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Feed intake is controlled through a combination of long- and short-term mechanisms. Homeorhetic mechanisms allow adaptation
to changes in physiological states in the long term, whereas homeostatic mechanisms are important to maintain physiological
equilibrium in the short term. Feed intake is a function of meal size and meal frequency that are controlled by short-term
mechanisms over the timeframe of minutes that are modulated by homeorhetic signals to adapt to changes in the physiological
state. Control of feed intake by hepatic oxidation likely integrates these mechanisms. Signals from the liver are transmitted to
brain feeding centers via vagal afferents and are affected by the hepatic oxidation of fuels. Because fuels oxidized in the liver are
derived from both the diet and tissues, the liver is able to integrate long- and short-term controls. Whereas multiple signals are
integrated in brain feeding centers to ultimately determine feeding behavior, the liver is likely a primary sensor of energy status.
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Implications

The uncoupling of energy intake and energy requirements can
affect the productive performance of animals. Limitations to
feed intake by metabolic mechanisms or by distention of
undigested feed residues in the gastrointestinal tract can
result in negative energy balance, potentially compromising
health, production and reproduction. Excessive energy parti-
tioning to body reserves can result in similar consequences.
The disparity between energy intake and requirement is
affected by the interaction of diet and physiological state.
Understanding the interaction of long- and short-term con-
trols of feed intake will help optimize ration formulation to
improve animal health, production and efficiency of nutrient
utilization.

Introduction

Mechanisms controlling feed intake must ensure an
adequate supply of energy for maintenance, pregnancy,
growth and lactation, as well as prevent overconsumption
of energy. Homeostatic mechanisms maintain physiological
equilibrium, and homeorhetic mechanisms coordinate
changes in energy intake necessary to support alterations
in the physiological state (Bauman and Currie, 1980).
Because most ruminants consume forage-based diets that

are fibrous with relatively low nutrient density, feed intake
is often limited by distension from undigested feed residues
in the gastrointestinal tract. Conrad et al. (1964) proposed
that ruminants eat to meet their energy requirements unless
limited by the physical bulk of the diet. However, the idea
that animals eat to meet their energy requirements fails to
explain the insufficient stimulation of feed intake of rumi-
nants in the postpartum period when feed intake is not lim-
ited by distention, but negative energy balance persists
(Allen, 2014).

Feed is consumed in discrete meals with meal frequency
varying from four to five meals per day for grazing cattle
(Roche et al., 2008) to 9 to 14 meals per day for lactating
cows fed total mixed rations (Grant and Albright, 2000).
Meals are initiated when stimulatory (orexigenic) signals
intensify and inhibitory (anorexigenic) signals subside, and
meals cease when inhibitory signals intensify and stimulatory
signals subside. Stimulatory signals include those that are
sensory, social, circadian and habitual, as well as a reduction
in hepatic energy status, whereas inhibitory signals include
distention within the gastrointestinal tract, rumen osmolality,
endocrine effects, nutrient sensing by the central nervous
system, and elevated hepatic energy status (Allen, 2014).
Feed intake is a function of meal size and meal frequency,
which are controlled by short-term (homeostatic) mecha-
nisms affecting satiety and hunger over a timescale of
minutes. Certain elements of the short-term mechanism
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are likely modulated by homeorhetic signals. Whereas multi-
ple signals are integrated in brain feeding centers to ulti-
mately determine feeding behavior, the liver is likely a key
sensor of energy status integrating long- and short-term con-
trols. Research has shown that signals from the liver are
transmitted to brain feeding centers via vagal afferents
affected by the oxidation of fuels (Langhans et al., 1985;
Friedman, 1998). The liver offers the unique advantage of
sensing not just energy availability but energy balance rela-
tive to nutrient demands (Allen and Bradford, 2012).

The objective of this article is to discuss the liver as a sen-
sor of energy status, integrating short- and long-term con-
trols. The following sections provide background regarding
the relationship between fuel oxidation and feed intake, con-
trol of feed intake by hepatic oxidation, the type and tempo-
ral supply of fuels oxidized in the liver of ruminants, and the
control of hepatic oxidation and its modulation over the long
and short terms. This will be followed by a discussion of the
interactions of diet and physiological state on the control of
feed intake through the lactation cycle.

Whole-body oxidation of fuels and feeding
The effect of fuel oxidation on food intake in laboratory spe-
cies has been reviewed in detail previously (Langhans, 1996;
Friedman, 1998). Various metabolic inhibitors have been
reported to stimulate feeding by inhibiting the oxidation of
glucose or fatty acids (FA). Food intake by laboratory species
has been stimulated by the inhibition of glycolysis by 2-deoxy-D-
glucose (Novin et al., 1973), pyruvate transport across the
mitochondrial membrane by α-cyano-4-hydroxycinnamic
acid (Del Prete et al., 2004), long-chain FA transport across
the mitochondrial membrane by methyl palmoxirate (Friedman
and Tordoff, 1986) and etomoxir (Horn et al., 2004), and
β-oxidation by mercaptoacetate (Scharrer and Langhans,
1986). In addition, food intake was decreased by the stimu-
lation of fuel oxidation by PPARγ agonists in rats (Fu et al.,
2003, 2005) and by knockdown of 11β-hydroxysteroid dehy-
drogenase type 1 in mice (Li et al., 2011). Synergistic effects
of inhibiting glucose and FA oxidation on food intake have
been reported; inhibition of glycolysis by 2-deoxyglucose
and FA oxidation by methyl palmoxirate synergistically
increased feeding in rats (Friedman and Tordoff, 1986),
as did inhibition of glycolysis by 2-deoxyglucose and lipolysis
by nicotinic acid (Friedman et al., 1986). Furthermore, feed-
ing events were related to periprandial patterns of fat and
carbohydrate oxidation measured by respiration calorimetry
in lactating cows (Derno et al., 2013).

Control of feed intake by hepatic oxidation
Extensive evidence with laboratory species suggests that the
liver provides a common integrated mechanism for the con-
trol of feeding behavior by the oxidation of a variety of fuels
(Forbes, 1988; Langhans, 1996; Friedman, 1998; Scharrer,
1999). The hepatic oxidation theory (HOT) of the control
of feed intake has been applied to ruminant animals (Allen
et al., 2009; Allen and Bradford, 2012; Allen, 2014) and will
be briefly summarized here. Signals from the liver are

transmitted to brain feeding centers via vagal afferents
(Anil and Forbes, 1988). The signal from the liver may be both
inhibitory (affecting satiety) and stimulatory (affecting hun-
ger) and is related to hepatic oxidation of fuels (Friedman,
1997). Feeding behavior is affected by the firing rate of
the nerve; increased oxidation decreases the firing rate,
inhibiting feeding, whereas decreased oxidation increases
the firing rate, stimulating feeding (Friedman, 1997). Fuels
extracted from the blood by the liver can be converted to ace-
tyl CoA (AcCoA) and oxidized in the tricarboxylic acid (TCA)
cycle. Hepatic oxidation varies over minutes affecting feeding
behavior and is dependent upon the supply of AcCoA and the
capacity of the TCA cycle.

Fuels oxidized by the ruminant liver
Fuel supply to the liver is dependent upon the absorption
of fuels derived from the diet as well as those supplied by
or extracted from the blood by extrahepatic tissues
(Figure 1). Fuels extracted from the blood and oxidized in rumi-
nant liver include non-esterified fatty acids (NEFA), amino
acids (AA), lactate, glycerol, short-chain FA (except acetate)

Figure 1 Flow of potential metabolic fuels in ruminant animals. (1) Short-
chain fatty acids (FA) produced by ruminal fermentation (e.g. acetate, pro-
pionate, butyrate, etc.) as well as glucose, lactate, amino acids, and
medium-chain FA flow to the liver from the portal-drained viscera. The type
and temporal absorption of potential fuels is dependent upon diet compo-
sition and digestion kinetics affecting the site of digestion. Extraction by the
liver varies by fuel and over time depending upon enzyme activities and
redox state of the liver. Little glucose and acetate are extracted by ruminant
liver, sparing them for use by extrahepatic tissues. Propionate extraction
from portal blood is high, but extraction of other fuels is lower and variable.
(2) Long-chain FA are absorbed in the lymphatic system. (3) Fuels released
from the liver include glucose, β-hydroxybutyrate (BHB), acetate, amino
acids (AA) and very-low-density lipoproteins. Fuels extracted by the liver
from circulating blood include non-esterified FA (NEFA), glycerol, lactate
and AA. When AA are supplied in excess, and when AA profile diverges
from optimal, their oxidation and use for anaplerosis increases. Glucose
output by the liver into the blood is affected by its demand by tissues
and controlled primarily by insulin and glucagon. (4) Milk synthesis by
the mammary gland is a sink for potential fuels, including glucose,
NEFA, acetate, butyrate and AA. Removal of these fuels from the blood
likely promotes intake by reducing their availability for oxidation in the liver.
(5) Adipose tissue extracts acetate, glucose and NEFA from the blood during
lipogenesis and mobilizes triacylglycerol, increasing the availability of NEFA
and glycerol for hepatic oxidation. (6) Muscle tissue utilizes glucose,
acetate, glycerol, BHB and NEFA as fuels, and AA for protein synthesis.
Amino acids are mobilized during negative energy balance, increasing their
availability as fuels following deamination, although anaplerosis of gluco-
genic AA decreases their oxidation compared with ketogenic AA. Lactate
from partial metabolism of glucose by the muscle is available for gluconeo-
genesis or oxidation in the liver (adapted from Allen, 2014with permission).
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and medium-chain FA. Little acetate, if any, is extracted
from the blood because of low activity of AcCoA synthetase
(Ricks and Cook, 1981) necessary for its conversion to AcCoA
and subsequent metabolism. In addition, little glucose is
extracted from the blood of mature ruminants that lack glu-
cokinase (Ballard, 1965), ensuring low hepatic glycolysis
(Aschenbach et al., 2010). All fuels must be converted to
AcCoA in the mitochondria for complete oxidation to CO2
in the TCA cycle. Fatty acids are converted to AcCoA by
β-oxidation, whereas glucogenic fuels are converted to
AcCoA through pyruvate by the pyruvate dehydrogenase
complex, and ketogenic AA are converted directly to
AcCoA after deamination. Although propionate and other
glucose precursors can be converted to pyruvate when their
supply exceeds the glucogenic flux, conversion of pyruvate to
AcCoA is likely inhibited in the postpartum period. Elevated
concentrations of AcCoA activate pyruvate carboxylase if
energy charge is high (Petersen et al., 1994) and inhibits con-
version of pyruvate to AcCoA by the pyruvate dehydrogenase
complex (Begum et al., 1983), providing negative feedback
and conserving TCA intermediates.

Control of hepatic oxidation
Hepatic oxidation of fuels fluctuates with the energy needs of
the liver, which varies over weeks and months (e.g. to sup-
port growth and lactation; Reynolds et al., 2004). However,
the periprandial pattern of fuel oxidation affects hepatic
energy status and is involved in the control of feeding behav-
ior (Friedman, 1997). Energy status of the liver is dependent
upon the balance between energy-consuming and energy-
producing reactions. Acetyl CoA enters the TCA cycle for oxi-
dation but can also be used for anabolic pathways or
exported from the liver as ketone bodies or hydrolyzed
and released as acetate (Allen et al., 2009). The entry of
AcCoA into the TCA cycle requires oxaloacetate (OAA) for
the citrate synthase reaction. The availability of OAA is
dependent upon the concentration of TCA intermediates
and the rate of reactions within the TCA cycle (Allen, 2014).
The concentration of TCA intermediates in the mitochondria
of hepatocytes is determined by the balance between anaple-
rosis (entry into the cycle) and cataplerosis (exit from the
cycle). Intermediates exit the TCA cycle as they are used in
biosynthetic pathways. Pre-gastric fermentation limits glu-
cose available for absorption, so glucose needs are met by
gluconeogenesis, which is the primary factor affecting cata-
plerosis in ruminants (Aschenbach et al., 2010). Anaplerotic
metabolites include propionate, glucogenic AA, lactate and
glycerol (Aschenbach et al., 2010). Propionate carbon enters
the TCA cycle as succinyl CoA, and other metabolites enter the
TCA cycle at other sites (i.e. OAA and α-ketoglutarate). The
speed at which they are able to stimulate the oxidation of
AcCoA is dependent upon the concentrations of enzymes
and cofactors, enzyme activity and end-product accumula-
tion of individual reactions (Allen, 2014). Elevated [NADH]/
[NAD] and [ATP] indicate energy sufficiency, decreasing
the rate of certain reactions and the availability of OAA
for the citrate synthase reaction (Allen et al., 2009).

Modulation of hepatic oxidation
Hormones and cytokines modulate hepatic oxidation over
both the long and short terms by affecting the availability
of AcCoA for oxidation, as well as anaplerosis and cataple-
rosis of TCA cycle intermediates. This section reviews the
major factors modulating hepatic oxidation, including insu-
lin, glucagon, somatotropin and leptin.

Plasma concentration of insulin varies over the long term
with elevated concentrations indicating energy adequacy.
Insulin is secreted by the pancreas in response to glucose
as well as propionate and butyrate (Manns and Boda,
1967). Other nutrients such as NEFA and certain AA can aug-
ment glucose-induced insulin secretion (Fu et al., 2013). In
addition, insulin secretion is regulated by various hormones,
including melatonin, estrogen, leptin, somatotropin and
glucagon like peptide-1 (Fu et al., 2013). Insulin suppresses
gluconeogenesis and ketogenesis in the liver (Brockman and
Laarveld, 1986), modulating hepatic oxidation by reducing
cataplerosis of the TCA cycle and increasing the availability
of AcCoA for oxidation by decreasing its export from the liver
as ketone bodies. Insulin also stimulates lipogenesis and sup-
presses lipolysis (Brockman and Laarveld, 1986), reducing
the concentration of NEFA in the blood. Non-esterified fatty
acids are the primary source of AcCoA and are extracted from
the blood in proportion to their concentrations (Bell, 1980).
Plasma concentrations of insulin and NEFA are inversely
related over the long term as well as within the timeframe
of meals with pulsatile insulin release in response to
absorbed fuels (Allen, 2014). Insulin also stimulates the
uptake of AA by muscle tissue and inhibits protein degrada-
tion (Brockman and Laarveld, 1986; Lobley, 1992). The mobi-
lization of AA from the muscle occurs during negative energy
balance when plasma insulin concentration is low (Heitmann
and Bergman, 1980). Amino acids can be oxidized in the TCA
cycle after conversion to AcCoA, and glucogenic AA are ana-
plerotic and can stimulate the oxidation of AcCoA.

Glucagon has both direct and indirect effects on plasma
NEFA concentrations (Bobe et al., 2003) by directly increasing
lipolysis (Brockman, 1976) but indirectly decreasing lipolysis
by increasing the concentrations of glucose and insulin
(Brockman, 1978). Therefore, the net effect on lipolysis
and NEFA supply to the liver is dependent upon responses
of glucose and insulin (Bobe et al., 2003). Glucagon stimu-
lates gluconeogenesis in bovine hepatocytes in vitro, but
the response is counteracted by insulin (Donkin and
Armentano, 1995). Chronic elevation of plasma insulin con-
centrations inhibits gluconeogenesis, decreasing cataplerosis
of TCA intermediates and likely stimulating hepatic oxidation
within meals sooner (Allen, 2014).

Somatotropin has a range of biological effects, including
stimulation of milk synthesis, increased AA and glucose uptake
by the muscle andmammary gland, increased protein synthesis
and accretion by skeletal muscle, increased glucose output by
the liver and decreased ability of insulin to inhibit gluconeogen-
esis, increased basal lipolysis during negative energy balance
and decreased lipid synthesis during positive energy bal-
ance (Etherton and Bauman, 1998). Although somatotropin
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secretion is pulsatile with irregular pulses in cattle (Kayusa,
2016), its effects on lipolysis are chronic with no acute effects
in ruminants (Houseknecht et al., 1996). Somatotropin likely
stimulates feed intake by hepatic oxidation by reducing TCA
intermediates; cataplerosis is increased by increasing gluco-
neogenesis, and anaplerosis is decreased by reducing AA
supply to the liver.

Leptin has been implicated in the control of feed intake,
and plasma leptin concentration is correlated with body fat
percent and body condition score in lactating cows (Ehrhardt
et al., 2000). Leptin treatment of animals causes a dose-
dependent decrease in feed intake, and a loss of body weight
and fat depots (Pelleymounter et al., 1995). The role of leptin
on the regulation of body weight balance is consistent with a
fat-related lipostatic signal to the brain, proposed by
Kennedy (1953). Leptin increases lipolysis and plasma
NEFA concentrations by inhibiting insulin release by the
pancreas (Emilsson et al., 1997; Kieffer et al., 1997) and sup-
pressing lipogenesis and increasing triglyceride hydrolysis
(Houseknecht et al., 1998; Harris, 2014). Whereas leptin’s
effects on food intake are thought to be mediated centrally
via neurotransmitters (Houseknecht et al., 1998), its effects
on feed intake might also be from increasing the supply of
AcCoA for hepatic oxidation by elevating plasma NEFA con-
centrations (Allen, 2014).

Insulin resistance is attributed to decreased maximal
effect of insulin (insulin responsiveness) and decreased insu-
lin sensitivity (the concentration of insulin to elicit a half-
maximal response; Kahn, 1978). The effects of insulin on
stimulating lipogenesis and inhibiting lipolysis in adipose tis-
sue are affected by various factors (Vernon, 1980). Insulin
resistance varies among animals and physiological states,
modulating the effects of insulin on plasma NEFA concentra-
tions and its supply to the liver. Hyperinsulinemia can cause
insulin resistance by downregulating insulin receptors and
desensitizing post-receptor pathways (Kahn and Flier, 2000).
Insulin resistance of adipose tissue has been positively
related to somatotropin in dairy cows (Boisclair et al.,
1994; Bell and Bauman, 1997), and a long-term administra-
tion of the pro-inflammatory adipokine TNF-α induced insulin
resistance in steers (Kushibiki et al., 2001). In contrast, the
anti-inflammatory adipokine adiponectin was negatively
related to insulin resistance in cows (Giesy et al., 2012).

Metabolites affect insulin sensitivity directly by modu-
lating the insulin-signaling pathway, and alter the protein
function by post-translational modification by metabolites
(e.g. acetylation and palmitoylation; Yang et al., 2018).
Sustained elevation of plasma NEFA can interfere with insulin
signaling, increasing insulin resistance (Le Marchand-Brustel
et al., 2003). Hyperlipidemia impairs the ability of insulin to
suppress gluconeogenesis, stimulates glucose uptake into
skeletal muscle and inhibits insulin secretion from the pan-
creas (Kahn and Flier, 2000). However, NEFA differ in their
effects on insulin sensitivity. Saturated FA impair insulin sig-
naling and decrease insulin sensitivity, whereas some
unsaturated FA, including the polyunsaturated eicosapentae-
noic and docosahexaenoic acids and monounsaturated oleic

and palmitoleic acids, are associated with improved insulin
sensitivity (Yang et al., 2018). β-hydroxybutyrate inhibits
lipolysis in adipose tissue (Taggart et al., 2005), providing
negative feedback when AcCoA is in excess.

Interactions of diet and physiological state
The physiological state varies greatly across the lactation
cycle, including the prepartum period when preparing for
the transition from pregnancy to lactation; the immediate
postpartum period characterized by a lipolytic state; peak lac-
tation when cows are in negative energy balance and feed
intake is increasingly limited by distention; and mid- to late
lactation when milk yield decreases and body energy stores
replete (Table 1). The effects of diet composition on feed
intake are affected by the physiological state of animals
(Allen and Piantoni, 2014), and the interactions of diet
and physiological state are related to the supply of AcCoA,
and the balance between anaplerosis and cataplerosis of
the TCA cycle (Figure 2).

Acetyl CoA availability for the citrate synthase reaction. The
peripartum period is characterized by a lipolytic state to help
meet the challenges of transitioning from pregnancy to lac-
tation. The increase in plasma NEFA concentration helps to
achieve a successful transition by sparing glucose for the
gravid uterus prepartum and the lactating mammary gland
postpartum, increasing the fat content of colostrum and early
milk to improve energy intake by the newborn calf and pro-
viding alternative fuels to extrahepatic tissues when lactation
is initiated and plasma glucose and insulin concentrations are
low. Homeorhetic signals effecting this change include a
decline in plasma insulin concentrations beginning several
weeks prepartum (Doepel et al., 2002) and an increase in
insulin resistance of adipose tissue during the peripartum
period (Vernon, 1980).

The depression of feed intake that begins in the days prior
to parturition (Ingvartsen and Andersen, 2000) is likely from a
steady supply of AcCoA for oxidation in the liver during the

Table 1 Relative status of characteristics related to the control of feed
intake at different stages of lactation in cattle

Factor

Stage of lactation

Prepartum
period

Immediate
postpartum

Peak
lactation

Mid–late
lactation,
pregnant

Gut distension L L H M
Acetyl CoA M H L M
Anaplerosis L to H L to H L to H L to H
Cataplerosis L H H M
Insulin L L M H
Glucagon M H M M
Somatotropin M H M L
Leptin H L M H
Insulin resistance M H M L

L= low level; M=medium level; H= high level.
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lipolytic state (Allen et al., 2005). The plasma concentration
of NEFA is determined by the balance between supply and
removal; supply is from net lipolysis (the balance between
lipolysis and lipogenesis) and absorbed dietary lipids, and
removal is by oxidation in the liver, muscle and uterus
and export as FA in milk. Endogenous and dietary lipids
likely decrease feed intake by hepatic oxidation, signaling
the brain depending upon the energy charge of the liver,
rather than having direct central nervous system (CNS)
effects (Kuhla et al., 2016). Plasma NEFA concentrations
increase beginning 2 to 3 weeks prepartum, coinciding with
a decrease in plasma insulin concentration, and peak at par-
turition when plasma insulin concentration reaches its nadir
(Doepel et al., 2002). Over the first several weeks postpar-
tum, NEFA is exported as milk fat, and net lipolysis
decreases as plasma insulin concentrations gradually
increase (Doepel et al., 2002). Hepatic uptake of NEFA during
the postpartum period in excess of FA transport into the
mitochondria for β-oxidation results in storage as triglycer-
ides. The production of AcCoA by β-oxidation that exceeds
the capacity for oxidation in the TCA cycle and biosynthesis
increases export as ketone bodies and hydrolysis and
release as acetate. Ketone bodies and acetate are used
by extrahepatic tissues to spare glucose, and their export
decreases the pool of AcCoA available for hepatic oxida-
tion, helping to alleviate the depression of DMI in the post-
partum period.

Dairy cows with higher body condition scores at calving lost
more body weight and body condition, over a longer period,
than cows with lower condition scores (Garnsworthy and
Topps, 1982). In addition, more extensive mobilization of body
fat for over-conditioned cows began before calving and contin-
ued during the first weeks of lactation (Kokkonen et al., 2005).
Extensive mobilization of fat by over-conditioned cows during
the peripartum period likely increases the supply of AcCoA for
oxidation in the liver, suppressing DMI consistent with the HOT.

Insulin resistance of adipose tissue in the peripartum
period is related to increased somatotropin and pro-inflam-
matory cytokines and decreased concentrations of anti-
inflammatory cytokines. Plasma concentrations of somato-
tropin begin to increase several weeks before calving, with
peak concentrations reached during the postpartum period
(Koprowski and Tucker, 1973), whereas plasma concentra-
tions of IGF-1 have an opposite pattern (Doepel et al.,
2002). Leptin decreases with the onset of lactation
(Kadokawa et al., 2000). However, constant intravenous
infusion of leptin for 96 h did not affect feed intake of cows
in the postpartum period (Ehrhardt et al., 2016). A lack of
effect of leptin on feed intake of cows in negative energy
balance is consistent with its effects attributable to hepatic
oxidation because leptin treatment is unlikely to reduce insu-
lin concentrations, when it is already low, or increase insulin
resistance of adipose tissue, when it is already elevated, dur-
ing this period. The elevation of TNF-α during this period was
correlated positively with insulin resistance in cows with fatty
liver (Ohtsuka et al., 2001), and decreased adiponectin con-
centration in the peripartum period in the dairy cow likely
contributes to insulin resistance (Giesy et al., 2012). A retro-
spective study of cows with high v. low fat concentrations in
the liver during the postpartum period reported that cows
with higher liver fat concentrations had lower feed intake,
higher plasma NEFA concentrations, increased degradation
of AA and anaplerotic reactions, increasing TCA cycling,
mitochondrial oxidation of AcCoA and oxidative phospho-
rylation consistent with the HOT (Schäff et al., 2012).

As lactation proceeds, elevated somatotropin continues to
direct nutrients to milk production (Etherton and Bauman,
1998), and plasma NEFA concentrations decrease as greater
quantities of NEFA are exported as milk fat and increasing
plasma insulin concentrations decrease net lipolysis. Hepatic
AcCoA concentrations decrease as plasma NEFA concentra-
tions decline, decreasing their export as ketone bodies. The
signal from hepatic oxidation gradually diminishes as hepatic
AcCoA concentrations decrease and feed intake is increas-
ingly limited by distention by undigested feed residues
(Allen, 2014). Whereas the dominant mechanisms controlling
feed intake change with diet and physiological state, differ-
ent mechanisms likely have additive effects on feed intake
both within and across days. Synergistic effects on satiety
were demonstrated by the additive effects of intraruminal
infusion of short-chain FA on feeding behavior of lactating
cows when rumens were distended by balloons (Mbanya
et al., 1993) or forage NDF concentrations of diets (Choi
and Allen, 1999).

Figure 2 Effects of diet and physiological state on hepatic concentrations
of acetyl CoA (AcCoA) and the tricarboxylic acid (TCA) cycle intermediates
in ruminant animals. (1) The primary source of AcCoA is β-oxidation of non-
esterified fatty acids (NEFA) extracted from the blood. (2) Other sources of
AcCoA include amino acids (AA), lactate, glycerol, butyrate and medium-
chain FA. (3) AcCoA enters the TCA cycle for oxidation combining with oxa-
loacetate (OAA) to form citrate. Acetyl CoA is also (4) used in biosynthetic
reactions, (5) exported as ketone bodies and (6) hydrolyzed to acetate and
released into the bloodstream. The oxidation of AcCoA in the TCA cycle is
dependent upon the supply of OAA produced from TCA intermediates. The
concentration of TCA intermediates is determined by the balance between
anaplerosis and cataplerosis. (7) Anaplerotic metabolites include those of
dietary origin, including propionate, glucogenic AA, lactate and glycerol, as
well as endogenous sources including lactate, glucogenic AA and glycerol.
The rate of anaplerosis by metabolites of dietary origin is highly variable
depending upon the diet and the kinetics of digestion and passage.
Propionate entry is pulsatile post-prandially as it can be produced, absorbed
and extracted from the blood very quickly within the time-course of meals.
Other anaplerotic metabolites derived from the diet (e.g. glucogenic AA,
lactate) are absorbed post-ruminally with a greater latency for absorption
and likely contribute to anaplerosis between meals. (8) Cataplerosis
decreases the concentration of TCA intermediates, which are used for glu-
coneogenesis and other biosynthetic reactions.
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Priorities in mid- to late lactation include directing
nutrients to the fetus and replenishing body reserves.
Somatotropin concentrations gradually decline, decreasing
milk yield and insulin resistance. Decreased milk production
results in elevated plasma glucose and insulin concentra-
tions, increasing the balance between lipogenesis and lipoly-
sis, and decreasing plasma NEFA and hepatic AcCoA
concentrations (Piantoni et al., 2015). Although NEFA is
likely the dominant source of AcCoA for cows in the postpar-
tum period when cows are in a lipolytic state, other fuels
likely contribute to a greater extent when cows are in late
lactation (Piantoni et al., 2015). Plasma leptin concentrations
increase with body condition (Bradford et al., 2006), limiting
adiposity by direct effects on the CNS as well as by increasing
plasma NEFA concentrations and the supply of AcCoA for
hepatic oxidation (Allen, 2014). Sensitivity to exogenous lep-
tin varies among animals, and obese animals may have
reduced sensitivity to leptin, reducing its hypophagic effect
(Myers et al., 2012).

Anaplerosis v. cataplerosis: stimulation of acetyl CoA
oxidation. Intermediates of the TCA cycle that provide
OAA for the citrate synthase reaction and used for gluconeo-
genesis and other biosynthetic reactions are replenished by
anaplerotic metabolites derived from the diet and tissues.
Propionate is the primary anaplerotic metabolite stimulating
hepatic oxidation within the timeframe of meals (Allen,
2000). Propionic acid is produced primarily by the fermenta-
tion of starch by rumen microbes and can be produced and
absorbed as propionate at very high rates and efficiently
extracted by the liver within the timeframe of meals
(Allen, 2000). Other anaplerotic metabolites derived from
the diet (e.g. glucogenic AA, lactate) are absorbed post-
ruminally with a greater latency for absorption and likely con-
tribute to hepatic oxidation extending satiety post-prandially
(Allen et al., 2009). Although glycerol and propionate are
both 3-carbon glucose precursors with similar energy concen-
trations, they have different hypophagic effects because
propionate is an obligate anaplerotic metabolite, whereas
glycerol can enter the gluconeogenic pathway as glyceral-
dehyde-3-phosphate in the cytosol without stimulating
hepatic oxidation. Consistent with this, propionic acid
decreased DMI 17% relative to glycerol by decreasing meal
size when isoenergetic solutions were infused abomasally
in cows in the postpartum period (Gualdrón-Duarte and
Allen, 2017).

The production rate of propionic acid by rumen microbes
is highly variable depending upon source (Allen, 2000). The
starch concentration of diets consumed by ruminants is
highly variable ranging from <5% for some grazing rumi-
nants to >30% for some lactating dairy cows and fattening
steers. Starch degradation by rumen microbes varies from
<50% to >90% (Nocek and Tamminga, 1991). Starch that
passes from the rumen can be digested to glucose in the
intestine, which is absorbed and enters the circulation or
is metabolized to lactate by intestinal tissues. Although
increasing dietary starch can increase feed intake when

cereal grains are substituted for forages by decreasing rumi-
nal distention (Allen, 1996), increased ruminal starch fer-
mentability decreased feed intake by up to 3 kg/day in
several experiments reported in the literature (Allen,
2000). High-moisture corn decreased energy intake of cows
in the postpartum period to a greater extent when fed in
rations at higher starch concentrations (28% v. 22%) com-
pared with less fermentable dry ground corn (Albornoz
and Allen, 2018). Hypophagic effects of a more fermentable
starch source in lactating cows were from decreased meal
size despite a decreased inter-meal interval, so satiety was
likely caused by the absorption of propionate within the time-
frame of meals (Oba and Allen, 2003b).

Of the fuels available from the fermentation and digestion
of starch, propionate is the most hypophagic. Intraruminal
infusion of propionate decreased metabolizable energy
intake compared with acetate (Oba and Allen, 2003c), and
propionic acid decreased metabolizable energy intake com-
pared with isoenergetic infusion of glucose and reduced DMI
compared with isoenergetic infusions of lactic acid when
infused into the abomasum (Gualdrón-Duarte and Allen,
2018). Intraruminal infusion of propionic acid reduced
metabolizable energy intake by cows in the postpartum
period compared with cows in mid-lactation (Oba and
Allen, 2003a). Although gluconeogenesis is upregulated
for cows in the postpartum period, they were in a lipolytic
state with elevated plasma BHB concentrations, whereas
cows in mid-lactation were in positive energy balance with
low plasma concentrations of BHB. Differences in plasma
BHB concentrations likely reflect differences in the supply
of AcCoA for hepatic oxidation, consistent with the greater
hypophagic effects of propionic acid for cows in the postpar-
tum period. In addition, the hypophagic effects of intrarumi-
nal infusions of propionic acid were related linearly with
hepatic AcCoA concentrations for cows in the postpartum
period (Stocks and Allen, 2012), and the effects were not
attenuated over a 3-day intraruminal infusion (Stocks and
Allen, 2013). It is noteworthy that propionate interacted with
AcCoA in the liver to affect feed intake only during the first
4 h after feeding each day; daily DMI was reduced despite no
effect of treatment on feed intake over the remaining 20 h
(Stocks and Allen, 2013). This is likely because plasma
NEFA concentrations are greatest prior to feeding and lowest
several hours after feeding corresponding to the daily peak in
plasma insulin concentrations for cows fed ad libitum once
per day in the morning (Allen et al., 2005).

Chronic elevation of plasma insulin concentrations likely
suppresses feed intake by decreasing cataplerosis, but pulsa-
tile insulin secretion in response to feeding likely clears fuels
from the blood more quickly, potentially increasing meal size
or decreasing the interval between meals (Oba and Allen,
2000). Concentrations of insulin and NEFA in plasma vary
within days and are negatively related on a minute timescale
(Figure 3). The depression in feed intake of lactating cows to
a more fermentable diet was correlated positively to the insu-
lin response to a glucose challenge; cows with a greater insu-
lin response were better able to maintain feed intake on the
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more fermentable diet (Bradford and Allen, 2007).
Postprandial pulses of insulin interrupt the supply of fuels
to the liver by stimulating the uptake of fuels by insulin-
sensitive tissues and inhibiting lipolysis in adipose issue.
Consistent with this, feed intake over the first 4 h following
feeding was highly variable among cows in the immediate
postpartum period ranging from 3.7 to 9.6 kg and was
positively related to the postprandial reduction of plasma
NEFA concentrations which varied from 244 to 1158 μEq/l
(Piantoni et al., 2015). Because the change in hepatic
AcCoA concentrations was positively correlated with the
change in plasma NEFA concentrations, the difference in
DMI among cows was likely related to differences in the sup-
ply of AcCoA derived from β-oxidation of NEFA, consistent
with the HOT. Furthermore, because DMI was not related
with plasma concentrations of glucose, insulin, NEFA and
BHB, or hepatic concentrations of AcCoA before feeding,
or to the change in plasma glucose, insulin or BHB over
the 4-h period, the variation in DMI was likely because of
differences in insulin resistance among cows.

The mobilization of tissue AA begins prepartum (Doepel
et al., 2002; Kokkonen et al., 2005), and high-yielding dairy
cows might mobilize up to 1 kg of tissue protein per day
in the early postpartum period (Bell et al., 2000). Although
AA are used for milk protein synthesis in the postpartum
period (Aschenbach et al., 2010), excess AA and AA
imbalances will result in deamination of AA, increasing ana-
plerosis and stimulating the oxidation of AcCoA, potentially
suppressing feed intake (Allen, 2014). A meta-analysis by
Martineau et al. (2016) showed that DMI of cows ranging
from early to late lactation was reduced by abomasal infusion
of casein when supply of metabolizable protein (MP) was
positive but increased DMI of cows when MP balance was
negative. When MP supply was positive, excess AA were

likely deaminated, increasing anaplerosis and stimulating
hepatic oxidation and satiety, whereas increased DMI by casein
infusion when MP supply was negative might have been
because of increased metabolic pull. Supplementation of
rumen-protected methionine has had variable effects on DMI
(Patton, 2010; Zanton et al., 2014), and Allen (2014) suggested
that supplying limiting AA will likely decrease deamination of
other AA and anaplerosis, potentially increasing DMI.

Gluconeogenesis is likely an important determinant of the
temporal oxidation of fuels in the liver by increasing cataple-
rosis of the TCA cycle. The contribution of substrates to glu-
coneogenesis has been estimated to be propionate (60% to
75%), lactate (16% to 26%), alanine (5%) and other AA
(8% to 11%), valerate and isobutyrate (5% to 6%) and glyc-
erol (0.5% to 3%; Aschenbach et al., 2010). In the immediate
postpartum period, the contribution of propionate to gluco-
neogenesis (∼60%) is less, and mostly endogenous lactate
(∼26%) is greater than several weeks later in lactation;
together, they account for over 85% of gluconeogenic sub-
strates extracted from the blood by the liver (Aschenbach
et al., 2010). Gluconeogenesis is upregulated in early lacta-
tion when plasma insulin concentration is low and gradually
downregulated by elevated insulin concentrations (Barthel
and Schmoll, 2003) as lactation advances and glucose
demand decreases. However, excessive lipolysis in the peri-
partum period can result in hepatic steatosis, reducing glu-
coneogenesis (Zhu et al., 2000). The depression of DMI by
a diet containing a more rapidly fermentable starch source
was correlated positively (r= 0.53, P< 0.01) with plasma
insulin concentrations among cows past peak lactation, likely
because gluconeogenesis was suppressed by insulin
(Bradford and Allen, 2007). The downregulation of gluconeo-
genesis decreases cataplerosis, increasing the concentrations
of TCA intermediates and TCA cycle capacity for oxidation.

More questions
Questions remain regarding the mechanism(s) by which oxi-
dation of fuels by hepatocytes is conveyed to hepatic vagal
afferent nerves as well as how hepatic oxidation can be
manipulated to alter (increase or decrease) feed intake.
Feeding behavior is controlled on a minute-to-minute basis,
but little research has evaluated hepatic metabolism over the
timeframe of meals. Comprehensive evaluation of metabolite
concentrations and isotopic tracer studies are needed to bet-
ter understand hepatic metabolism over the short term
related to feeding behavior. Genetic differences in feed
intake among animals have yet to be investigated for factors
related to hepatic oxidation of fuels. Differences in the rate of
uptake of NEFA from the blood by the liver, peroxisomal oxi-
dation of FA, transport of FA into the mitochondria, rate of
production and export of ketone bodies, and rate of hydroly-
sis of AcCoA and export of acetate from the liver might affect
feed intake by their effects on hepatic oxidation. In addition,
differences among animals or physiological states for insulin
release or insulin sensitivity of adipose tissue might decrease
lipolysis within meals, decreasing the supply of AcCoA for
oxidation, increasing meal length and size.

Figure 3 Inverse relationship between plasma insulin (grey line) and non-
esterified fatty acid (NEFA; black line) concentrations for an individual cow
within a day. Cow was fed ad libitum, once per day with blood samples
taken every 20 min for 24 h. Increased insulin during and following meals
decreases the supply of NEFA for hepatic oxidation, while decreased insulin
gradually increases NEFA supply following meals (Allen, 2014 with
permission).
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Conclusion

Fuel supply to the liver is dependent upon the absorption of
fuels derived from the diet as well as those supplied to or
extracted from the blood by extrahepatic tissues. Hepatic
oxidation of fuels varies with the needs of the liver over
the long term as well as periprandially, affecting feeding
behavior. Homeorhetic mechanisms affect the concentra-
tions of insulin, glucagon, somatotropin and leptin, as well
as insulin sensitivity of tissues, which interact with diet to
affect hepatic oxidation by their effects on the supply of
AcCoA, anaplerosis and cataplerosis. Therefore, mecha-
nisms controlling energy intake and partitioning are multi-
ple, entwined and inseparable and are affected by both diet
and physiological state. The liver is likely a key sensor of
energy status integrating homeostatic and homeorhetic
mechanisms, offering the unique advantage of sensing
not just energy availability but energy balance relative to
nutrient demands.
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