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1. With any twisted curve of order six is associated a system of
planes, usually finite in number, which touch the curve at three
distinct points. The curve with its system of tritangent planes
possesses properties which recall the properties of a plane quartic
curve and its system of bitangent lines; and this is specially true of
the sextic which is the intersection of a cubic and a quadric surface.
But whereas the properties of the plane curve were discovered by
geometrical methods, such methods have only recently been applied
with success to the space-curve; the earliest properties were obtained
by Clebsch from his Theory of Abelian Functions. In the absence of
any one place to which reference can conveniently be made, an
account of these properties in their geometrical aspect will be useful.
[The curve being of order six and genus four will be referred to as a
G\: the general plane quartic is a G\],

2. A plane quartic curve has in general 28 bitangents. An
infinite number of conies touch the curve at four separate points,
and certain of these conies break up into two bitangent lines: it is
scarcely possible to discuss the bitangents apart from the conies. It
appears that the conies fall into 63 families, and that 6 members of
each family factorise into two lines; also that any two bitangents
conjointly form a conic belonging to one of the families.

The twisted sextic C% has 120 tritangent planes, and an infinity
of quadric surfaces, known as Contact-Quadrics, touch the curve at six
separate points. The Contact-Quadrics fall into 255 families, and
28 members of each family factorise into two planes. Any two
tritangent planes conjointly form a contact-quadric belonging to one
of the families.

But numbers such as these have little significance unless some-
thing is known of the grouping of the lines or planes. For the plane
C\ Hesse's notation (fully explained in Salmon's Higher Plane
Curves) provides the information. For the C\ a very similar method
is available: see the final note of this paper.
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3. The combinations of ten things taken two or three or four at
a time number 45 or 120 or 210 respectively. Using ten letters a,b,c,
d, e, f, g, h, j , k, we may denote each tritangent plane by a set of
three letters, and each of the 255 (= 45 + 210) families of quadrics
by a set of two or four letters. Moreover this can be done in such a
way that

(1) the two planes acd, bed conjointly form a quadric of the ab

family;

(2) the two planes abe, cde abed family;

(3) the two planes abc, def ghjk family.

The ten letters being interchanged in every possible way, each family
of quadrics will be found to include just 28 pairs of tritangent planes.

A further rule regarding possible changes of notation is necessary.
Any family of quadrics having been selected, it is permissible to inter-
change the symbols (i.e. the sets of three letters) which denote each
two planes forming a quadric of that family, the symbols denoting
the other 64 tritangent planes remaining unaltered. This rule carries
with it consequential interchanges among the symbols which denote
families of contact-quadrics. If the selected family is one denoted
by two letters, the rule merely affirms that those two letters may be
everywhere interchanged—as already agreed. But if the selected
family is one denoted by four letters, new facts are brought to light.
With abed as the family selected, pairs of tritangent planes such as
those denoted by abe and cde, or by efg and hjk—and families of
quadrics such as those denoted by ae and bede, or by aefg and ahjk—
have their representative symbols interchanged. We thus learn that
there is no fundamental difference between a family represented by
two letters and one represented by four.

With this notation and this rule the structure of the system of
tritangent planes can be understood. The fundamental property of
the quadrics which touch the GQ a t six points is that for two quadrics
of the same family the twelve points of contact lie on another
quadric, in addition to the quadric upon which the whole curve lies.

W. P. Milne's Investigations. The Contact-Quadrics of a Family.

4. A geometrical method of treatment that would have
delighted Steiner and Hesse or Cayley was applied to the C| in 1922
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by Milne1. Certain of his results had however been obtained other-
wise by Roth.2 Milne reasons as follows:

Let us suppose that the curve is the intersection of a quadric
surface F2 = 0 and a cubic surface 8 = 0, and that it is touched at
six points by a quadric Q — 0. Then the quadrics Q + k F2 = 0
touch the C\ at these points whatever the value of k; and the cubic
surfaces 8 + PF2 = 0 all pass through the curve whatever the values
of the four coefficients in the linear form P. Now a twisted cubic
curve passes through the six points of contact, and by assigning
proper values to k and P we may replace Q and S by surfaces Q' and
S' which pass through the twisted cubic curve.

We now have a quadric surface F2 = 0 and a cubic surface
8' = 0 denning the G\ by their intersection, and a quadric surface
Q'=0 touching the C\ at six points, with the further condition that S'
and Q' pass through the C\ denned by the six points. At any one of
the six points the tangent lines of both these curves touch both S'
and Q'; so that 8' = 0 a cubic surface and Q' = 0 a quadric surface,
both containing a twisted cubic curve, have the same tangent plane
at six points of the curve. Cubic curves and the surfaces which pass
through them are easily discussed: the tangent planes of the most
general surfaces of orders two and three passing through the curve
coincide at five points and no more. If, as here, they are known to
coincide at six points, they must coincide at every point of the curve,
and the surfaces must be specialised. In fact it is proved without
serious difficulty that Q' = 0 must be a quadric cone whose vertex
lies on the C§ and that S' = 0 is a cubic surface having four double
(conical) points which are also situated on the cubic curve.

Given the C\ and one Contact-Quadric, a four-node cubic surface
passing through the curve is thus determined. Many properties of
such a surface are known and are easily proved. On applying these
familiar properties of the surface to the curve cut out from the
surface by an arbitrary quadric, we find that we have established the
properties of a family of Contact-Quadrics of the sextic curve.

5. With the equation of a four-node cubic surface in its
simplest form,

l/x0 + 1/si + l/*2 + I/a* = S (!/*») = 0,
an equation S (kn/xn) = 0 defines a twisted cubic curve lying on the
surface and passing through the nodes, which are the vertices of the
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tetrahedron of reference. One such curve can be made to pass
through any two points of the surface; any two such curves intersect
in one further point besides the nodes, and lie on a quadric. In fact
the quadric

S (l/xn) X S (kn kn'/xn) = S (kn/xn) x S (kn'/xn)

contains the two curves £ (kn/xn) = 0 and 1,(kn'/xn) = 0; and the
quadric cone

S ( I K ) X S (&n
2/*J = [S (^A, ) ] 2 (5.0)

touches the cubic surface at each point of the curve S (kn/xn) = 0. A
quadric passing through one twisted cubic on the surface cuts out a
second such curve: if the quadric contains the cubic through the six
points of contact of Q' in §4, it will cut out six further points of the C\
which are the points of contact of another quadric of the family. It
must however be borne in mind that, when we are considering only
the curve of intersection of the four-node cubic surface with a quadric
F2, we may often add a multiple of F2 to the equation of a quadric
without affecting its relation to the C .̂ Fo r instance, the cones in
(5.0) form a doubly infinite system; but the derived system of
Contact-Quadrics of the C\ is triply infinite.

In an unrestricted coordinate-system the four-node cubic surface
is best approached by its tangent planes. These are represented by
an equation of the form

aa2 + &j82 +cy>+ 2/j8y + 2gya + 2hafi = 0, (5.1)

a, b, c, f, g, h here denoting linear functions of the coordinates
x0, xx, x2, x3. Rearranging the terms we may write this

ao^o+tfi^i +%2<f>2 + Zs&i = 0 , (5.2)

<A)> 4>x> 4"L> 4>3 being homogeneous quadratic functions of a, /J, y. To
impose a linear relation upon a, /3, y,

La + Mj8 + Ny = 0, (5.3)

is to select from the tangent planes a set which touch a quadric cone
like (5.0); its vertex may be called V.

The quadric T2 which cuts out the Cg from the four-node surface
has a tangential equation of order two,

F(uo,ult u2, %,) = 0, (5.4)

expressing the condition that the plane 2 {v>n
xn) = 0 should touch F2;

from this we derive the condition

F(4>o,<l>i,<f>2,<l>3) = O, (5.5)
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of order four in a, /3, y, that the plane (5.1) or (5.2) should touch F2 as
well as the four-node surface; and (5.5) combined with (5.3) defines
four planes which touch the quadric cone with vertex V mentioned
above and the second quadric cone with the same vertex which
envelopes F2. Now when a Contact-Quadric factorises into two
tritangent planes the former cone meets F2 in two plane conies. In
these circumstances the four planes determined by (5.3) and (5.5)
coincide two by two; so that if (a, jS, y) are regarded as coordinates
of points in a plane the line (5.3) is a double tangent of the plane
quartic curve (5.5). We thus arrive (by reasoning that appears
simpler than that given by Milne) at the number of quadrics in the
family which break up into two planes, viz. 28.

For a family of Contact-Quadrics as conceived by Clebsch the
geometrical properties appear in a far clearer light when they are
connected with the four-node cubic surface discovered by Roth and
Milne. Each family is allied to one such surface. The notation
explained in § 3 tells us a few facts concerning the relations between
two (or more) of these surfaces; but it seems that nothing further
has been published.

On a set of four tritangent planes and three allied four-node
cubic surfaces.

6. When two contact-quadries of the same family break up into
planes, one into the pair x0, xx and the other into the pair x2, x3, the
twelve points of contact lie on a quadric (as well as on the quadric T2

on which the whole curve lies). The pairs of planes x0, x2 and
x3, xx form contact-quadries of a second family, and the pairs
x0, x3 and xu x2 contact-quadries of a third family. It will be
convenient to take these four tritangent planes for coordinate planes.

In the notation of (5.1), suppose that the cones bc=f2 and ca=g2,
which arise when (5.3) takes the simple forms a = 0 and y3 = 0, meet
F2 in the pairs of planes (x0, xx) and (x2, xs) respectively. Then must

bc—f2 = rV2 + PxQx1; ca — g2 = sF2 + <rx2x3; (6.1)

r, s, p, o- being constants. We are at liberty to take for c

c = xQ + xi + x2 + x3 = 2 (xn),

thus completely defining the coordinate system. For a, b, f, g, h we
assume

aix1 + a2 x2 + a3 x3 = 2 (an xn) etc., etc. (6.21)
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For F2 it is convenient to assume the form

r2=-L(xn)x-L(knzn) + Z(kp<!xpxg), (p,q) = (0,1,2,3). (6.22)

F r o m (6.1), an = skn + g2
n; bn = rkn+f2; (6.3)

and

ap + ag — 2gP gq — s (kp + kg + kpg ) . . . . [ + <r] if (p, q) = (2, 3)]

bp + bg— 2fpfg =r(kp + kg + kpg ) . . . . [ + p] if (p,q) = (0,

Hence / < * - » . ? — X ^ . . . . . £ + - 1 H (p, 1) = P . »)^ . ( ( U )

if (p, g) = (0,

Omitting the values (2, 3) and (0, 1) of {p, q), we take square
roots of the remaining eight equations; ^/r, •s/s, \/kpg, are all
capable of assuming either of two values and on the first appearance
of each we suppose that its value has been chosen to suit the formula.
Thus we may assert that

g0 — g3 = Vs x V&03; 9i — 92 = V$ X

9i — 9% = Vs X V&13; /o— h = V? X

but in the remaining formulae a ± sign should at first be prefixed to
each right hand member. The ambiguities can however be settled.
If / 0 — /3 had a + sign on the right, it would follow that

(92-9B)2: (U-Uf ::s:r,

and this would make o- = 0, which cannot be. The last three equa-
tions must be

We are able to simplify these results by modifying the values of
a, ft, y. We have made use of the cones ca = g2 and be = f2 for which
a and /8 vanish, but we are free to replace a and j8 by any multiples
of a and /}. We may thus absorb y/r and \/s into /? and a, which
amounts to putting -\/r and V s equal to 1. Hence

/o—A=+V*02; fo-fs=—V^o3;fi-f2=—vki2; fi—f3=+Vki3;\ (6.5)
whence
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Again, we may modify y by adding to it any multiples of a and )8.
The effect of this is to increase / and g by arbitrary multiples of c,
and we shall choose those multiples which make

/ o + / l + / a + / 3 = O, 00 + 01 + 02 + 03 = 0.

7. The results may now be summed up in a fairly simple form;
to avoid square roots we express them in terms of three constants
Ci, e2, e3, such that

ei + e2 + e3 = 0; e2 =

We find that

/ o = - / i = -02=03=1 (e2-e3)
(7.1)

For the quadric F2 = 0 upon which the Cg lies we have

r Zzz (if \ *¥ I />• I /y \ ( It n* I 7/* iu I TM /y, I 1A /yi \

2 — V̂ O î  ***1 n^ *t'2 ~T" ^ S / V̂ O 0 ~T~ "'I ^ l "T" "'2 2 "̂̂  3 ^ S / /f7 ey\
I ^ ^ i />* />• i /v» * v 1 f ^ v i o * ^>* I /v» i * i I / > " f ' > * - / v * * . . I . , o * - /y*n. I

~p" t̂ n V^O 1 "T" **y2 3 / ~T" *̂ o V^O 2 "T~ 3 1 / ~T ^5 \ ^O 3 ^^ 1 ^Z/ *

Further we find that p = o- = — 4e2 e3;

0 ^ 2^2 \^0 *̂ 1 ^2 + *̂ 3/ + 2̂ 3 \^0 ^1 + *̂ 2 *̂ 3J J /r» o \
. ? \ \ [ f ( ' •«* /

,/ — 2 2 \ 0 — 1 "̂ 2 ™T" "^3/ "^ 2 3 \ 0 *̂ ~ X "T" ^2 ^ 3 / JI

A2 a;2 + &3 x3) + (0g z0 + 0f ^i + 0I «2 + 9% x3);
b = (koxo+k1x1 + k2x2 + kx) + {Ux+f\x + / | a ; 2 + / f * ) J l " ^

The value of c, S (a;n), was assumed at the outset, and all that has
been discovered is shown above. Nothing can be learnt regarding
the four coefficients of h, the last term in (5.1); it has never appeared
in our investigations. The coefficients in the linear form k which
occurs in F2 and in a and b are also unrestricted; when we set
about verifying the formulae upon which our work was based
(see (6.1))

be — / 2 = T2 — 4e2 e3 x0 xx; ca — g2 = F2 — 4e2 e3 x2 x3; (7.5)

they obviously appear on either side and may be left out of account.
The equation of the four-node cubic surface is A = 0, where A is

the three-rowed determinant we associate with (5.1):

a,
h,

0>

h,
b,

f>

9

f
c

A = h, b, f (7.6)
0> / . c

The cones be =f2 and ca = g2 touch A = 0 at points lying on the
twisted cubic curves b/f = f/c = h/g and a/g = g/c = h/f respectively;
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the points of contact of x0 and xx lie upon the former, those of x2 and
x3 upon the latter. All the twelve points of contact therefore lie
upon

T2 = 0 and fg — ch= 0, (7.7)

and upon the quartic curve C\ in which these two quadrics intersect.
The C\ meets the planes (x) in four further points, one in each plane;
these may be shown to lie in the plane c = 0 and to have coordinates

(0, ei, e2, e3), (e^ 0, e3, e2), (e2, e3, 0, e^, (e3, e2, ex, 0).

In fact the plane c = 0 cuts F2 in a conic which touches the coordinate
planes (x) at these points.

By a property of determinants

c x A = (6c - f) (ca - gr2) - (fg - chf
= (T2 - 4e2 e3 xQ X-,) (T2 — 4e2 e3 x2 x3) — (fg — chf. (7.8)

Putting F2 = 0 in this formula we see that the conic in c = 0 and
the C\ form the complete intersection of Y2 with a surface of the
type

2 2 — x0 xx x2 xz = 0, (7.9)

(S being a quadric), a quartic surface having the planes (x) as singular
tangent planes. In general the section of this surface by a quadric is
a curve of order eight which has the planes (x) as fourfold tangent
planes. Exceptionally, as we see here, the section may break up
into a conic touching each plane, and a sextic of the type that we
are investigating having each as a tritangent plane.

8. We have obtained general equations for a C\ referred to a
set of four tritangent planes x0, xx, x2, xs under the conditions that
two contact-quadrics of one family break up into the pairs (z0, xx)
and (x2, x3). There are at our disposal the values of the constants e,
and the coefficients Tin and kn that appear in the linear functions h and
k (see (6.2) and (7.4)). It is easy to derive equations applicable to
the problem when the four planes are paired off differently—(x0, x2)
and (x3, Xx), or else (x0, x3) and (xlt x2)—:a cyclical interchange of
suffixes (2, 3, 1 or 3, 1, 2 for 1, 2, 3) is all that is required. But, as
was pointed out at the beginning of § 6, it must be possible to adapt
the new formulae so that they apply to the same curve that has been
discussed in §7. The quadric T 2 = 0 on which the curve lies must
remain the same; therefore the constants e and Tc must be unchanged.
The G\ of (7.7) must also remain unchanged, so that the new quadrics
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analogous to fg — ch must belong to the pencil of quadrics derived
from (7.7), a fact that will lead us to the values of h. But first the
results that we have obtained will be expressed more simply by means
of a new coordinate system:

Let

x0 + xx — x2 — x3=

XQ ~~ *"\ ~~ 2 i~ 3~~ *̂ 3̂ ' '

[K and ZT are used for k and A when they are expressed in
terms of the new coordinates X].

4 T2 = 4ZX0 + e2 e3 (X
2 - X2) + e3 e1 (X | - X2) + ex e2 (X

2 - X2)

ezX3; g—f=e3X2;)
so that «— b = e2e3X1; c = Xo;

4A =

+ e3i

+ 6 + 2h, a — b,
a — b, a + b — 2h, g — /
£+/> 91 — /.

= (e2e3)2X o + Q, X2

x2 ) xo

where (Xo + P) = a + 6 + 2A = 2Z + 2H + \ (ef + e§) Xo; (8.4)
el (Xo + Q) = a + b - 2h = 2K - 2H + J (e2 + e2) Xo.

We now consider the linear function h of (5.1). In the new coordinates
the C\ on which all the points of contact lie is the intersection of

T 2 =0 and e 2 X 2 - e 2 X 2 - 4 X 0 # = 0,

H being h expressed in the new coordinates. A cyclical change of
suffixes 1, 2, 3 into 2, 3, 1 or 3, 1, 2 must leave this curve unaffected.
Suppose that H is changed into H' and H" by the process; then the
two quadrics just given, with the two

e2 X2 - e2 X2 - 4X0#' = 0, and e\ X\ - e2 X2 - 4X0#" = 0

belong to a pencil of quadrics. From the last three we infer that

and therefore we are justified in writing

H=e2e3(j>+e1(e2—e3)if>; # ' = e3—e

(8.1)

(8.2)

/
/ =

a + 6 + 2h,
e2 e3 X L

e2X3 )

= (e2e3)
2X xl x

X2',

a

x3

e2 e3 Xi
+ 6 -
e3X2,

P, X
) XQ -

2h,

2

IQ

e2X
e3X

(8

3

2

•3)

; ff'^e^a^+eate!—e2)</-; (8.5)
</> and 0 being linear functions of the coordinates which are not
affected by the cyclical interchange of the suffixes. On substituting
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in F2 the values of X\ and X\ given by the last two equations, an
identical result should be reached. We find that X\ disappears and
that we must have

# (e2 e3 + e3 ex + ex e2) = 4K — (e2 e3 + e3e1 + ax e2) Xo. (8.6)

When these values of H and ip are introduced, P and Q assume
unexpectedly simple values, viz.

eze: + e1e2) + 2e3<f>; [ = (A 2 - A^l ,g
= 2K (e3 — e2)/fe2e3 + e3e1 + e1e2) + 2e2<t>. [ = (\ — A3)]J

Obviously we must take these two expressions on the right as a basis
for formulae; K and <f> are readily expressed in terms of them. But
it is even better to express them as differences of three quantities
^D A2) A3 as suggested in the square brackets. We are concerned
only with differences of the quantities A and may as well assume
that their sum vanishes, though this is not essential. What is
important is the very simple value of K,

4K = ex Aj + e2 A2 + e3A3( ' (8.8)

and the almost equally simple form of the determinant A, viz.

4 A = (e2e3)2 x (8.9)

A cyclical change of the suffixes 1, 2, 3 gives the other four-node
cubic surfaces: but the rows and columns of the determinant may be
moved (as was done in (8.3)) so as to bring Xlt X2, X3 back to the
places they occupy in (8.9). When this has been done the terms of
the leading diagonal are

^o + (Ai-A2), Xo, Xo + (A3-A2) and Xo + (K-X3), Xo + (A2-A3), Xo.

9. The final form of the equations is so simple and verification
of the theorems is so easy that it may be worth while to collect all
the formulae, expressing them in a notation that is not hampered by
suffixes. A few trivial alterations are made.

FORMULAE.

Notation. Four coordinates:—w, x, y, z.
Three constants:—a, b, c, such that a + b + c = 0.
Three linear functions of w, x, y, z:—'a, /?, y, such that a+/J+y=0.
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i w + (a — 8)/a, z, y,
Let D(d) = (abc) x z, w + (p—6)/b, x,

y, x, w+ (y — 6)/c

then S = be (x2 - w2) + ca (y2 - v?) + ab (z2 -w2) + w {aa + 6/3 + cy).

The Cg is the curve of intersection of the quadric S = 0 with the
cubic surface T = 0. Three four-node cubic surfaces D (a) = 0,
D (/3) = 0, -D (y) = 0, clearly pass through the curve, and lead to three
families of contact-quadrics. Let us consider one of these surfaces,
D (y) = 0; for the moment we shall write

w + (a — y)/a = u and w + (/? — y)/6 = t>,

so that the elements of the determinant are u, v, w, x, y, z; their
minors may as usual be denoted by U, V, W, X, Y, Z. It may be
seen that

62 U + a2 V + 2abZ = S — ab(w + x + y + z) (w + x — y — z);
b2 U + a2 V — 2abZ = S — ab (w — x + y — z) (w — x - y + z);

again

{b2U+a2V+2abZ)(b2U+a2V-2abZ)-(b2U-a2Vf=4:a2b2(UV-Z2) =

a result which proves the four planes

w + x + y + z—0; w + x—y—z=0; w—x + y—z=0; w—x—y + z=0;

to be tritangent planes.
Certain properties stated in the course of this paper can be

verified, and it is to be hoped that these properties may be extended.
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