maximum concentration in the centreline
given by (2.7). From figure 1(a), it is clear that the concentration profile evolves from the
initial top-hat shape to a Gaussian shape, which is similar to the behaviour of the velocity
deficit profile in a wind turbine wake with increasing travel time and, thus, streamwise
distance (Shapiro et al. 2019). It is important to note that the normalised solution presented
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Figure 1. Concentration distribution for a disk source. (a) Gradual transformation of the concentration profile
from a top-hat profile to a Gaussian distribution. (b) Maximum concentration on the centreline as a function of
normalised scalar mixing layer characteristic length

√
2tDc/D.

in figure 1(a) is unique for any given σe/D. In order to understand when and how well
the solution of (2.6) given in figure 1(a) can be approximated by a Gaussian profile, a
Gaussian distribution is fitted to each profile, and the standard deviation of the fitted
Gaussian curve (σwake) and the correlation coefficient (R2) of the corresponding fit are
calculated. Figure 2(a) shows the R2 of the Gaussian fit as a function of σe/D. From this
figure, it is clear that a value of R2 = 0.99, often used as a threshold to determine the
beginning of the Gaussian behaviour characteristic of the far wake (Sørensen et al. 2015;
Carbajo Fuertes et al. 2018), is achieved for σe/D ≈ 0.18. This result will be used in § 2.3
in the context of the new model to derive the near-wake length. Figure 2(b) shows the
value of σwake/σe as a function of σe/D obtained from the numerical solution of (2.6),
together with the curve fit. The proposed fit provides a simple equation (within a 99.9 %
confidence) for the relationship between σe and σwake:

σwake

σe
= 1.95 exp

(
−6.19

σe

D

)
+ 10.96 exp

(
−20.05

σe

D

)
+ 1.03. (2.8)

In the context of the proposed analytical model for wake expansion, (2.8) will be used to
compute the wake width (σwake) in the far wake from the mixing layer characteristic length
(σe) computed using the expression derived in the next section using Taylor diffusion
theory. A summary of the final model framework, including how (2.8) is used, is provided
in Appendix A.

2.2. Model derivation
We start with Taylor diffusion theory and rewrite the spreading equation for a mixing layer
based on the turbulent diffusivity:

1
2

d
dt

σ 2
ey = KT(t), (2.9)

where σey represents the lateral characteristic length of a mixing layer. Based on the
similarity of a passive scalar transport in the atmosphere and momentum transport in
wind turbine wakes, the wake model can be constructed based on (2.9) with an equivalent
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Figure 2. (a) Gaussian fit R2 and (b) the ratio of Gaussian fit standard deviation to mixing layer characteristic
length as a function of non-dimensional mixing layer length scale calculated from disk source analogy. The
vertical lines corresponds to σe/D = 0.18 which results in R2 ≈ 0.99. D is the source diameter.

turbulent viscosity (νT ). Here, we assume two main factors contribute to the wind turbine
wake growth: the ambient turbulence and the turbine-induced turbulence. As proposed by
Lissaman (1979) and Ainslie (1988), one possibility is to add up the effect of the ambient
and turbine-induced turbulence in the equivalent turbulent viscosity. Hence, (2.9) can be
written in the following form:

1
2

d
dt

σ 2
ey = σey

dσey

dt
= νTamb + νTshear. (2.10)

It is important to note that (2.10) should be consistent with the limiting behaviours in the
case of no ambient turbulence and the case in which the turbine-induced turbulence effect
is negligible. In the case of no ambient turbulence, (2.10) should yield the mixing layer
growth relation, i.e. (2.5). With the same argument and by neglecting the turbine-induced
turbulence contribution, (2.10) should provide the same form as (1.3). In order to satisfy
these limiting behaviours, we can rewrite the right-hand side of (2.10) as follows:

σey(t)
dσey(t)

dt
=
√

Sct〈v2
(T/β)〉1/2σey(t)︸ ︷︷ ︸

Ambient flow

+ S′ΔUmaxσey(t)︸ ︷︷ ︸
Turbine-induced

, (2.11)

where ΔUmax is the shear velocity at each downstream location and equal to
U∞ − Ucentre(x), in which Ucentre(x) is the wake centreline velocity. The turbulent
Schmidt number of 0.5 is proposed for mixing layers (Reynolds 1976). 〈v2

(T/β)〉1/2 is the
root-mean-square of the lateral direction velocity component sampled upstream of the
turbine at hub level and filtered in time using a moving average filter with the window size
equal to T/β, with T being the travel time. At short travel time, all the eddies contribute to
the wake growth. By moving downstream and increasing the travel time, the contribution
of small eddies decreases, and only eddies with size equal and larger than the wake
contribute to the wake expansion. Therefore, by filtering at each downstream distance,
the model ensures that only the contribution of effective turbulence scales is considered.
Following the derivation presented by Zong & Porté-Agel (2020) for the wake advection
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velocity, Uadv(x) = 0.5(Ucentre(x) + U∞), one can transform (2.11) to the spatial notation:

dσey

dx
=
√

Sct
〈v2

(T/β)〉1/2

Uadv(x)
+ S′ ΔUmax(x)

Uadv(x)
, (2.12)

which can also be written in the integral form∫ σey(x)

σey(x0)

dσey =
√

Sct〈v2
(T/β)〉1/2

∫ x

x0

(
dx

Uadv(x)

)
+ S′

∫ x

x0

(
ΔUmax(x)
Uadv(x)

)
dx. (2.13)

As the mixing layer starts to grow from the end of the expansion region (x0), the lower
bound of the integral is equal to zero. The travel time (T) can be calculated as

T =
∫ x

x0

(
dx

Uadv(x)

)
. (2.14)

In order to have a compact form of (2.13), one can solve for Ucentre(x) from the
definition of the advection velocity to rewrite the shear velocity term as ΔUmax(x) =
2(U∞ − Uadv(x)). By integrating the turbine-induced term on the right-hand side, we can
derive a simplified form of (2.13) as follows:

σey(x) =
√

Sct〈v2
(T/β)〉1/2T + 2S′(U∞T − (x − x0)). (2.15)

It should be noted that this form of the spreading equation for σey considers both the
effects of the effective incoming turbulent eddies (by filtering the velocity time series
at each downwind location) and the turbine-induced turbulence on the wake width. The
starting location for the spreading equation, x0, is where the centreline velocity has
decreased from the rotor plane value to its minimum and theoretical value of U∞

√
1 − CT .

The value of x0 is usually assumed to be one rotor diameter based on experimental
observation (Krogstad & Adaramola 2012) and one-dimensional momentum theory
(Hansen 2015) for a turbine operating in the optimal tip speed ratio. This assumption is
consistent with the concept of expansion region proposed by Crespo et al. (1999). In the
expansion region, the pressure builds up to reach the ambient pressure, and the shear layer
growth is negligible compared with the rotor diameter. Figure 3 presents a schematic of
the mixing layer growth, and the wake velocity profile transformation from a top-hat shape
in the near wake to a self-similar Gaussian profile in the far wake. At each downstream
location, an estimation of the wake centreline velocity is required. In the self-similar region
of the wake, this value is calculated from the Gaussian wake model derived based on mass
and momentum conservation (Bastankhah & Porté-Agel 2014):

Ucentre(x)
U∞

=
√

1 − CT

8(σwake(x)/d)2 . (2.16)

In the near-wake region, with the help of one-dimensional momentum theory (Hansen
2015), it can be shown that the normalised wake centreline velocity should not fall below√

1 − CT . As in this region the wake does not reach the full self-similar Gaussian shape,
(2.16) is not valid and either diverges or yields values less than

√
1 − CT . Therefore, the

normalised wake centreline velocity is set to
√

1 − CT in the near-wake region (Abkar,
Sørensen & Porté-Agel 2018).

As at each downstream location the centreline velocity is not known prior to the
mixing layer characteristic length, one should deploy an iterative method between (2.15)
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Expansion region Near wake
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Far wake

Gaussian profile
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Figure 3. Schematic of the gradual growth of the mixing layer from the wake edge and the wake velocity
distribution from the near wake (top-hat) to the far wake (self-similar Gaussian).

(including the travel time calculation (2.14) and filtering) and (2.16). Technically, at each
downstream location, the Ucentre is initialised with the previous location value to have an
initial estimation of the advection velocity, travel time and filtered velocity to solve (2.15).
The estimated length scale is then used to update the centreline velocity. This iterative
procedure is repeated until convergence. As the velocity deficit in the wake has a smooth
decreasing form, the computational cost of the iterative process is insignificant. A key
step of the new framework is the estimation of σwake (Gaussian wake width) based on
the mixing layer characteristic length (σe). For this purpose, we profit from the presented
analogy between wind turbine wake expansion and scalar diffusion from a continuous disk
source in § 2.1.3 to correlate the mixing layer characteristic length (σe) and the Gaussian
profile standard deviation (σwake) at each downstream location. Therefore, by using this
relation (equation (2.8)) the model is closed.

All the aforementioned derivations were based on the lateral velocity component.
However, there is no limitation to extend the methodology to the vertical direction by
replacing 〈v2

(T/β)〉1/2 with 〈w2
(T/β)〉1/2. Several numerical and experimental studies have

shown that despite the differences between 〈v2〉 and 〈w2〉 in the ABL, wind turbines wakes
are fairly axisymmetric and they can be represented by an equivalent wake width that can
be defined as the geometrical mean of wake widths in the spanwise and vertical directions
(σwake,tot = √

σwake,yσwake,z) (Abkar & Porté-Agel 2015; Xie & Archer 2015; Cheng &
Porté-Agel 2018).

In summary, in order to calculate the wake width at each downwind location, one should
solve (2.15), along with the travel time (2.14) and centreline velocity (2.16) while using
(2.8) to correlate the mixing layer characteristic length to the wake width. The primary
input for the new wake model is a velocity time series sampled upstream of the turbine at
hub height. Within the framework of the current study, this signal is sampled from LESs
of a fully developed turbulent flow under neutral atmospheric conditions.

2.3. Near-wake length
In this section, we derive a new relation for the near-wake length based on the incoming
atmospheric turbulence and turbine operating conditions. For the model presented in
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§ 2.2, one should calculate the near-wake length before solving (2.15). As mentioned
earlier, in the near-wake region, one can assume that the centreline velocity is constant
(Ucentre = U∞

√
1 − CT ). By this assumption, the advection and shear velocity can be

simplified as a function of the free-stream velocity and turbine operating condition:

Uadv = 0.5(U∞ + Ucentre) = 0.5U∞(1 + √
1 − CT),

ΔUmax = U∞ − Ucentre = U∞(1 − √
1 − CT).

}
(2.17)

Moreover, to include the lateral and vertical velocity components contribution to the
near-wake length, based on the axisymmetric growth of the turbine wakes, one possible
approach is to introduce the equivalent filtered velocity as the geometrical mean of the
lateral and vertical components. By applying these assumptions to (2.13), the spreading
equation can be written as follows:

σe,NW = 1
Uadv

(
√

Sct

√
〈v2

(T/β)〉1/2〈w2
(T/β)〉1/2 + S′ΔUmax)(xNW − x0), (2.18)

where xNW is the length of the near wake, σe,NW is the mixing layer characteristic length at
the end of the near wake, and x0 represents the expansion region length (≈ 1d). By solving
(2.18) for xNW , the following relation is obtained for the near-wake length:

xNW

d
= σe,NW

d
U∞(1 + √

1 − CT)

2(
√

Sct

√
〈v2

(T/β)〉1/2〈w2
(T/β)〉1/2 + U∞S′(1 − √

1 − CT))
+ x0

d
. (2.19)

This equation provides an estimation of the near-wake length based on the incoming
ambient turbulence and turbine operating conditions. By including the filtered velocity
components, one ensures that the relevant scales of the incoming turbulence are
contributing to the wake growth rate until the end of the near wake. Since the
corresponding travel time is not known prior to the near-wake length, an iterative method
should be used to solve (2.19). In order to avoid the iterative method of (2.19) for
the near-wake length calculation, one can introduce the following simplifications for
(2.19) to provide simpler forms to estimate the near-wake length based on the following
assumptions.

• As the near-wake region is relatively close to the turbine and the travel time is small,
one can assume that all the turbulence scales contribute to the wake expansion in
that region. By this assumption, one can approximate 〈v2

(T/β)〉1/2 (〈w2
(T/β)〉1/2) as

IvU∞ (IwU∞) where Iv (Iw) is the lateral (vertical) turbulence intensity. Therefore,
(2.19) can be rewritten as

xNW

d
= σe,NW

d
1 + √

1 − CT

2(
√

Sct(
√

IvIw) + S′(1 − √
1 − CT))

+ x0

d
. (2.20)

• For the particular case of near-neutral atmospheric conditions, the standard
deviation of the three velocity components can be scaled with the friction velocity
(σu ≈ 2.5u∗, σv ≈ 1.9u∗, σw ≈ 1.3u∗) in the surface layer (Panofsky 1984). These
scalings are only valid in the neutral surface layer. Therefore, under neutral
conditions, we can further simplify (2.20) as follows:

xNW

d
= σe,NW

d
1 + √

1 − CT

2(
√

Sct(0.63Iu) + S′(1 − √
1 − CT))

+ x0

d
. (2.21)
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In order to estimate the near-wake length with (2.19)–(2.21), the value of σe,NW/d should
be specified. As shown in figure 2(a) and discussed in § 2.1.3, the R2 reaches to 0.99 for
σe/d ≈ 0.18. The R2 = 0.99 criterion is often used as a threshold to determine the onset of
the self-similar Gaussian behaviour of the far wake in experimental (Carbajo Fuertes et al.
2018) and numerical studies (Sørensen et al. 2015). Therefore, by using σe,NW/d ≈ 0.18,
(2.19)–(2.21) are closed relations.

2.4. Simplified form of spreading equation
In this section, we aim to find a simplified form of the filtering operator in (2.15) and
present a computationally faster implementation for the wake width calculation with a
reasonable accuracy. As stated by (2.1), the original form of Taylor diffusion theory is
based on the velocity ACF. As a well-known approximation (Taylor 1922; Neumann 1978;
Hanna et al. 1982), ACF can be written in a simple exponential form:

R(T) = exp
(

− T
TL

)
, (2.22)

in which T is the travel time from the source and TL is the Lagrangian integral time scale.
By replacing (2.22) in (2.1), performing the integration for the lateral velocity component,
and introducing the Lagrangian integral time scale for the lateral velocity time series as
TLv , the following form for the particle distribution behind a source is derived:

σ 2
y (T) = 2σ 2

v TTLv − 2σ 2
v T2

Lv

(
1 − exp

(−T
TLv

))
. (2.23)

From a practical point of view, fixed-point measurements are more feasible than
particle tracking methods to estimate the diffusion properties. Therefore, to calculate the
Lagrangian integral time scale, one can estimate the integral time scale from a fixed point
time series measurement (based on the definition used by Hanna (1981), the integral time
scale is equal to the time lag where the ACF first drops to 1/e) and then use the previously
defined scale factor β. Following the derivation presented in Pasquill & Smith (1983), one
can write the particle distribution as a function of the travel time and filtered velocity:

σ 2
y (T) = 〈v2

(T/β)〉T2. (2.24)

By equating (2.23) and (2.24), the lateral filtered velocity for each travel time can be
written as follows:

〈v2
(T/β)〉1/2 = σvTLv

T

√
2
(

T
TLv

−
(

1 − exp
(−T

TLv

)))
, (2.25)

where σv is the standard deviation of the lateral velocity component. Therefore, the
simplified version of spreading (2.15) for the lateral mixing layer characteristic length
(σey) can be written as follows:

σey(x) = T
√

Sct
σvTLv

T

√
2
(

T
TLv

− (1 − exp(
−T
TLv

))

)
︸ ︷︷ ︸

Ambient flow

+ 2S′(U∞T − (x − x0))︸ ︷︷ ︸
Turbine-induced

. (2.26)
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One can simplify the travel time in the ambient flow term to have a more compact form:

σey(x) =
√

SctσvTLv

√
2
(

T
TLv

−
(

1 − exp
(−T

TLv

)))
︸ ︷︷ ︸

Ambient flow

+ 2S′(U∞T − (x − x0))︸ ︷︷ ︸
Turbine-induced

. (2.27)

Equation (2.27) can be used instead of (2.15) to calculate the lateral mixing layer
characteristic length with a simpler method that does not require explicit filtering of
the velocity time series by an external function. The range of validity of (2.27) is the
same as that of the model presented in § 2.2; one can solve (2.27) from the end of the
expansion region (x0) until the desired downwind distance. At each downstream location,
the travel time is calculated from (2.14), the centreline velocity is either constant (near
wake) or calculated from the Gaussian wake model (far wake), and the mixing layer
characteristic length and the Gaussian wake width are correlated through (2.8). As in the
model presented in § 2.2, there is no limitation to extend (2.27) to the vertical direction
with the respective properties. This equation can be solved easily without any external
function for filtering the velocity time series, and predicts the wake width in a fast and
easy to implement manner.

2.5. Near-wake treatment: a new form for the velocity deficit distribution
This section focuses on introducing a new formulation for the super-Gaussian shape
function to predict the wake velocity deficit distribution in the near wake. By definition,
the super-Gaussian shape function allows the transition from a top-hat distribution to a
Gaussian profile with a single functional form. Based on the presented analogy of wind
turbine wake expansion and scalar diffusion from a disk source, the goal is to propose a
new method to determine the super-Gaussian shape function parameters for the near-wake
velocity deficit distribution that asymptotes to the Gaussian wake model in the far wake.
It should be noted that the derivation presented in the following closely follows the steps
proposed by Blondel & Cathelain (2020). We start by assuming that the non-dimensional
wake velocity deficit has a super-Gaussian form:

	U(x)
U∞

= C′(x)f (x, r) = C′(x) exp

(
− rn(x)

2σ
′2(x)

)
, (2.28)

where C′(x) is the wake maximum velocity deficit, f (x, r) is the shape function, r is
the radial distance from the wake centre, n(x) is the smoothness parameter and σ ′(x)
is the super-Gaussian wake width (when n = 2, σ ′(x) is the wake standard deviation).
By neglecting the viscous and pressure terms in the momentum equation, the following
integral can be derived for conserving mass and momentum (Tennekes & Lumley 1972):

2πρ

∫ ∞

0
Uw(U∞ − Uw)r dr = T, (2.29)

where ρ is the air density and T is the turbine thrust force. By replacing (2.28) in (2.29) and
integrating, the following relation between the maximum velocity deficit, super-Gaussian
wake width, smoothness parameter and turbine thrust coefficient is derived including the
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Gamma function (Γ ):

C
′2(x) − 22/n(x)C′(x) + n(x)CT

16Γ (2/n(x))σ ′4/n(x) = 0. (2.30)

Within the framework of the presented analytical model (§ 2.2), the maximum velocity
deficit is known after solving the model at each downstream location. However, the
smoothness parameter and the super-Gaussian wake width are not known. In order to
define a super-Gaussian shape function that predicts the velocity deficit distribution in
the near wake and converges to a self-similar Gaussian profile in the far wake, we
propose a new expression for the smoothness parameter. The choice of the smoothness
parameter is made to guarantee that the super-Gaussian prediction smoothly transitions to
a self-similar Gaussian distribution in the far wake (n(x) = 2), which is consistent with the
aforementioned Gaussian model results in that region. In addition, one should consider
that the near-to-far-wake transition occurs at different downwind locations based on the
incoming flow turbulence level. In order to fulfil the conditions listed above, we propose
the following form for the smoothness parameter variation in the wind turbine wake:

n(x) = 2 + A erfc
(

2(σe(x)/d)

0.18

)
, (2.31)

where σe(x)/d is the total mixing layer characteristic length (geometrical mean of the
lateral and vertical characteristic lengths) at each downwind location, 0.18 corresponds to
the near-wake criterion introduced in § 2.3 and A is a tunable parameter which defines the
smoothness of the super-Gaussian profile at the end of expansion region (n(x0) = 2 + A).
This form ensures that the smoothness parameter converges to two in the far wake and the
super-Gaussian shape function switches to the Gaussian wake model. At this point, with
the smoothness and maximum velocity deficit known at each downstream location, one
can solve (2.30) for the super-Gaussian wake width:

σ ′(x) =
(

n(x)CT

22/n(x)C′(x) − C′2(x)
1

16Γ (2/n(x))

)(n(x)/4)

. (2.32)

Therefore, by calculating the super-Gaussian wake width at each downstream location, the
super-Gaussian shape function is fully defined and can provide the wake velocity deficit
distribution in the near wake and provides the correct asymptotic behaviour in the far wake.

3. Model validation

3.1. LES framework
To validate the model and test its performance, a series of LESs of a utility-scale wind
turbine wake under neutral ABL conditions were performed with the in-house LES code
developed at the WiRE Laboratory of EPFL (WiRE-LES). The code solves the filtered
incompressible Navier–Stokes equation:

∂ ũi

∂xi
= 0, (3.1)

∂ ũi

∂t
+ ũj

∂ ũi

∂xj
= −∂ p̃∗

∂xi
− ∂τij

∂xj
− fi, (3.2)

where i = 1, 2, 3 refers to the streamwise, spanwise and vertical directions, respectively,
ũ is the filtered velocity, p̃∗ is the filtered modified kinematic pressure, τ is the kinematic
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Case z0(m) Iu Iv Iw

1 5 × 10−1 0.140 0.097 0.074
2 5 × 10−2 0.099 0.071 0.055
3 5 × 10−3 0.077 0.055 0.043
4 5 × 10−4 0.062 0.044 0.034
5 5 × 10−5 0.053 0.038 0.029

Table 1. Incoming turbulence intensity of LES cases at turbine hub height: Iu, Iv and Iw denote the streamwise,
spanwise and vertical turbulence intensities, respectively, and z0 corresponds to the surface roughness.

sub-grid scale (SGS) stress and f represents the additional effects such as an external
forcing to drive the flow or the turbine forces. The code is based on pseudo-spectral
schemes in the horizontal directions and second-order centred finite-difference scheme
in the vertical direction. The horizontal boundary conditions are periodic, a flux-free
boundary condition is used at the top, and the bottom boundary condition is set through
the local application of the Monin–Obukhov similarity theory. For time advancement,
the second-order Adams–Bashforth explicit scheme is used. Within the WiRE-LES
framework, the Lagrangian scale-dependent dynamic model (Stoll & Porté-Agel 2006) is
used to parametrise the SGS turbulent fluxes and the rotational actuator disk model is used
to model the turbine-induced forces (Wu & Porté-Agel 2011). The WiRE-LES has been
validated in several studies of ABL flows with the presence of wind turbines (Porté-Agel
et al. 2011; Wu & Porté-Agel 2011; Porté-Agel, Wu & Chen 2013; Revaz & Porté-Agel
2021).

In this study, a domain size of Lx = 3840 m, Ly = 1920 m, Lz = 955 m is uniformly
divided into Nx = 256, Ny = 192, Nz = 192 grid points. The simulations, as listed in
table 1, cover a wide range of incoming turbulence levels and are driven by a constant
streamwise pressure gradient up to 0.8Lz to maintain a hub height velocity of 8 m s−1.
To minimise the effect of the top boundary on the flow, no forcing is applied in the
top 20 % of the domain. The inflow is generated through a set of precursor simulations
and imposed on the simulations with the turbine. The wind turbine has a diameter of
80 m and a hub height of 70 m and is placed 12 rotor diameters after the inlet. In this
condition, the turbine has an almost constant thrust coefficient of 0.8. To avoid numerical
instabilities, the parametrised turbine forces are distributed smoothly on the computational
grid with the help of a Gaussian kernel (Mikkelsen 2003). To guarantee mesh independent
results, the grid spacing is chosen to cover the rotor diameter with 8 points in the spanwise
direction and 16 points in the vertical direction. These values satisfy the minimum grid
points required in the spanwise direction (at least five cells) and vertical direction (at least
seven cells) across the rotor diameter (Wu & Porté-Agel 2011, 2012).

3.2. Results and discussion
In this section, we assess the performance of two forms of the new analytical model
(hereafter, ‘Model Filter’ is used to denote the form presented in § 2.2, whereas the
simplified form presented in § 2.4 is denoted as ‘Model ITS’ in which ITS stands for
integral time scale) by comparing its predictions against results from LESs of the wake
of a utility scale wind turbine. Several cases are considered, corresponding to a wide
range of turbulence intensities in the incoming flow under neutral atmospheric conditions,
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as summarised in table 1. For all the LES cases, the simulated wake velocity deficit
distribution is fitted with a Gaussian profile in the lateral direction and a Gaussian profile
with ground reflection in the vertical direction. As discussed earlier, wind turbine wakes
are fairly axisymmetric with similar growth rates in the lateral and vertical directions
(Cheng & Porté-Agel 2018). Therefore, the geometrical mean of the lateral and vertical
wake widths is considered as the total wake width (σwake,tot = √

σwake,yσwake,z). In order
to compare the LES results with the predictions from the new analytical model, the
latter uses as input the incoming flow information from a velocity time series sampled
during the LES simulations, upstream of the turbine at hub level. Using the incoming
flow information, the model computes the total wake width at each downwind distance. It
should be mentioned that Model Filter and Model ITS can estimate the total wake width
from 1d to the desired downwind distance. For this study and the mentioned cases, both
models are used in the range of 1d to 20d. Regarding the model parameters, Sct = 0.5
(Reynolds 1976), S′ = 0.043 (§ 2.1.2), x0/d = 1 (§ 2.2) and σe,NW/d = 0.18 (§ 2.1.3), are
used based on the presented discussions in § 2, without any parameter tuning.

Figure 4 shows a comparison of the wake width as a function of the downwind
distance computed from the new analytical model, the empirical wake growth rate relations
proposed by Niayifar & Porté-Agel (2016) and Teng & Markfort (2020), and that obtained
from the LES data. As shown in this figure, the proposed model can predict the wake width
reasonably well within a wide range of incoming turbulence levels. In comparison with the
empirical relations of the wake growth rate (with different tuned parameters), the model
shows a reasonable prediction across a wide range of turbulence levels. As can be noted
from figure 4, the wake growth rate relation proposed by Niayifar & Porté-Agel (2016)
provides reasonable wake width predictions in comparison with the LES data, whereas
the relation proposed by Teng & Markfort (2020) underestimates the wake width in the
presence of low turbulence intensity in the incoming flow. The new physics-based model
captures the start of the wake expansion at the beginning of the far wake, followed by
an approximately linear growth rate with the downwind distance. At farther downstream
distances (greater than around 12d, depending on the atmospheric turbulence level), the
wake expansion rate gradually decreases from the initial linear growth rate. This is due to
the fact that, by increasing downstream distance, the range of effective ambient turbulence
scales contributing to the wake expansion (i.e. turbulent eddies of size equal or larger than
the wake width) decreases. The proposed model can capture that effect and the associated
nonlinear wake expansion rate, which is crucial for the prediction of wind farm wakes
using analytical wake models. Moreover, figure 4 highlights the importance of including
the effect of turbine-induced turbulence on the turbulent viscosity. By including this term,
the model provides an acceptable prediction and avoids the underestimation of the wake
growth rate associated with the use of only atmospheric turbulence in the definition of the
turbulence viscosity (Cheng & Porté-Agel 2018).

Figure 5 shows the change of the maximum normalised velocity deficit, at the turbine
hub height, as a function of downwind distance computed from the new analytical model,
the Gaussian wake model with the empirical wake growth rate relations proposed by
Niayifar & Porté-Agel (2016) and Teng & Markfort (2020), and that obtained from LES
data. As shown in this figure, the model can predict the maximum wake velocity deficit in
a wide range of incoming turbulence levels reasonably well. Note that the assumption of
the expansion region downstream of the turbine and the uniform velocity distribution in
the near-wake region is consistent with the LES results. The maximum velocity deficit has
an approximately uniform distribution in the near wake and decreases gradually after the
near-to-far-wake transition point (shown in figure 5 as ‘Near-wake LES’). The comparison
between the LES data and the wake velocity deficit predicted by the Gaussian model using
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Figure 4. Normalised total wake width as a function of streamwise distance. The circles indicate LES results,
the solid lines are the solution obtained from Model Filter as presented in § 2.2 and the dashed lines are the
solution from the simplified approach, Model ITS in § 2.4. The prediction by the empirical wake growth rate
relations proposed by Niayifar & Porté-Agel (2016) and Teng & Markfort (2020) are also shown.

the empirical relations for the wake growth rate shows the sensitivity of the predictions to
the empirical constant. The Gaussian wake model with the proposed relation by Niayifar &
Porté-Agel (2016) can provide reasonable predictions for the wake velocity deficit, whereas
using the relation by Teng & Markfort (2020) overestimates the wake velocity deficit in
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near-wake length obtained from (2.19). For the legend refer to the caption of figure 4.

the presence of low turbulence intensity in the incoming flow. In addition, figure 5 shows
a comparison between the near-wake length of the LES cases and the near-wake length
of the model, which is discussed in more detail later in this section. As can be noted in
figures 4 and 5, Model Filter and Model ITS can predict the wake growth rate and the
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maximum wake velocity deficit downstream of the turbine reasonably well. There exist
slight differences between the two methods due to the different approaches to compute the
standard deviation of the filtered velocity. Based on the presented results, one can conclude
that the proposed model can provide fast and reasonably accurate predictions of the wake
width under a wide range of incoming turbulence conditions.

Figure 6 shows a comparison of the lateral profiles of the normalised velocity deficit
downwind of the turbine at hub level calculated by the proposed model, the Gaussian wake
model with the empirical wake growth rate relations proposed by Niayifar & Porté-Agel
(2016) and Teng & Markfort (2020), and those obtained from the simulations. It should be
noted that the new analytical model, as presented in § 2.2, uses the Gaussian wake model
to calculate the wake velocity deficit profiles in the far wake (figure 6, x/d = 6, 10, 15). In
the near wake (figure 6, x/d = 2), the wake velocity deficit profiles are calculated using
the new super-Gaussian form as presented in § 2.5. The proposed framework allows the
calculation of the wake velocity deficit profiles in the near wake with the super-Gaussian
form consistent with the Gaussian wake model by ensuring the super-Gaussian smoothness
parameter (n) is equal to two in the far-wake region. For the reported results, the value
of the super-Gaussian model parameter (A) is set to 12. It is worth mentioning that the
optimum value of A could depend on the turbine operating condition (CT ) and it is not
universal. As shown in the figure, in the near wake, the new super-Gaussian form predicts
the wake velocity deficit distribution reasonably well (figure 6, x/d = 2). These detailed
comparisons within a wide range of incoming turbulence conditions, as shown in figures 4,
5 and 6, validate the new analytical model.

As discussed in § 2.2, the wake advection velocity at each downwind location is
not known prior to the wake width and wake centreline velocity, and one should
deploy an iterative scheme to calculate these quantities at each downstream location.
In addition to the definition of wake advection velocity presented in this study, other
approaches have been used to estimate this quantity. For example, in the dynamic wake
meandering model (Larsen et al. 2008), the wake advection velocity is assumed to
be equal to the free stream velocity (Uadv = U∞). In order to explore how different
values of the wake advection velocity affect the new analytical model outputs, we
compare the model results, as presented in § 2.2, for four different approaches to
calculate the advection velocity: (1) Uadv(x) = 0.5(U∞ + Ucentre(x)), (2) Uadv(x) =
U∞, (3) Uadv(x) = 0.5U∞(1 + √

1 − CT)
CT=0.8−−−−→ Uadv(x) = 0.72U∞ and (4) Uadv(x) =

0.5(0.72U∞ + U∞) = 0.86U∞. These approaches cover the original formulation of the
advection velocity in the new model (approach 1), the constant advection velocity
proposed by the dynamic wake meandering model (approach 2) and the constant advection
velocity equal to the average of the free stream and theoretical near-wake centreline
velocity from one-dimensional momentum theory (approach 3). For the last approach,
the advection velocity is defined as the average of approaches 2 and 3, allowing us to
analyse the model outputs in the middle of these two limits. Figure 7 shows the change
of the maximum normalised velocity deficit, at the turbine hub level, as a function of
normalised downwind distance for the proposed approaches and that obtained from LES
data. As can be noted, all the approaches provide similar asymptotic behaviour in the very
far wake at downstream distances greater than 12d. For shorter distance from the turbine,
the assumption of Uadv = U∞ provides an overly fast advection of the wake that results in
a shorter travel time for a fixed downwind distance compared with the LES results. As a
result, and as shown in figure 7, this assumption causes an overly slow wake recovery and a
clear overestimation of the wake velocity deficit in the far wake up to downstream distances
of about six to eight rotor diameters (depending on the atmospheric turbulence level) in
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Figure 7. Normalised maximum velocity deficit as a function of streamwise distance in the far wake,
comparison of four different approaches to calculate the advection velocity.

comparison with the LES results. On the other hand, the assumptions of Uadv = 0.72U∞
and Uadv = 0.86U∞ provide predictions of the maximum wake velocity deficit that are
closer to those obtained with LES simulations. This can be explained by the fact that,
for those distances, these values are closer to the expected advection velocity reported in
the literature and defined in § 2.2. Therefore, the approach for estimating the advection
velocity can influence the wake velocity deficit prediction, particularly in the far wake up
to downwind distances of about six to eight rotor diameters.

Next, we use the model to analyse the contribution of each term to the wake
width in more detail. Figure 8 shows the average contribution of the ambient and the
turbine-induced turbulence to the total wake width calculated with the new model as a
function of radial turbulence intensity (

√
IvIw). The relative contribution of each term
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dash-dotted (ambient) lines show the variation of each term as a function of radial turbulence intensity obtained
from Model ITS (§ 2.4).

in the model for the presented cases in table 1 and the theoretical limits in the extreme
of no ambient turbulence are shown in the figure with the symbols. One can observe a
considerable increase in the relative contribution of the turbine-induced turbulence by
decreasing the turbulence intensity of the incoming ABL flow. In the case with the lowest
ambient turbulence (with streamwise turbulence intensity of 0.05), the turbine-induced
turbulence contribution to the wake width is around 40 % of the total wake width. To
further investigate the relative contribution of the ambient and turbine-induced turbulence
to the wake width under a wide range of ambient radial turbulence intensities (from 0
to 0.1), we have used the Model ITS as presented in § 2.4. In that model, the Eulerian
integral scale was chosen as the average of those calculated from the five LES cases, as it
was found to have a relatively small variability (standard deviation to mean ratio smaller
than 0.15). The results are also shown in figure 8 as a dash-dotted line (ambient-turbulence
contribution) and a dashed line (turbine-induced contribution). The relative contribution
of each term shows a steeper variation with decreasing ambient turbulence intensity. This
trend emphasises the importance of the turbine-induced turbulence term of the model
for the accurate prediction of the wake growth rate in relatively low ambient turbulence
conditions. Further research is required to fill the gap in this region of interest and explore
the behaviour of the contributing factors to the wake expansion in the extreme of low
turbulence. The importance of the turbine-induced turbulence, along with the limitations
of the current empirical formulations for the wake growth rate parameter (a function of
the streamwise turbulence intensity alone and valid within a limited range of turbulence
intensity levels) supports the importance of having a physics-based model that considers
both the effects of ambient turbulence and turbine-induced turbulence.

Figure 9 shows the variation of the near-wake length with the streamwise turbulence
intensity calculated from the proposed relations (2.19)–(2.21), and it is compared with that
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Figure 9. Near-wake length as a function of streamwise turbulence intensity, comparison of the proposed
relations (2.19)–(2.21), LES results, the near-wake length proposed by Bastankhah & Porté-Agel (2016) and the
near-wake length proposed by Vermeulen (1980).

obtained from the near-wake length model proposed by Bastankhah & Porté-Agel (2016),
the near-wake length model proposed by Vermeulen (1980) and LES data. For the LES
data, the near-wake length is calculated based on the downstream position where the linear
correlation coefficient of the Gaussian fit to the velocity deficit reaches the threshold of
0.99. For the proposed relations in § 2.3, the value of the parameters are the same as those
mentioned earlier (Sct = 0.5, S′ = 0.043, x0/d = 1, σe/d = 0.18) without any parameter
tuning. The other models are used with their original set of parameters. As shown in this
figure, the near-wake length increases with decreasing ambient turbulence level. Equations
(2.19)–(2.21) capture this behaviour and provide an acceptable prediction of the near-wake
length in a wide range of ambient turbulence levels. It should be mentioned that (2.20) is a
simplified form of (2.19) based on removing the filtering from the equivalent radial velocity
component and (2.21) is strictly valid for neutral atmospheric conditions. Thus, the use
of each of the proposed equations should take into account their respective underlying
assumptions.

4. Summary and concluding remarks

In this study, a new physics-based model has been proposed to predict the wake growth
rate downstream of a wind turbine. The model is based on the Taylor diffusion theory, the
Gaussian wake model, turbulent mixing layers self-similarity and the similarity between
wind turbine wake expansion and scalar diffusion from a disk source. With these elements
in place, the model ensures the conservation of mass and momentum in the far wake and
accounts for the effects of both ambient turbulence and turbine-induced turbulence on the
total wake width at each downstream location. Moreover, by filtering the velocity time
series at each downwind distance, the model takes into account the relevant scales of the
incoming turbulence in the wake expansion and removes the high-frequency fluctuations
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(small scales). A simplified version of the model has also been derived and only requires as
inputs the unfiltered velocity standard deviation and the integral time scales of the radial
velocity component of the incoming flow. Another outcome of the proposed modelling
framework is a new relation for the near-wake length as a function of the incoming ambient
turbulence intensity and turbine operating condition (CT ). In addition, a new functional
form for the wake velocity deficit distribution in the near wake has been derived based on a
super-Gaussian shape function and a new approach to calculate the smoothness parameter.

The model performance has been validated against LES data of a utility-scale wind
turbine wake under neutral ABL conditions with a wide range of incoming ambient
turbulence levels. It has been found that the proposed model yields reasonably accurate
predictions of the wake width, normalised maximum velocity deficit and near-wake length
for all the LES cases. It is particularly noteworthy to mention that the model performs well
for low ambient turbulence conditions, for which the existing models are unable to account
for the contribution of turbine-induced turbulence on the wake expansion. In summary,
the proposed analytical model is found to be simple, fast and reasonably accurate for
the prediction of mean turbine wake flows under a wide range of atmospheric turbulence
conditions.

Future research will focus on extending the proposed analytical model to calculate the
wake velocity deficit distribution inside wind farms with different layout configurations.
Moreover, the analytical modelling framework presented in this study should be further
tested and, if needed, improved to capture the effect of thermal stability on wind turbine
wakes.
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Appendix A. Summary of the model

This section provides a concise summary of the model to facilitate its application by the
reader. For this purpose, we review the model inputs, the model outputs and the procedure
to calculate the outputs of the model, as well as the key variables.

A.1. Inputs of the model
The inputs to the model are as follows.

(1) Wind turbine thrust coefficient (CT ).
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(2) For the model presented in § 2.2 (Model Filter), the velocity time series sampled
upstream of the turbine at hub height, representing the incoming flow conditions in
the streamwise, lateral and vertical directions. For the simplified model presented
in § 2.4 (Model ITS), the streamwise, lateral and vertical incoming turbulence
intensities and the lateral and vertical integral time scales.

(3) The mean incoming wind speed (U∞).

The parameters of the model are listed below. The value of each parameter is set based on
the presented discussions in § 2, without any parameter tuning.

(1) Turbulent Schmidt number, Sct = 0.5 for mixing layers (Reynolds 1976) (§ 2.2).
(2) Mixing layer characteristic length spreading rate, S′ = 0.043 (§ 2.1.2).
(3) End of the expansion region, x0 = 1d (§ 2.2).
(4) Threshold for the onset of the far wake, σe,NW/d = 0.18 (§§ 2.1.3 and 2.3).

A.2. Outputs of the model
The outputs of the model are as follows.

(1) Near-wake length (xNW ).
(2) Wake width (σwake).
(3) Maximum wake velocity deficit ((ΔU/U∞)max).
(4) Wake velocity deficit distribution.

A.3. Step-by-step procedure
This section provides a summary for the wake analytical model presented in §§ 2.2–2.5
to estimate the near-wake length, the wake expansion, the maximum wake velocity deficit
and the wake velocity deficit profiles until the desired downwind distance. The model is
proposed in two versions: one based on filtering the velocity time series with a moving
average filter (denoted as Model Filter and presented in § 2.2), and a simplified form
based on the integral time scales of the incoming flow and the unfiltered velocity standard
deviations (denoted as Model ITS and described in § 2.4). The procedure to obtain the
model outputs given the inputs mentioned above is as follows.

(1) The near-wake length (xNW ) is calculated based on the inflow data using (2.19), or
the simplified forms, as presented in (2.20) and (2.21), whenever applicable.

(2) For the far wake (x ≥ xNW ), the Gaussian model given by (2.16) is applied.
The wake width and wake centreline velocity are computed using the following
streamwise-marching iterative procedure:

(4.1) At each downstream location, the wake centreline velocity (Ucentre) is initialised
with the value of the closest upwind position. For each downstream step, from
x0 to the position of interest, the travel time (T) is computed using (2.14). The
wake advection velocity and the shear velocity are computed using the Ucentre.
For the Model Filter, given the travel time, the respective filter size (T/β) can be
determined to filter the lateral and vertical velocity time series with the moving
average filter.

(4.2) The lateral mixing layer characteristic length (σey) is computed using Model
Filter (2.15) or Model ITS (2.27).

(4.3) The lateral wake width (σwake,y) is computed from σey using the relation given
by (2.8), presented in § 2.1.3.
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(4.4) Steps (4.2) and (4.3) are repeated for the vertical direction with the respective
properties to calculate the σez and σwake,z.

(4.5) The total wake width and the total mixing layer characteristic length are
calculated as the geometrical mean of the lateral and vertical values.

(4.6) The wake centreline velocity (Ucentre) is computed based on the total wake
width using (2.16) in order to guarantee the conservation of momentum.

(4.7) The wake advection velocity (Uadv) is computed, and steps (4.1)–(4.7) are
repeated until convergence.

(3) For the near wake (x ≤ xNW ), the super-Gaussian model given by (2.28), (2.31) and
(2.32) is applied. Note that the model is defined in such a way that it smoothly
converges to the aforementioned Gaussian solution at the onset of the far wake.

A.4. Key variables
The following is a list of the key variables used in the proposed physics-based analytical
modelling procedure.

Sct Turbulent Schmidt number.
σ 2

y The mean square of the lateral distribution of a large number of particles behind
a point source. In this paper, σ 2

y is used within the formulations of the Taylor
diffusion theory, explicitly § 2.1.1 and (2.23) and (2.24).

TL Lagrangian integral time scale.
TE Eulerian integral time scale.

TLv Lagrangian integral time scale for the lateral (v) velocity component.
σe Mixing layer characteristic length.

σwake Gaussian wake width.
σey Mixing layer characteristic length in the lateral (y) direction.

σwake,y Gaussian wake width in the lateral direction.
σez Mixing layer characteristic length in the vertical (z) direction.

σwake,z Gaussian wake width in the vertical direction.
S′ The spreading rate for the mixing layer characteristic length (σe) defined in

§ 2.1.2.
d Wind turbine rotor diameter.

xNW Near-wake length.
σe,NW Mixing layer characteristic length at the end of the near wake, as a criterion for

the onset of the far wake. The value is estimated based on the analogy between
the wind turbine wake expansion and the scalar diffusion from a continuous
disk source, §§ 2.1.3 and 2.3.

x0 End of the expansion region.
T Travel time, (2.14).

Ucentre Wake centreline velocity.
ΔUmax Wake shear velocity, defined as U∞ − Ucentre(x).

Uadv Wake advection velocity, defined as Uadv(x) = 0.5(Ucentre(x) + U∞).
C′ Wake maximum velocity deficit.
n The super-Gaussian smoothness parameter.
A The tunable coefficient of the smoothness parameter, defines the super-Gaussian

shape at the end of expansion region.
σ ′ The super-Gaussian wake width.
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