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Stability of Accretion Shocks with a Composite Cooling Function
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Abstract: Stability of accretion onto magnetic white dwarfs is investigated via
perturbation analysis. We consider a cooling function with composite power laws,
and the power-law indices are appropriate for bremsstrahlung and optically thick
cyclotron cooling. We find that the presence of cyclotron cooling generally suppresses
the instability, consistent with numerical simulations by other investigators.
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1 Introduction
Theoretical studies (e.g. Langer, Chanmugam &
Shaviv 1981; Chevalier & Imamura 1982; Imamura
1985) have shown that accretion onto white dwarfs
is thermally unstable if bremsstrahlung radiation is
the cooling process. The accretion shock, which is
formed near the white dwarf surface when supersonic
accretion matter becomes subsonic, is thereby driven
to oscillate, with a typical oscillation timescale similar
to the cooling timescale of the shock-heated matter.
These studies stimulated searches for fast photometric
variabilities in accreting white dwarfs and led to
the subsequent discovery of optical quasi-periodic
oscillations (QPOs) in the AM Herculis systems V834
Cen, AN UMa, EF Eri and VV Pup (Middleditch
1982; Mason et al. 1983; Larsson 1985, 1987). (AM
Herculis systems are binaries consisting of a Roche
lobe-filling red dwarf and a magnetic white dwarf,
both in synchronous rotation with the orbit - see
the review by Cropper 1990.) While these four
systems were found to show QPOs, null detections
were reported for other AM Herculis systems.

The typical shock temperature of accreting white
dwarfs is '"'-'108 K, and the white dwarf magnetic
fields in AM Herculis systems are B ~ 10-70 MG.
Cyclotron cooling is therefore also an important
process in the post-shock emission regions. For
sufficiently low accretion rates, cyclotron cooling may
dominate bremsstrahlung cooling (Lamb & Masters
1979; King & Lasota 1979) and hence alter the
stability properties of the accretion shock. The effects
of cyclotron cooling were investigated by Langer,
Chanmugam & Shaviv (1982) and Chanmugam,
Langer & Shaviv (1985). Their numerical simulations
show damping of the shock oscillations when cyclotron
cooling is present. Moreover, the oscillation frequency

increases with the magnetic field strength (Wu,
Chanmugam & Shaviv 1992).

Although the numerical studies have been suc
cessful in describing the instabilities in the accretion
flow, they fail to explain why the oscillations are
excited and why certain modes can persist while
others cannot. There are also discrepancies in
the results obtained by calculations using different
numerical formulations (cf. Langer, Chanmugam &
Shaviv 1982; Imamura 1985).

Here we investigate the stability properties of
accreting shocks with cyclotron cooling by considering
an analytic approach. Perturbation analyses of
accretion shocks have been carried by many authors
(e.g. Chevalier & Imamura 1982; Bertschinger 1986;
Houck & Chevalier 1992; Toth & Draine 1993;
Dgani & Soker 1994). In these studies, the cooling
function is generally taken to be a single power-law
form. Although it is adequate for the situation
where bremsstrahlung cooling is the only process,
it is insufficient for the study of the competing
effects of two cooling processes with different
stability properties. Here, we consider a formulation
generalised from that given in Chevalier & Imamura
(1982), such that the total cooling is represented by a
composite function consisting of two power-law terms.
The first term is the bremsstrahlung cooling function,
which has the form p2T1 , where p and T are density
and temperature respectively. The second term is the
effective cyclotron cooling function, mimicked by a
function of the form paTb , where a and bare power-law
indices to be determined (Appendix A; see also Wu,
Chanmugam & Shaviv 1994). With this composite
function, we obtain the hydrodynamic equations
and carry out a perturbation analysis to determine
the oscillation modes and their stability properties.
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(6)

(7)

(8)

(5)

(4)
dx s- = V s l exp(wt) ,
dt

Xs = Xso + Xsl exp(wt) ,

P(~, t) = Po(~) + PI (~) exp(wt),

p(~, t) = Po(~) + Pl(~) exp(wt),

v(~, t) = vo(O + Vl(~) exp(wt),

where ~ = x/Xso Substituting equations (6), (7)
and (8) into equations (1), (2) and (3) and
considering the dimensionless variables 7 = -vo/vI I,
(= x sowpI/vsIPa, 7r = PI/Pavllvsl, ry = vI/vsl and
fJ = xsow/vll, we obtain three complex, linear
perturbed equations

165

where

where V s l is the perturbed velocity of the shock
surface, taken to be real, and w is the complex
eigenvalue which determines the stability. (Hereafter,
the subscripts '0' and '1' denote the steady state
and the perturbed quantities respectively.) The
time-dependent shock height is

where w = vsI/xsl' We also assume that the
perturbed variables are given by

d~ 5 dry d7r
-7rfJ d7 - 3(1 - 7) d7 + 7 d7

5 (5 - 87) 1
-~ + ry + 3 7r - 3 fJ

=1(5-87) { 1 [1+(1+20) f s 1(7)] 7r
3 2(1 - 7) 1 + f s1(7)

+;! [ 1 + (1- ~(3) f s 1(7)] 7(} (11)
2 1+fs1(7) fJ'

3 Perturbation Analysis

Following Chevalier & Imamura (1982), we consider
a perturbation

state solution {Po, Po, vo} to equations (1), (2) and
(3) and a steady-state shock height Xso can be
obtained (Wu, Chanmugam & Shaviv 1994; see also
Aizu 1973 and Chevalier & Imamura 1982 for the
cases of single power-law cooling functions).

(2)

(1)
ap av ap
-+p-+v- =0
at ax ax

(
av av) ap

p -+v- +-=0,
at ax ax

and

corresponds to bremsstrahlung cooling, where kB is
the Boltzmann constant, h the Planck constant, c
the velocity of light, e the electron charge, me the
electron mass, mp the proton mass, J.L the mean
molecular weight of the gas and gB the Gaunt factor
(see Rybicki & Lightman 1979). The numerical
value of C is 3·9 X 1016 in c.g.s. units, assuming that
J.L = O· 5 and gB = 1. For typical parameters of AM
Herculis systems, 0 ~ 2 and f3 ~ 3·85 (Appendix
A).

We assume a 'stationary wall' boundary condition
at the white dwarf surface, so that the lower
boundary condition is v = O. At the shock surface,
we assume the strong shock condition, so that
v = -vff/4, P = 4pa and P = 3PaVJI' where VII
is the free-fall velocity at the white dwarf surface
and Pa is density above the shock. With the
boundary conditions specified, a closed-form steady-

(cf. Wu 1994), where f s is the effective ratio of the
bremsstrahlung cooling timescale to the cyclotron
cooling timescale at the shock surface. In the above
equation and hereafter, the subscript's' denotes
parameters and variables at the shock surface. The
coefficient

ap + v ap _ §. P (ap + v a p )
at ax 3 p at ax

where P is the pressure and v is the velocity. If
we assume that the temperature of the accretion
matter is proportional to P / p and the matter has
an adiabatic index of 5/3, the energy equation is
then

2 Accretion onto Magnetic White Dwarfs

The height of accretion shocks (i.e. the thickness of
post-shock regions), x s , of magnetic white dwarfs
are generally «Rwd , where Rwd is the white dwarf
radius. For typical accretion rates (rv1016 g S-I),
the ram pressure of the accretion matter near the
white dwarf surface is less than the magnetic stress.
As the accretion flow is channelled by the field
lines, it can be approximated by a one-dimensional
planar model. The time-dependent continuity and
momentum equations are therefore
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Table l. The eigenvalues for the cases lOs = 0, 1 and 10

ts = 0 lOs = 1 lOs = 10
n 8R 8[ 8R 8[ 8R 8[

1 -0·010 0·305 -0·061 0·322 -0·156 0·309
2 0·047 0·887 -0·036 0·838 -0·077 0·707
3 0·061 1·504 0·003 1·419 -0·119 1·161
4 0·085 2·107 0·033 1·976 -0·065 1·637
5 0·088 2·723 0·028 2·553 -0·077 2·057
6 0·107 3·331 0·051 3·124 -0·073 2·553
7 0·105 3·944 0·046 3·691 -0·045 2·986
8 0·121 4·555 0·063 4·270 -0·069 3·456

-0.05

(13)

where 810 = 0·6087, 0·5666 and 0·4526 and
8c = -0·0153, 0·0077 and 0·0477 for f. s = 0,
1 and 10 respectively. This is similar to a pipe
which is open at one end, for which the frequencies
of the harmonics are given by (n - 0·5)fo/2 + fe,
where fo and fe are constants.

It is worth noting that the smaller the value of
f. s , the steeper the slope of the 81 vs n graph. If
we define the cooling time as teool = xso/vff' then
from the definition of 8 we have w1 (the imaginary
part of w) proportional to t~ool' where () > 1. Thus,
our calculations show that the imaginary part of the
eigenvalue (81) is determined by both the cooling
function and the boundary conditions. Although the

harmonics for the cases f. s = 0, 1 and 10 are shown.
For f. s = 0, only bremsstrahlung cooling is present;
for f. s = 1, cyclotron cooling and bremsstrahlung
cooling have the same efficiency at the shock surface;
and for f. s = 10, cyclotron cooling is ten times more
efficient than bremsstrahlung cooling at the shock
surface, i.e. the accretion shock can be considered
as being dominated by cyclotron cooling.

In Figure 1, 8R is plotted against n, the harmonic
number. When bremsstrahlung is the only cooling
process (f. s = 0), the first harmonic (n = 1) is
linearly stable (8 R < 0), and the higher harmonics
are unstable (8R > 0) (see also Chevalier & Imamura
1982).

For f. s = 1, the first harmonic is stable as for the
case f. s = 0, but the second harmonic is 'also stable.
The higher harmonics are, however, unstable, and
the corresponding values for 8R are smaller than
those for the previous case. For a sufficiently high.
magnetic field, such as f. s = 10, the first eight
harmonics we have obtained are stable. Thus,
our perturbation analyses show that the presence
of cyclotron cooling tends to stabilise the shock
oscillations, which is consistent with the results from
the numerical studies of Chanmugam, Langer &
Shaviv (1985).

In Figure 2, we plot 81 against n. Clearly there
is a linear relationship whereby 81 increases with n
for all three cases, and 81 is approximately given
by

8

stable

unstable
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In Table 1, the real and imaginary parts of the
eigenvalues (8R and 81 respectively) of the first eight
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Figure I-Real part of the eigenvalue, 8R, as a function of the
harmonic number n. The squares, diamonds and triangles
correspond to the cases ts = 0, 1 and 10 respectively.

0.15

4 Results and Discussions

The differential equations are solved using the
Runge-Kutta method, with integration from the
shock surface to the white dwarf surface. The
eigenvalues 8 are obtained when the solution at the
white dwarf surface matches the 'stationary wall'
boundary condition (i.e. VI = 0).

Equations (9), (10) and (11) can be separated into
six real decoupled linearised equations. With the
boundary conditions VI = aat the white dwarf surface
and VI = 3vsI/4, PI = a and PI = 3PavffvsI/2 at
the shock surface (see Appendix B), the eigenvalues
8, and hence w, can readily be obtained.
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n

Figure 2-Same as Figure 1 but for b[.

where Abr is the bremsstrahlung cooling function,
Acyc the effective cyclotron cooling function, tbr the
bremsstrahlung cooling timescale, tcyc the cyclotron
cooling timescale, the subscript's' denotes the values
at the shock surface, and cs, a and (3 are constants to

Appendix A. The Composite Cooling Function

We assume that the local total cooling function in
the post-shock region is given by
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the higher harmonics are unstable. For the case
with moderately strong cyclotron cooling (cs = 1),
the first two harmonics are stable but the higher
harmonics are unstable. For very strong cyclotron
cooling (cs = 10), the first eight harmonics we have
obtained are stable. The presence of cyclotron
cooling therefore stabilises the shock oscillations.
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5 Conclusions

We have considered a perturbation analysis of
accretion shocks with a composite cooling function,
in which there is a bremsstrahlung cooling term
and a power-law term mimicking the effects of
optically thick cyclotron cooling. We have found
that in the limit of zero cyclotron cooling the first
harmonic of the shock oscillation is stable while

Using the expression for Cs given in Appendix
A, one can estimate that for typical accretion
parameters of AM Herculis systems, B ~ 50 MG
when Cs = 10. The result that the accretion
shock is stable for Cs ~ 10 implies QPOs of rv 1 Hz
are suppressed when B ~ 50 MG. For AM Herculis
systems with a weaker magnetic field (;S 30 MG),
the higher oscillation modes are unstable, despite
the lower oscillation modes being stable. However,
the high oscillation modes have high frequencies and
are difficult to excite. The null detection of 1 Hz
QPOs in some AM Herculis systems may be due
to insufficient instrumental sensitivity to detect the
high-frequency modes.

real part (OR) obviously depends on the details of the
cooling function, whether the boundary condition
is crucial still needs to be investigated.
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be determined. The bremsstrahlung cooling function
is Abr = 1·4 x 1O- 27ne n pT! erg cm-3 S-l (e.g.
Rybicki & Lightman 1979), and the bremsstrahlung
cooling timescale is

where n e and np are the electron and proton number
density respectively.

We assume that the optically thick cyclotron
radiation has a Rayleigh-Jeans spectrum up to a
critical frequency w*, and photons with frequencies
beyond w* make an insignificant contribution to
the cooling process and can be neglected. The
angle-averaged cyclotron luminosity is therefore

A2kT[w*(xW

127r2c2

(Langer, Chanmugam & Shaviv 1982), where c is
the speed of light, and A and x are the effective area
and the thickness of the emission region respectively.
For parameters appropriate for accretion shocks in
magnetic cataclysmic variables

w*(x) ~ 9.87 W (~)O'05(~)O'5
e 107 108 K

(Wada et al. 1980), where A = 47renex/B is the
dimensionless plasma size parameter, We = eB/mec
the cyclotron frequency, me the electron mass, and e
the electron charge. The effective cyclotron cooling
timescale is therefore

3 dx
2(ne +np)kT~

eye

(see Langer, Chanmugam & Shaviv 1982). As
L eye ex: [w*(x)j3 T,

d-Leye ex: [w*(x)]3 T ex: n~·15T2'5.
dx

If we assume that n e = np, then tbr ex: TO' 5n ;1 and
t ex: T-1'5nO'85 It follows thateye e'

Since P / P ex: T and P ex: n e , we have

Thus, a = 2·0, (3 = 3·85 and t s = tbr,s/teye,s, the
ratio of the bremsstrahlung cooling timescale to the
cyclotron cooling timescale at the shock surface. In

C. J. Saxton et al.

terms of the parameters at the shock surface, the
ratio is

( B)2.85 ( T )2t ~ 9 X 10-3 s
s ~ 10 MG 108 K

(Wu, Chanmugam & Shaviv 1994), where B is the
magnetic field, T s the shock temperature, n s the
electron number density at the shock surface, and
X s the shock height.

Appendix B. The Perturbed Boundary Conditions

Consider a reference frame which is co-moving with
the shock surface. Let the subscripts '1' and '2'
denote the quantities in the pre-shock and the
post-shock regions respectively, and the 'prime'
and 'un-prime' denote the observer's and the new
reference frame (co-moving with the shock surface)
respectively. If the velocity in the observer's frame
is u, then the velocity in the new reference frame is

, dx su =u--.
dt

From equation (4), we therefore obtain the velocity
of the accretion matter,

From the continllity equation we have

Since P1' = P1 = Pa (where Pa is the density above
the shock surface), we have U2' = PaU1'/P2'. For a
strong shock, P2' = 4P1' = 4pa' It follows that

, 1 , 1 ( wt)U2 = 4U1 = 4 U1 - V s1 e

On the other hand, we have

Hence, we get

The gas pressure of the pre-shock gas near the shock
surface is given by
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3 ( wt)2= :4 Pa Ul - Vsl e

Since

we have

pI = Po +Pl

P _ 3
1 - "2PaV ffV sl·
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