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Abstract

Using variational methods, we obtain the existence of sign-changing solutions for a class of
asymptotically linear Schrödinger equations with deepening potential well.
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1. Introduction

In this paper we are concerned with the following nonlinear Schrödinger equation{
−1u + Vλ(x)u = f (x, u) in RN , N ≥ 3

u ∈ H1(RN ),
(1.1)

where Vλ(x)= 1+ λg(x), λ is a positive parameter, the function g satisfies the
condition (G):
(G) g ∈ L∞(RN, R) and there exists a nonempty bounded smooth domain �⊂ RN

such that

g(x)≡ 0 on �̄, g(x) ∈ (0, 1] on RN
\ �̄ and lim

|x |→∞
g(x)= 1.

We make the following assumptions on f :
( f1) f (x, t) ∈ C(RN

× R, R), f (x, t)t ≥ 0 for almost every x ∈ RN , for all t ∈ R;
( f2) lim|t |→0( f (x, t)/t)= 0 uniformly with respect to x ∈ RN ;
( f3) there exists α ∈ (0,∞) such that lim|t |→∞( f (x, t)/t)= 1+ α uniformly with

respect to x ∈ B R for all R > 0, and f (x, t)/t is bounded on RN
× (R \ {0});

( f4) lim|x |→∞ sup|t |≤r (| f (x, t)|/|t |)= 0 for every r > 0.
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[2] Sign-changing solutions for a class of nonlinear Schrödinger equations 295

In ( f3), BR denotes the ball in RN centered at zero with radius R. Let us remark
that there exist functions satisfying the hypotheses ( f1)−( f4), for example,

f (x, t)=
(1+ α)e−|x |

2
t3

1+ e−|x |2 t2
.

Usually, if there exists some real number l such that:
( f ′3) lim|t |→∞( f (x, t)/t)= l uniformly with respect to x ∈ RN ,
then we call f asymptotically linear at infinity. However, the condition
‘lim|t |→∞( f (x, t)/t)= 1+ α uniformly with respect to x ∈ B R for all R > 0’ in the
condition ( f3) is weaker than ( f ′3), and we point out that the technical condition ( f4)

will be mainly employed to prove the Palais–Smale condition ((PS) condition) in this
paper (see Lemma 2.1).

When f is sublinear or superlinear at infinity, some existence results related to
Problem (1.1) were obtained recently, see for example [1–4, 9] and the references
therein. In this paper, we focus on the case of f asymptotically linear at infinity.

Let � be given by (G). We denote by ξ1 the first eigenvalue of the following
Dirichlet problem {

−1u = ξu in �,

u = 0 on ∂�.

We also denote by λ=3(α) the principal eigenvalue of the following eigenvalue
problem

−1u − αu + λg(x)u = 0, u ∈ H1(RN ), α > 0. (1.2)

It has been proved in [7] that 3(α) always exists for any α ∈ (0, ξ1) with

0 = inf
{∫

RN
|∇u|2 dx : u ∈ H1(RN ) and

∫
RN
(1− g)u2 dx = 1

}
, (1.3)

and the 3(α)-eigenfunction u3(α) is the only eigenfunction which does not change
sign. Moreover,3(α) > α, which is the largest eigenvalue among all other eigenvalues
of (1.2).

Let us separate the first quadrant of the (λ, α)-plane into several parts (see Figure 1),
then we see from recent papers [8, 10, 11] that the existence and nonexistence of signed
solutions of Problem (1.1) have been completely discussed for these regions by using
different methods. We summarize those results in the following Table 1.

In the existence cases of the preceding table (that is, regions apart from III, IV and
the positive λ-axis), it is not hard to show the existence of solutions which do not
change sign.

It is natural to ask whether sign-changing solutions for Problem (1.1) exist or not
for the existence cases mentioned above? To the best of our knowledge, in any regions
of the first quadrant of the (λ, α)-plane, the existence and nonexistence results of sign-
changing solutions of Problem (1.1) have not been obtained.
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FIGURE 1. Separation of the first quadrant of the (λ, α)-plane into several parts.

TABLE 1. Summary of results.

Relations for λ and α Corresponding regions Obtained results In papers
α > ξ1, λ > α large I A positive solution [10]
α ∈ (0, ξ1), λ ∈ (α, 3(α)) II A positive solution and [8]

A negative solution
α ∈ (0, ξ1), λ≥3(α) III No positive solution [8]
α ≤ 0, λ≥ α IV No positive solution [8]
α = 0, λ ∈ [0,+∞) The positive λ-axis No positive solution [11]
α > 0, λ= 0 The positive α-axis A positive solution [11]
α > 0, λ= α The dotted diagonal line A positive solution [11]
α = ξ1, λ ∈ (α,+∞) The dotted horizontal line A positive solution [11]
α > ξ1, λ > 0 I, V and VII A positive solution [11]
α > 0, λ ∈ (0, α) VI and VII A positive solution [11]

In order to obtain sign-changing solutions of Problem (1.1), let us denote the
operator Lλ := −1+ λg(x), 8(u)=

∫
RN (|∇u|2 + λg(x)u2) dx , and let λ be fixed

in (1.2), then it follows from [6, 7] that the lowest eigenvalue of Lλ given by

α1(λ)= inf{8(u) : u ∈ H1(RN ) and ‖u‖2 = 1}

is well defined, and there exists a positive eigenfunction uα1(λ) corresponding to α1(λ).
Moreover, α1(λ) is simple in the sense of ker(Lλ − α1(λ)I )= span{uα1(λ)} := V1, and
α1(λ) increases from 0 (see (1.3) for the definition of 0) to ξ1 as λ increases from 0

to∞.
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FIGURE 2. Sign-changing solution of Problem (1.1) in the region VIII \ σp(Lλ).

Define

0∗ = inf
u∈H1(RN )∩V⊥1

∫
RN |∇u|2 dx∫

RN (1− g)u2 dx
.

Now let λ ∈ (0∗,∞) be fixed; we define

α2(λ)= inf{8(u) : u ∈ H1(RN ) ∩ V⊥1 and ‖u‖2 = 1}.

Similar to [11, Proposition 2.1], we can prove that there exists u ∈ H1(RN ) ∩ V⊥1 such
that 8(u) archives α2(λ), then the Lagrange-multipliers method implies that α2(λ) is
an eigenvalue of Lλ. By the simplicity of α1(λ), we obtain that α2(λ) is the second
eigenvalue of Lλ. Moreover, it is easy to prove that α2(λ) is increasing in λ.

In this paper, by using the variational method, we show that Problem (1.1) has at
least a sign-changing solution in the region VIII \ σp(Lλ) in Figure 2, where σp(Lλ)
denotes the point spectrum of Lλ.

Now we give the main result of this paper.

THEOREM 1.1. Assume that f satisfies ( f1)–( f4). If (λ, α) is in the region VIII \
σp(Lλ) in Figure 2, that is, α > α2(λ) and λ > α, moreover, α 6∈ σp(Lλ), then
Problem (1.1) has at least a sign-changing solution. In addition, Problem (1.1) has a
positive solution and a negative solution.

In the rest of the section, we list some preliminaries which we use later.
Recall that a functional I defined on a Banach space H is said to satisfy the (PS)

condition if any sequence {un} ⊂ H satisfying |I (un)| ≤ c and I ′(un)→ 0 as n→∞
possesses a convergent subsequence.

PROPOSITION 1.2 (Liu and Sun [5, Theorem 3.2]). Let X be a Hilbert space and
let f be a C1 functional defined on X. Assume that f satisfies the (PS) condition on X
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and f ′(u) has the expression f ′(u)= u − Au for u ∈ X. Assume that D1 and D2 are
open convex subsets of X with the properties that D1 ∩ D2 6=∅, A(∂D1)⊂ D1 and
A(∂D2)⊂ D2. If there exists a path h : [0, 1] → X such that

h(0) ∈ D1 \ D2, h(1) ∈ D2 \ D1

and
inf

u∈D1∩D2

f (u) > sup
t∈[0,1]

f (h(t)),

then f has at least four critical points, one in D1 ∩ D2, one in D1 \ D2, one in
D2 \ D1, and one in X \ (D1 ∪ D2).

In a given Banach space, → and ⇀ denote the strong convergence and the weak
convergence, respectively. Denote ‖u‖s = (

∫
RN |u|s dx)1/s . We use

〈u, v〉λ =
∫

RN
(∇u∇v + Vλ(x)uv) dx

as the inner product in the Hilbert space

Eλ =

{
u ∈ H1(RN ) :

∫
RN

Vλ(x)u
2 dx <∞

}
,

and induced norm ‖u‖λ =
√
〈u, u〉λ. By (G) the norm ‖u‖λ is equivalent to the norm

‖u‖ = (
∫

RN (|∇u|2 + u2) dx)1/2.
Finally, c, c0, c1, c2, . . . denote (possibly different) positive constants.

2. Proof of Theorem 1.1

By the assumptions on Vλ and f , the functional I : Eλ→ R, corresponding to
Problem (1.1), defined by

I (u)=
1
2
‖u‖2λ −

∫
RN

F(x, u) dx

is continuously (Fréchet) differentiable, where F(x, u)=
∫ u

0 f (x, t) dt . Therefore,
the critical points of the functional I correspond to solutions of Problem (1.1).

Let us write the gradient of I at u by

I ′(u)= u − A(u), A : Eλ→ Eλ, A(u)= (−1+ Vλ)
−1 f (x, u).

Then 〈A(u), v〉 =
∫

RN f (x, u)v dx for all v ∈ Eλ. We consider the convex cones
P = {u ∈ Eλ : u ≥ 0} and −P = {u ∈ Eλ : u ≤ 0}. For ε > 0, we denote

Pε = {u ∈ Eλ : dist(u, P) < ε} and − Pε = {u ∈ Eλ : dist(u,−P) < ε}.

Note that Pε and −Pε are open convex subsets of Eλ, therefore Eλ \ (Pε ∪ (−Pε))
contains only sign-changing functions.
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LEMMA 2.1. The functional I satisfies the (PS) condition.

PROOF. Let {un} be a sequence in Eλ such that |I (un)| ≤ c, I ′(un)→ 0 as n→∞.
We first prove that {un} is bounded in Eλ. In fact, otherwise, we may suppose that
‖un‖λ→∞. Set wn = un/‖un‖λ. Obviously, {wn} is bounded in Eλ. Passing to a
subsequence, still denoted by {wn}, we may assume that there exists w ∈ Eλ such that

wn ⇀ w in Eλ,

wn → w in Ls
loc(R

N ) for 2≤ s < 2∗,

wn(x)→ w(x) almost everywhere on RN .

We claim that w 6≡ 0 in RN . If w = 0, then wn→ 0 in L2
loc(R

N ). We show that for
each λ > 0 ∫

RN
(Vλ(x)− (1+ λ))w2

n dx→ 0 as n→∞. (2.1)

Indeed, by (G), for every ε′ > 0 there exists R∗ > 0 such that �̄⊂ BR∗ , and

|Vλ(x)− (1+ λ)|< ε′, x ∈ RN
\ BR∗ .

So, for all n ∈ N, we obtain that there exists some positive constant c1 such that∣∣∣∣∫
RN \BR∗

(Vλ(x)− (1+ λ))w2
n dx

∣∣∣∣≤ ε′‖wn‖
2
2 ≤ c1ε

′.

Also, since wn→ 0 in L2
loc(R

N ) and note that |Vλ(x)− (1+ λ)| ≤ λ, so there exists a
constant c2 > 0 such that∣∣∣∣∫

BR∗

(Vλ(x)− (1+ λ))w2
n dx

∣∣∣∣≤ λ ∫
BR∗

w2
n dx < c2ε

′

for n large enough. Thus,∫
RN
(Vλ(x)− (1+ λ))w2

n dx =
∫

BR∗

(Vλ(x)− (1+ λ))w2
n dx

+

∫
RN \BR∗

(Vλ(x)− (1+ λ))w2
n dx→ 0

as n→∞, which is (2.1). Thus, we have

lim
n→∞

∫
RN

(
|∇wn|

2
+ (1+ λ)w2

n

)
dx = lim

n→∞
‖wn‖

2
λ = 1

and then

lim sup
n→∞

∫
RN
w2

n dx ≤
1

1+ λ
. (2.2)

https://doi.org/10.1017/S0004972709000288 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709000288


300 X. Liu and Y. Huang [7]

By ( f1) and ( f3), for any ε′ > 0, there exists M > 0 such that

F(x, t)

t2 <
1+ α

2
+
ε′

4
, ∀|t | ≥ M, |x | ≤ R

for all R > 0. Thus,∫
{|x |≤R, |un(x)|≥M}

F(x, un)

u2
n

w2
n dx ≤

1+ α
2

∫
RN
w2

n dx +
ε′

4
‖wn‖

2
λ

=
1+ α

2

∫
RN
w2

n dx +
ε′

4
(2.3)

for all n ∈ N.
It is clear that we may choose R > 0 large enough such that∫

{|x |≥R, |un(x)|≥M}

F(x, un)

u2
n

w2
n dx ≤

ε′

4
(2.4)

holds for all n ∈ N. By ( f4),∫
{|x |≥R, |un(x)|≤M}

F(x, un)

u2
n

w2
n dx ≤ sup

|x |≥R, |un(x)|≤M

F(x, un)

u2
n
‖wn‖

2
λ ≤

ε′

4
(2.5)

for all n ∈ N. Note that wn→ 0 in L2
loc(R

N ) as n→∞. Then∫
{|x |≤R, |un(x)|≤M}

F(x, un)

u2
n

w2
n dx ≤

ε′

4
(2.6)

for n large enough. Combining (2.3)–(2.6) we conclude that for n large enough∫
RN

F(x, un)

u2
n

w2
n dx ≤

1+ α
2

∫
RN
w2

n dx + ε′. (2.7)

Then by |I (un)| ≤ c, (2.2) and (2.7), we know that

1
2
= lim

n→∞

∫
RN

F(x, un)

u2
n

w2
n dx ≤

1+ α
2(1+ λ)

,

which is impossible since λ > α. So, we have shown that w 6≡ 0.
By I ′(un)→ 0 as n→∞, for all ϕ ∈ Eλ

〈I ′(un), ϕ〉 =

∫
RN
(∇un∇ϕ + Vλ(x)unϕ − f (x, un)ϕ) dx→ 0 (2.8)

as n→∞. Dividing (2.8) by ‖un‖λ we have∫
RN

(
∇wn∇ϕ + Vλ(x)wnϕ −

f (x, un)

un
wnϕ

)
dx = o(1). (2.9)
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Since un(x)= ‖un‖λwn(x)→∞ for x 6∈ {x ∈ RN
| w(x)= 0}, and wn(x)→

w(x) almost everywhere in RN , it implies by ( f3) that

f (x, un(x))

un(x)
wn(x)→ (1+ α)w(x) almost everywhere in RN .

Also by ( f3), we know that f (x, t)/t is bounded on RN
× (R \ {0}). Then the

sequence {( f (x, un(x))/un(x))wn(x)} is bounded in L2(RN ), thus there exists a
subsequence, still denoted by the same subscripts, such that

f (x, un)

un
wn ⇀ (1+ α)w in L2(RN ).

Therefore, by (2.9) and the weak convergence of {wn} in Eλ, we obtain∫
RN
(∇w∇ϕ + Vλ(x)wϕ − (1+ α)wϕ) dx = 0,

that is, ∫
RN
(∇w∇ϕ + λg(x)wϕ) dx = α

∫
RN
wϕ dx .

From this we see that w satisfies

−1w + λg(x)w = αw.

This is impossible since α 6∈ σp(Lλ). Therefore, {un} is bounded in Eλ.
Next we prove that there exists u ∈ Eλ such that ‖un‖λ→‖u‖λ as n→∞.
Indeed, by the boundedness of {un}, passing to a subsequence, we may assume that

un ⇀ u in Eλ and un→ u in Ls
loc(R

N ). Since 〈I ′(un), ϕ〉 → 0 as n→∞, we let
ϕ = un − u and obtain

0 ≤ lim sup
n→∞

(‖un‖
2
λ − ‖u‖

2
λ)= lim sup

n→∞
〈un, un − u〉

= lim sup
n→∞

∫
RN

f (x, un)(un − u) dx . (2.10)

Clearly, by ( f3), lim|t |→∞ f (x, t)/t p−1
= 0 for all fixed p ∈ (2, 2∗). Then it follows

from ( f1), ( f2) that for each ε′ > 0 there exists Cε′ > 0 such that

| f (x, t)| ≤ ε′|t | + Cε′ |t |
p−1. (2.11)

By (2.11) and the Hölder inequality, for r ≥ 1∫
{|un(x)|≥r}

f (x, un)(un − u) dx ≤ 2C
∫
{|un(x)|≥r}

|un|
p−1
|un − u| dx

= 2C
∫
{|un(x)|≥r}

1

|un|
2∗−p
|un|

2∗−1
|un − u| dx

≤ 2Cr p−2∗
‖un‖

2∗−1
2∗ ‖un − u‖2∗,
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where C > 0 is a constant. Since p < 2∗, we may choose r so large that for all n ∈ N∫
{|un(x)|≥r}

f (x, un)(un − u) dx ≤
ε′

3
. (2.12)

Moreover, by ( f4), there exists R > 0 such that for all n ∈ N∫
{|x |≥R, |un(x)|≤r}

f (x, un)(un − u) dx ≤
ε′

3
. (2.13)

This implies by (2.11), the Hölder inequality and the compactness of the embedding
H1(RN ) ↪→ Ls

loc(R
N ) that for n large enough∫
{|x |≤R, |un(x)|≤r}

f (x, un)(un − u) dx ≤
ε′

3
, (2.14)

so by (2.12)–(2.14) ∫
RN

f (x, un)(un − u) dx ≤ ε′

for n large enough. From this and (2.10) we know that ‖un‖λ→‖u‖λ.
Finally, the locally uniform convexity of Eλ gives that un→ u in Eλ as n→∞.

The lemma is proved. 2

LEMMA 2.2. Assume that ( f1)–( f3) hold, then there exists ε0 > 0 such that for all
ε : 0< ε ≤ ε0 there holds

A(∂(±Pε))⊂±Pε.

Moreover, if u ∈ ±Pε is a solution of Problem (1.1), then u ∈ ±P.

PROOF. Indeed, if u ∈ Eλ and u+ =max{u, 0}, u− =min{u, 0}, then

dist(A(u), P)= min
w∈P
‖A(u)− w‖λ = min

w∈P
‖A(u)+ + A(u)− − w‖λ ≤ ‖A(u)−‖λ.

Let s ∈ [2, 2∗), then by the continuity of the embedding Eλ ↪→ Ls(RN ), there exists
Cs > 0 such that

‖u∓‖s = min
w∈±P

‖u − w‖s ≤ Cs min
w∈±P

‖u − w‖λ = Cs dist(u,±P). (2.15)

We claim that A(u) ∈ Pε for any u ∈ ∂Pε.
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In fact, it follows from (2.11), (2.15), ( f1) and the Hölder inequality that

dist(A(u), P)‖A(u)−‖λ ≤ ‖A(u)−‖2λ = 〈A(u), A(u)−〉

=

∫
RN

f (x, u)A(u)− dx

≤

∫
{u≥0}

f (x, u)A(u)− dx +
∫
{u≤0}

f (x, u)A(u)− dx dx

≤

∫
{u≤0}

f (x, u−)A(u)− dx

≤

∫
{u≤0}

(ε′|u−| + Cε′ |u
−
|
p−1)A(u)− dx

≤ ε′c̃ dist(u, P)‖A(u)−‖λ + C̃ε′,p dist(u, P)p−1
‖A(u)−‖λ.

Taking ε′ = 1/2c̃, then we obtain

dist(A(u), P)≤ 1
2 dist(u, P)+ C̃ dist(u, P)p−1,

where C̃ > 0 is a constant. Let ε0 =
(
1/4C̃

)1/(p−2), then for all ε with 0< ε ≤ ε0, we
have

dist(A(u), P)≤ 3
4 dist(u, P) (2.16)

for all u ∈ Pε. Clearly, dist(A(u), P)≤ 3
4ε < ε for every u ∈ ∂Pε, that is, A(u) ∈ Pε

for all u ∈ ∂Pε. Hence, A(∂Pε)⊂ Pε. In a similar way, A(∂(−Pε))⊂−Pε. If u ∈ Pε
is a solution of Problem (1.1), then I ′(u)= u − A(u)= 0, that is, u = A(u), by (2.16),
then u ∈ P . Similarly, if u ∈ −Pε, then u ∈ −P . 2

LEMMA 2.3. Assume ( f1)–( f3) hold. Let 0< ε ≤ ε0, then there exists C∗ >−∞
such that infPε∩(−Pε)

I (u)= C∗.

PROOF. It follows from (2.11) that

I (u) =
1
2
‖u‖2λ −

∫
RN

F(x, u) dx

≥
1
2
‖u‖2λ −

1
2
ε′
∫

RN
u2 dx − Cε′,p

∫
RN
|u|p dx

≥ −
1
2
ε′‖u‖22 − Cε′,p‖u‖

p
p.

By (2.15) we have ‖u±‖s ≤ Cs dist(u,∓P)≤ Csε0 for every u ∈ Pε ∩ (−Pε). So
there exists C∗ >−∞ such that infPε∩(−Pε)

I (u)= C∗. Hence, the lemma is
proved. 2
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PROOF OF THEOREM 1.1. Let uα2(λ) be an eigenfunction corresponding to the
eigenvalue α2(λ), and set W := {u ∈ Eλ : ‖u‖λ = 1, u ∈ span{uα1(λ), uα2(λ)}}. Define
a path γ : [0, 1] →W

γ (t)= cos(π t)uα1(λ) + sin(π t)uα2(λ)

connecting γ (0)= uα1(λ) and γ (1)=−uα1(λ). Now let h R(t)= Rγ (t). Since 0≤
F(x, t)/t2

≤ C for all t ∈ R, x ∈ RN , and

lim
R→+∞

F(x, Rγ (t))

R2γ (t)2
=

1+ α
2

for almost every x ∈ RN ,

thus, it follows by Lebesgue’s theorem that

lim
R→+∞

I (h R(t))

R2 =
1
2

∫
RN
(|∇γ (t)|2 + γ (t)2 + λg(x)γ (t)2) dx

− lim
R→+∞

∫
RN

F(x, Rγ (t))

R2γ (t)2
γ (t)2 dx

=
1
2
−

1
2
(1+ α)

∫
RN
(cos2(π t)u2

α1(λ)
+ sin2(π t)u2

α2(λ)
) dx

=
1
2
−

1
2
(1+ α)

(
cos2(π t)

α1(λ)+ 1
+

sin2(π t)

α2(λ)+ 1

)
<

1
2

(
1−

1+ α
1+ α2(λ)

)
< 0.

So, this yields that there exists R0 such that I (h R0(t)) < C∗ − 1. Hence, we obtain

inf
Pε∩(−Pε)

I (u) > sup
t∈[0,1]

I (h R0(t)).

Obviously h R0(0) ∈ Pε \ (−Pε), h R0(1) ∈ (−Pε) \ Pε. By using Lemmas 2.1–2.3 and
Proposition 1.2, we can find a critical point in Eλ \ (Pε ∪ (−Pε)), which is a sign-
changing solution of Problem (1.1). Also we have a critical point in Pε \ (−Pε) and
a critical point in (−Pε) \ Pε, which correspond to a positive solution and a negative
solution of Problem (1.1). 2
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