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ON GENERALIZED PÓLYA URN MODELS
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Abstract

We study an urn model introduced in the paper of Chen and Wei (2005), where at each
discrete time step m balls are drawn at random from the urn containing colors white and
black. Balls are added to the urn according to the inspected colors, generalizing the well
known Pólya–Eggenberger urn model, case m = 1. We provide exact expressions for the
expectation and the variance of the number of white balls after n draws, and determine the
structure of higher moments. Moreover, we discuss extensions to more than two colors.
Furthermore, we introduce and discuss a new urn model where the sampling of the m

balls is carried out in a step-by-step fashion, and also introduce a generalized Friedman’s
urn model.
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1. Introduction

Pólya–Eggenberger urn models are defined as follows. At the start, time 0, the urn contains
W0 white balls and B0 black balls. The evolution of the urn occurs in discrete time steps. At
every step a ball is chosen at random from the urn. The color of the ball is inspected and
then the ball is reinserted into the urn. According to the observed color of the ball, balls are
added/removed due to the following rules. If we have chosen a white ball, we put into the urn
a white balls and b black balls, but if we have chosen a black ball, we put into the urn c white
balls and d black balls. The values a, b, c, d ∈ Z are fixed integer values and the urn model is
specified by the 2 × 2 ball replacement matrix

M =
(

a b

c d

)
.

Urn models are simple and useful mathematical tools for describing many evolutionary pro-
cesses in diverse fields of application such as analysis of algorithms and data structures, statistics,
and genetics; see [11], [12], and [13].

One of the most fundamental urn models is the original Pólya–Eggenberger urn model [4],
associated with the ball replacement matrix

M =
(

1 0
0 1

)
.
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The Pólya–Eggenberger urn is a balanced urn model; the total number of added or removed
balls is constant and so independent of the observed color. A parameter of interest is the number
Wn of white balls contained in the urn after n draws. Various generalizations of this urn model
have been considered and results appear in [1], [6], [7], [9],[14], and [16]; we refer to [2] for a
brief discussion of the aforementioned works.

This work is devoted to the study of a generalization of the Pólya–Eggenberger urn model,
where several balls are drawn at each discrete time step, their colors are inspected, and the
balls are reinserted into the urn. The addition/removal of balls depends on the combinations of
colors of the drawn balls. Such urn models recently received some attention in the literature;
see, e.g. [2], [13], and [15]. Chen and Wei [2] introduced a particular urn model they called
model M , where m ≥ 1 balls are drawn from the urn at each discrete time step. Say m − �

white balls and � black balls have been drawn, 0 ≤ � ≤ m, their colors are noted, and the drawn
balls are returned to the urn together with addition c(m− �) white balls and c� black balls. The
ball replacement matrix of this urn model is a rectangular matrix M , given by

M =

⎡
⎢⎢⎢⎢⎣

mc 0
(m − 1)c c

. . . . . .

c (m − 1)c

0 mc

⎤
⎥⎥⎥⎥⎦ , (1)

with parameter c ∈ N and m ≥ 1. The rows of the rectangular replacement matrix encode
the sampling scheme in the obvious way; the �th row corresponds to the case of drawing a
combination of (m − �) white balls and � black balls, 0 ≤ � ≤ m, where c(m − �) white balls
and c� black balls are being added. Note that in model M the drawing of the m balls occurs
without replacement, in other words the distribution of the number of white balls in the sample
of size m follows a hypergeometric distribution.

Chen and Wei studied the distribution of the number of white balls Wn after n draws and
showed the almost sure convergence of Wn, suitably normalized, to a continuous distribution by
using martingales. The aim of this note is to provide further insight into the limiting distribution
of the number of white balls by providing exact expressions for the expectation and the variance
of Wn, from which one obtains the expectation and variance of the limit law. Moreover, we
also obtain, in principle, exact expressions for arbitrary moments of the limit law. Note that
the case m = 1 corresponds to the well known Pólya–Eggenberger urn

M =
(

c 0
0 c

)
,

which is completely understood using different arguments such as counting arguments, or
stochastic processes; see, e.g. [10]. It is known that the proportion of white balls after n

draws is a martingale and has a beta distribution as the limit law with parameters b/c and w/c.
Therefore, the case m = 1 is excluded from our study.

Throughout this work we use the notations
[
n
k

]
and

{
n
k

}
, where

[
n
k

]
denotes the unsigned

Stirling numbers of the first kind (also called the Stirling cycle numbers), and
{
n
k

}
denotes the

Stirling numbers of the second kind (see [8]). Moreover, we denote with x� the �th falling
factorial, x� = x(x − 1) . . . (x − � + 1), � ≥ 0, with x0 = 1.
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2. The distributional equation

We consider the urn model called model M of [2], specified by ball replacement matrix (1).
Let Wn and Bn denote the random variables counting the numbers of white balls and black balls
respectively after n draws, n ≥ 0. We assume that the initial numbers B0 of black balls and W0
of white balls satisfy B0 > 0 and W0 > 0, and the total number of balls at time 0, T0, satisfies
T0 = B0 + W0 ≥ m, in order to avoid any degenerate cases. Since the urn model is balanced,
regardless of the inspected color combination a total of mc balls are added to the urn at every
discrete time step; the total number Tn of balls after m draws is a deterministic quantity, and
given by

Tn = T0 + nmc = Wn + Bn, n ≥ 0. (2)

We are interested in the random variable Wn, counting the number of white balls contained
in the urn after n draws, n ≥ 0. The starting point of our considerations is the distributional
equation,

Wn
d= Wn−1 +

m∑
k=0

kc 1n(W
kBm−k), (3)

which says that the number of white balls after n draws can be decomposed as the number of
white balls after n − 1 draws, plus the additional balls added when the colors of the nth draw
have been inspected, n ≥ 1. Here the random variables 1n(W

kBm−k), 0 ≤ k ≤ m denote
the indicators of drawing k white balls and m − k black balls from the urn at the nth draw,
n ≥ 1. Let Fn−1 denote the σ -field generated by the first n − 1 draws. By (2), we have
Bn−1 = Tn−1 − Wn−1, and further

P{1n(W
kBm−k) = 1 | Fn−1} =

(
Wn−1

k

)(
Bn−1
m−k

)
(
Tn−1
m

) =
(
Wn−1

k

)(
Tn−1−Wn−1

m−k

)
(
Tn−1
m

) , (4)

where 0 ≤ k ≤ m, n ≥ 1. In order to study the moments E(Ws
n), s ≥ 1, of the random variable

Wn, we first have to derive a distributional equation for Ws
n . In order to do so, we take the sth

power in (3) and use the fact that indicator variables are mutually exclusive. We obtain the
distributional equation, valid for n ≥ 1, s ≥ 1,

Ws
n

d= Ws
n−1 +

s∑
�=1

(
s

�

)
Ws−�

n−1c
�

m∑
k=1

k� 1n(W
kBm−k). (5)

3. Results for the moments

Theorem 1. The expected value of the random variable Wn, counting the numbers of white
balls after n draws, is given by E(Wn) = (W0/T0)(nmc + T0), and the variance V(Wn) =
E(W 2

n ) − E(Wn)
2 is determined via the second moment

E(W 2
n ) =

(
n−1+λ1

n

)(
n−1+λ2

n

)
(
n−1+T0/mc

n

)(
n−1+(T0−1)/mc

n

)
×
(

W 2
0 + W0c

2m

T0

n−1∑
�=0

� + (T0 − m)/mc

� + (T0 − 1)/mc

(
�+T0/mc

�+1

)(
�+(T0−1)/mc

�+1

)
(
�+λ1
�+1

)(
�+λ2
�+1

) )
,
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where the values λ1, λ2 are given by

λ1,2 = −1 + 2mc + 2T0 ± √
1 + 4mc(1 + c)

2mc
.

Concerning higher moments, we obtain the following recursive characterization.

Theorem 2. The sth moment E(Ws
n) is, for s ≥ 1, given by

E(Ws
n) =

(n−1∏
j=0

αj,s

)(
Ws

0 +
n−1∑
�=0

β�,s∏�
j=0 αj,s

)
, (6)

where the quantities αn,s and βn,s are defined as

αn,s =
s∑

�=0

c�

(
s
�

)(
m
�

)
(
Tn

�

) , (7)

βn,s =
s∑

i=2

E(Ws+1−i
n )

s∑
�=i

(
s

�

)
c�

�∑
j=�+1−i

(−1)j+i−�−1

[
�
j

]{
j

�+1−i

}(
m
j

)
(
Tn

j

) .

Here
[
n
k

]
denotes an (unsigned) Stirling number of the first kind, and

{
n
k

}
denotes a Stirling

number of the second kind.

The result above enables us to obtain in principle arbitrary high moments, since the moment
E(Ws

n) can be expressed in terms of the moments E(Wr
h), with 0 ≤ h ≤ n − 1, 0 ≤ r ≤ s − 1.

Remark 1. As mentioned in the introduction, the case m = 1 corresponds to the Pólya-
Eggenberger urn

M =
(

c 0
0 c

)
.

From Theorem 2, we have, for s ≥ 1, the sth moment E(Ws
n) given by (6) with αn,s =

1 + (cs/Tn) = Tn+s/Tn and βn,s = ∑s
i=2 ci

(
s
i

)
E(Ws+1−i

n )/Tn.
Thus, E(Wn) = W0Tn/T0 and

E(W 2
n ) =

(n−1∏
j=0

Tj+2

Tj

)(
W 2

0 +
n−1∑
�=0

c2
E(Wn)/Tn∏�

j=0 Tj+2/Tj

)
= W0Tn(c

2n + Tn+1W0)

T0T1
.

These imply that V(Wn) = c2nTnW0B0/(T
2
0 T1), where B0 = T0 − W0. Note that, for m = 1,

the probability mass function can be directly obtained using different techniques, leading to
explicit expression for all moments, and the limiting distribution (see, e.g. [5]).

The following results concern the moments of the normalized random variable Wn/n.

Corollary 1. The limits limn→∞ E(Ws
n/ns) exist; in particular, we obtain for the expected

value limn→∞ E(Wn)/n = W0mc/T0, and for the normalized second moment

lim
n→∞

E(W 2
n )

n2 = �(T0/mc)�((T0 − 1)/mc)

�(λ1)�(λ2)

×
(

W 2
0 + W0c

2m

T0

∞∑
�=0

� + (T0 − m)/mc

� + (T0 − 1)/mc

(
�+T0/mc

�+1

)(
�+(T0−1)/mc

�+1

)
(
�+λ1
�+1

)(
�+λ2
�+1

) )
.
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Moreover, for arbitrary s ≥ 1 the limit of the normalized sth moment can be expressed in terms
of an infinite sum

lim
n→∞

E(Ws
n)

ns
=
∏s

�=1 �((T0 + 1 − �)/mc)∏s
�=1 �(λ�,s)

(
Ws

0 +
∞∑

�=0

β�,s∏�
j=0 αj,s

)

with β�,s as defined above in Theorem 2, involving the moments of the form E(Wr
h) with

0 ≤ h < ∞ and 0 ≤ r ≤ s − 1. Here the λ�,s denote the roots (times by minus one) of the
equation in the variable x

s!
(mc)s

s∑
�=0

c�

(
m

�

)(
xmc + T0 − �

s − �

)
=

s∏
�=1

(x + λ�,s).

Remark 2. As mentioned in the introduction Chen and Wei [2] proved almost sure (a.s.)
convergence of Wn, namely Wn = Wn/Tn = Wn/(nmc + T0) → W∞ a.s. Hence, we get
the expectation and the variance of W∞ by the relations E(W∞) = limn→∞ E(Wn)/nmc, and
V(W∞) = limn→∞ V(Wn)/(nmc)2. Our results show that the distribution of W∞ is not an
ordinary beta law, in contrast to the case m = 1. Note that the moments of Wn do not grow
very fast, since they satisfy the trivial bounds E(Ws

n) ≤ (nmc + T0)
s . Hence, by Carleman’s

condition the limit law W∞ is uniquely determined by its moments E(W s∞), which are given
by E(W s∞) = limn→∞ E(Ws

n)/(nmc)s .

Example 1. For the case m = 2 and c = 1, applying Theorem 1, the expected value of the
random variable Wn is given by E(Wn) = (W0/T0)(2n + T0). Moreover, by Theorem 2, we
see that, for s ≥ 2, the sth moment E(Ws

n) is given by (6) with

αn,s = 1 + 2s

Tn

+
(
s
2

)
(
Tn

2

) , βn,s =
s∑

i=2

E(Ws+1−i
n )

(
2
(
s
i

)
Tn

−
(
s
i

){
i
2

}
(
Tn

2

) +
(

s
i+1

){
i+1

2

}
(
Tn

2

) )
.

For instance, if s = 2, then

αn,2 = 1 + 4

Tn

+ 1(
Tn

2

) = T 2
n + 3Tn − 2

Tn(Tn − 1)
,

βn,2 = E(Wn)

(
2

Tn

− 1(
Tn

2

)
)

= 2W0

T0

Tn − 2

Tn − 1
,

and so

E(W 2
n ) = W0T

2
n

T0
− 4nW0B0�(n + λ1)�(n + λ2)�(T0 − 1)

�(2n + T0 − 1)�(λ1)�(λ2)
,

where B0 = T0 − W0, λ1 = (2T0 + 3 + √
17)/4 and λ2 = (2T0 + 3 − √

17)/4. The above
results imply that E(W∞) = limn→∞ E(Wn/Tn) = W0/T0 and

E(W2∞) = lim
n→∞

E(W 2
n )

T 2
n

= W0

T0
−

√
πW0B0�(T0 − 1)

2T0�(λ1)�(λ2)
,

and so

V(W2∞) = E(W2∞) − E(W∞)2 = W0B0

T 2
0

(
1 −

√
πT 2

0 �(T0 − 1)

2T0�(λ1)�(λ2)

)
.
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4. Determining the structure of the moments

In order to prove Theorems 1 and 2, we need the following result.

Lemma 1. The moments E(Ws
n) satisfy the recurrence relation

E(Ws
n) = αn−1,sE(Ws

n−1) + βn−1,s , n, s ≥ 1, (8)

where the quantities αn,s and βn,s are as defined in Theorem 2.

Proof. Our starting point for the proof of Lemma 1 is the distributional equation for Ws
n , (5),

and we take the conditional expectation with respect to Fn−1. This leads to

E(Ws
n | Fn−1) = Ws

n−1 +
s∑

�=1

(
s

�

)
Ws−�

n−1c
�

m∑
k=1

k�

(
Wn−1

k

)(
Tn−1−Wn−1

m−k

)
(
Tn−1
m

) , (9)

where we have used (3) and (4). In order to simplify the stated expression we have to use some
combinatorial identities. We convert the ordinary powers of k into falling factorials using the
Stirling numbers of the second kind,

x� =
�∑

j=1

{
�

j

}
xj ,

where xj = x(x − 1)(x − 2) . . . (x − (j − 1)), � ≥ 1. We have

m∑
k=1

k�

(
Wn−1

k

)(
Tn−1 − Wn−1

m − k

)
=

m∑
k=1

�∑
j=1

{
�

j

}
kj

(
Wn−1

k

)(
Tn−1 − Wn−1

m − k

)

=
�∑

j=1

m∑
k=j

{
�

j

}
kj

(
Wn−1

k

)(
Tn−1 − Wn−1

m − k

)

=
�∑

j=1

{
�

j

}
W

j

n−1

m−j∑
k=0

(
Wn−1 − j

k

)(
Tn−1 − Wn−1

m − j − k

)
.

Next we use the Vandermonde convolution formula

n∑
k=0

(
r

k

)(
s

n − k

)
=
(

r + s

n

)
,

in order to obtain the expression

m∑
k=1

k�

(
Wn−1

k

)(
Tn−1 − Wn−1

m − k

)
=

�∑
j=1

{
�

j

}
W

j

n−1

(
Tn−1 − j

m − j

)
.

This leads to

m∑
k=1

k�

(
Wn−1

k

)(
Tn−1−Wn−1

m−k

)
(
Tn−1
m

) =
�∑

j=1

{
�

j

}
W

j

n−1

(
Tn−1−j
m−j

)
(
Tn−1
m

) =
�∑

j=1

{
�

j

}
W

j

n−1

(
m
j

)
(
Tn−1

j

) . (10)
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Next we convert the falling factorials into ordinary powers, and obtain

W
j

n−1 =
j∑

i=1

[
j

i

]
(−1)j−iW i

n−1. (11)

Applying (11) to (10), we have

m∑
k=1

k�

(
Wn−1

k

)(
Tn−1−Wn−1

m−k

)
(
Tn−1
m

) =
�∑

j=1

{
�

j

}( j∑
i=1

[
j

i

]
(−1)j−iW i

n−1

) (
m
j

)
(
Tn−1

j

)
=

�∑
i=1

Wi
n−1

�∑
j=i

(−1)j−i

[
j
i

]{
�
j

}(
m
j

)
(
Tn−1

j

)
=

�∑
i=1

W�+1−i
n−1

�∑
j=�+1−i

(−1)j+i−�−1

[
j

�+1−i

]{
�
j

}(
m
j

)
(
Tn−1

j

) . (12)

Note that the result above is an explicit expression for the �th moment of a hypergeometric
distributed random variable with parameters Wn−1, Tn−1, and m. Applying (12) to the right of
(9), we get

E(Ws
n | Fn−1) = Ws

n−1 +
s∑

�=1

(
s

�

)
c�

�∑
i=1

Ws+1−i
n−1

�∑
j=�+1−i

(−1)j+i−�−1

[
j

�+1−i

]{
�
j

}(
m
j

)
(
Tn−1

j

)
= Ws

n−1 +
s∑

i=1

s∑
�=i

(
s

�

)
c�Ws+1−i

n−1

�∑
j=�+1−i

(−1)j+i−�−1

[
j

�+1−i

]{
�
j

}(
m
j

)
(
Tn−1

j

)
=
(

1 +
s∑

�=1

c�

(
s
�

)(
m
�

)
(
Tn−1

�

) )Ws
n−1

+
s∑

i=2

Ws+1−i
n−1

s∑
�=i

(
s

�

)
c�

�∑
j=�+1−i

(−1)j+i−�−1

[
j

�+1−i

]{
�
j

}(
m
j

)
(
Tn−1

j

)
= αn−1,sW

s
n−1 + βn−1,s ,

where the quantities αn,s and βn,s are as defined in Theorem 2. Now the stated result easily
follows by taking the expectation on both sides.

Remark 3. Note that, in the case c = 1, a simpler expression exists for the factorial moments
E(W

s
n) = E(Wn(Wn − 1) . . . (Wn − s + 1)) of Wn and consequently also for the ordinary

moments of Wn.

E(W
s
n) = E(W

s

n−1)

s∑
�=0

(
s
�

)(
m
�

)
(
Tn

�

) +
s∑

i=1

i!E(W
s−i

n−1)

s∑
�=i

(
s
�

)(
m
�

)(
s−�
i

)(
�
i

)
(
Tn−1

�

) .

Next we use Lemma 1 to prove Theorem 2.
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Proof of Theorem 2. Repeatedly using (8) yields, for any n ≥ 1, s ≥ 1,

E(Ws
n) = αn−1,sE(Ws

n−1) + βn−1,s

= αn−1,sαn−2,sE(Ws
n−2) + αn−1,sβn−2,s + βn−1,s

...

=
(n−1∏

j=0

αj,s

)
E(Ws

0 ) +
n−1∑
�=0

(
β�,s

n−1∏
j=�+1

αj,s

)

=
(n−1∏

j=0

αj,s

)(
Ws

0 +
n−1∑
�=0

β�,s∏�
j=0 αj,s

)
,

which implies the stated result.

Proof of Theorem 1. In order to obtain the result for the expected value and the variance
(second moment), as stated in Theorem 1, we proceed as follows. In the case of the expected
value we observe that βj,1 = 0 and

αj,1 = 1 + cm

Tj

= Tj + cm

Tn−1
= Tj+1

Tj

,

since Tj+1 = Tj + mc; the total number of balls contained in the urn increases by mc after
each draw. Consequently,

n−1∏
j=0

αj,1 =
n−1∏
j=0

Tj+1

Tj

= Tn

T0

and by (6), the stated result follows.

Remark 4. As already mentioned before Wn = Wn/Tn → W∞ a. s. This can easily be seen
as follows: we readily note that, for s = 1,

E(Wn | Fn−1) = Wn−1
Tn

Tn−1
, n ≥ 1

holds. Thus, Wn = Wn/Tn is a positive martingale with respect to the filtrationFn, as previously
observed in [2], which directly leads to the proof of the almost sure convergence of Wn.

In order to obtain the variance V(Wn) = E(W 2
n ) − E(Wn)

2, we study the second moment
E(W 2

n ), given by

E(W 2
n ) =

(n−1∏
j=0

αj,2

)(
W 2

0 +
n−1∑
�=0

β�,2∏�
j=0 αj,2

)
.

The value αn,2 is given by

αn,2 = 1 + 2cm

Tn

+ c2
(
m
2

)
(
Tn

2

)
= Tn+2(Tn − 1) + c2m(m − 1)

Tn(Tn − 1)

= (n + 2 + T0/cm)(n + (T0 − 1)/cm) + 1 − 1/m

(n + T0/cm)(n + (T0 − 1)/cm)
.
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We factor the numerator of αn,2, by determining the 0s of the quadratic equation with respect
to n, and get

αn,2 = (n + λ1)(n + λ2)

(n + T0/cm)(n + (T0 − 1)/cm)
, (13)

with λ1 and λ2 as stated in Theorem 1. Concerning βn,2 we have

βn,2 = E(Wn)c
2
(

m

Tn

−
(
m
2

)
(
Tn

2

)) = W0c
2m

T0

(
1 − m − 1

Tn − 1

)
= W0c

2m

T0

Tn − m

Tn − 1
.

This readily leads to the stated exact result for the second moment.

4.1. Asymptotic expansions

We finally turn to the proof of Corollary 1. In order to get the results for limn→∞ E(W 2
n )/n2

we proceed as follows: first, by (13), we write
∏n−1

j=0 αj,2 in terms of Gamma functions,

n−1∏
j=0

αj,2 =
(
n−1+λ1

n

)(
n−1+λ2

n

)
(
n−1+T0/mc

n

)(
n−1+(T0−1)/mc

n

) = �(n + λ1)�(n + λ2)�(T0/mc)�((T0 − 1)/mc)

�(λ1)�(λ2)�(n + T0/mc)�(n + (T0 − 1)/mc)
.

Using Stirling’s formula for the Gamma function

�(z) =
(

z

e

)z
√

2π√
z

(
1 + 1

12z
+ 1

288z2 + O

(
1

z3

))
, (14)

and, by the fact that λ1 + λ2 = 2 + (2T0 − 1)/mc, we obtain the asymptotic expansion

n−1∏
j=0

αj,2 = n2 �(T0/mc)�((T0 − 1)/mc)

�(λ1)�(λ2)

(
1 + O

(
1

n

))
. (15)

The asymptotic expansion (15) of
∏n−1

j=0 αj,2 also implies that the sum
∑n−1

�=0 β�,2/
∏�

j=0 αj,2
converges as n → ∞ by the comparison test,

n−1∑
�=0

β�,2∏�
j=0 αj,2

≤ K

n−1∑
�=1

1

�2 ,

for some suitable constant K > 0.
In order to provide the asymptotics of E(Ws

n), we will proceed by induction. Before doing
so, we derive an asymptotic expansion of

∏n−1
j=0 αj,s . From (7), we have

αj,s =
∑s

�=0 c�
(
m
�

)(Tj −�

s−�

)
(
Tj

s

)
= s!

∑s
�=0 c�

(
m
�

)(Tj −�

s−�

)
(mc)s

∏s−1
�=0(j + (T0 − �)/mc)

= s!
∑s

�=0 c�
(
m
�

)(
jmc+T0−�

s−�

)
(mc)s

∏s
�=1(j + (T0 + 1 − �)/mc)

. (16)
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Let λ�,s denote the roots (times minus one) of the equation

s!
(mc)s

s∑
�=0

c�

(
m

�

)(
xmc + T0 − �

s − �

)
=

s∏
�=1

(x + λ�,s).

Then we can rewrite (16) as

αj,s = s!
∑s

�=0 c�
(
m
�

)(
jmc+T0−�

s−�

)
(mc)s

∏s
�=1(j + (T0 + 1 − �)/mc)

=
∏s

�=1(j + λ�,s)∏s
�=1(j + (T0 + 1 − �)/mc)

,

and consequently
n−1∏
j=0

αj,s =
s∏

�=1

�(n + λ�,s)�((T0 + 1 − �)/mc)

�(λ�,s)�(n + (T0 + 1 − �)/mc)
.

By Stirling’s formula (14) we obtain the asymptotic expansion

n−1∏
j=0

αj,s = n
∑s

�=1 λ�,s

n(sT0−(s
2))/mc

s∏
�=1

�((T0 + 1 − �)/mc)

�(λ�,s)

(
1 + O

(
1

n

))
. (17)

Let [xk] denote the extraction of coefficients operator. Since
s∑

�=1

λ�,s = [xs−1]
s∏

�=1

(x + λ�,s)

= [xs−1] s!
(mc)s

s∑
�=0

c�

(
m

�

)(
xmc + T0 − �

s − �

)

= s!
(mc)s

(
(cm)s−1(sT0 − (

s
2

)
)

s! + cm(cm)s−1

(s − 1)!
)

= sT0 − (
s
2

)
mc

+ s,

it follows that n
∑s

�=1 λ�,s = nsn(sT0−(s
2))/mc and so (17) becomes

n−1∏
j=0

αj,s = ns
s∏

�=1

�((T0 + 1 − �)/mc)

�(λ�,s)

(
1 + O

(
1

n

))
. (18)

Now note that E(Ws
n) = κsn

s(1 + O(1/n)) is true for s = 1, 2. By Theorem 2 and (18), we
have

E(Ws
n) =

(n−1∏
j=0

αj,s

)(
Ws

0 +
n−1∑
�=0

β�,s∏�
j=0 αj,s

)

= ns
s∏

�=1

�((T0 + 1 − �)/mc)

�(λ�,s)

(
1 + O

(
1

n

))(
Ws

0 +
n−1∑
�=0

β�,s∏�
j=0 αj,s

)
.

By our induction hypothesis, E(Wk
� ) = κk�

k(1 + O(1/�)) for sufficiently large �, 1 ≤ k ≤ s−1,
and consequently β�,s satisfies β�,s ≤ K�s−2, where K denotes a sufficiently large constant only
depending on s. Using our result for

∏�
j=0 αj,s , the sum

∑n−1
�=0 β�,s/

∏�
j=0 αj,s is convergent

according to the comparison test with
∑∞

�=1 1/�2. Hence, E(Ws
n) = κsn

s(1 + O(1/n)), and
we have proven our stated results.
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5. The case of three or more colors

The urn model M can be readily generalized to r ≥ 2 different colors. As in the case of
two colors, m balls are drawn at random from the urn, say ki balls of color i, 1 ≤ i ≤ r ,
their colors are noted, and they are returned to the urn together with cki balls of color i.
Let Xn = (Xn,1, . . . , Xn,r ) denote the random vector counting the number of balls of type i

contained in the urn after n draws, with initial values X0 = (X0,1, . . . , X0,r ). The urn is again
balanced, so the number of balls after n draws is given by Tn = T0+nmc, with T0 = ∑r

i=1 X0,i .
One gets the distributional equation

Xn
d= Xn−1 +

∑
k1+···+kr=m

k�≥0

ck 1n

( r∏
�=1

X
k�

�

)
,

where k = (k1, . . . , kr ), and 1n(
∏r

�=1 X
k�

� ) denote the indicators of drawing k� balls of color �,
1 ≤ � ≤ r at the nth draw. Note that each individual random variable Xn,� satisfies Xn,�

d= Wn,
where Wn denotes the previously considered random variable from the two color case. The
distributional equation above can be used to study the mixed moments of Xn,� similar to the
results of Theorems 1, 2, and Corollary 1. We refrain from going into details since the resulting
expressions get very involved; we only mention our findings for the covariance of two different
colors i, j , with r ≥ 3 and 1 ≤ i < j ≤ m.

cov(Xn,i , Xn,j ) =
(
n−1+λ1

n

)(
n−1+λ2

n

)
(
n−1+T0/mc

n

)(
n−1+(T0−1)/mc

n

)X0,iX0,j − (mc)2(n + T0/mc)2

T 2
0

X0,iX0,j .

Moreover, in the limit we obtain

lim
n→∞ cov

(
Xn,i

n
,
Xn,j

n

)
= X0,iX0,j

(
�(T0/mc)�((T0 − 1)/mc)

�(λ1)�(λ2)
− (mc)2

T 2
0

)
,

with λ1, λ2 as given in Theorem 1.

6. Urn model R-drawing with replacement

We consider another urn model which we call model R. It can be considered as a variant of
model M . The dynamics of model R are identical to model M: m ≥ 1 balls are drawn from
the urn containing balls of colors black and white. Their colors are inspected, and they are
returned to the urn. According to the observed colors we add new balls: if � black balls and
m − � white balls have been observed, we add c(m − �) white balls and � black balls; the ball
replacement matrix coincides with (1). The main difference in model R is that the sampling
of the m balls occurs with replacement, i.e. the m balls are drawn one by one from the urn, the
colors are observed, and then put back into the urn. Hence, the distribution of the number of
white balls in the sample of size m follows a binomial distribution instead of a hypergeometric
distribution in model M . The distributional equation for the number of white balls Wn after n

draws is identical to (3),

Wn
d= Wn−1 +

m∑
k=0

kc 1n(W
kBm−k),
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but the distribution of the indicator variables 1n(W
kBm−k) changes to

P{1n(W
kBm−k) = 1 | Fn−1} =

(
m
k

)
Wk

n−1B
m−k
n−1

T m
n−1

=
(
m
k

)
Wk

n−1(Tn−1 − Wn−1)
m−k

T m
n−1

,

0 ≤ k ≤ m, n ≥ 1.
Concerning a limit law for the number of white balls Wn after n draws, we have similar

results to model M of Chen and Wei [2].

Theorem 3. The random variable Wn = Wn/Tn is a positive martingale with respect to the
natural filtration Fn, E(Wn | Fn−1) = Wn−1. Consequently,

Wn
a.s.−−→ W∞.

Furthermore, for fixed W0, B0, c, and m, W∞ is absolutely continuous.

Moreover, the moments of Wn satisfy recurrence relations similar to model M .

Theorem 4. The expected value is given by E(Wn) = (W0/T0)(nmc + T0) and the variance
V(Wn) = E(W 2

n ) − E(Wn)
2 is determined by the second moment,

E(W 2
n ) =

(
n−1+µ1

n

)(
n−1+µ2

n

)
(
n−1+T0/mc

n

)2
(

W 2
0 + W0c

2m

T0

n−1∑
�=0

(
�+T0/mc

�+1

)2
(
�+µ1
�+1

)(
�+µ2
�+1

)),

where the values µ1 and µ2 are given by µ1,2 = (T0 + mc ± c
√

m)/mc. The sth moment
satisfies the recurrence relation

E(Ws
n) =

(n−1∏
j=0

γj,s

)(
Ws

0 +
n−1∑
�=0

δ�,s∏�
j=0 γj,s

)
,

where the quantities γn,s and δn,s are defined as

γn,s =
s∑

�=0

c�

(
s
�

)
m�

T �
n

, δn,s =
s∑

j=2

E(W
s+1−j
n )

s∑
�=j

(
s

�

)
c�

{
�

�+1−j

}
m�+1−j

T
�+1−j
n

.

In the following we present recurrence relations for the limits of the moments of the
normalized random variable Wn/n, with limn→∞ E(Ws

n/ns) = (mc)sE(W s∞).

Corollary 2. The limits of the normalized moments E(Ws
n/ns) exist, and satisfy

lim
n→∞

E(Ws
n)

ns
= �(T0/mc)s∏s

�=1 �(µ�,s)

(
Ws

0 +
∞∑

�=0

δ�,s∏�
j=0 γj,s

)

with γj,s and δ�,s as defined above. Here the µ�,s denote the roots (times minus one) of the
equation

1

(mc)s

s∑
�=0

(
s

�

)(
m

�

)
c��!(xmc + T0)

s−� =
s∏

�=1

(x + µ�,s).

In the following we first sketch the proofs of Theorem 4 and Corollary 2. Since the proofs
are very similar to the proofs for model M , we will be very brief. Then we discuss the proof of
Theorem 3.
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6.1. The structure of the moments

Our starting point is again the distributional equation for Wn, which leads to a distributional
equation for Ws

n . We take the conditional expectation with respect to Fn−1, and obtain

E(Ws
n | Fn−1) = Ws

n−1 +
s∑

�=1

(
s

�

)
Ws−�

n−1c
�

m∑
k=1

k�

(
m

k

)
Wk

n−1(Tn−1 − Wn−1)
m−k

T m
n−1

. (19)

The sum appearing on the right-hand side is the �th moment of a binomial distributed random
variable with parameters m and Wn−1/Tn−1. We get the result

m∑
k=1

k�

(
m

k

)
Wk

n−1(Tn−1 − Wn−1)
m−k

T m
n−1

=
�∑

j=1

{
�

j

}
mj

W
j
n−1

T
j
n−1

.

This implies that (19) becomes

E(Ws
n | Fn−1) = γn−1,sWn−1 + δn−1,s ,

with γn,s and δn,s as stated in Theorem 4. This recurrence relation can be solved in a similar way
to that used in the proof of Theorem 2 for model M , and the stated result for E(Ws

n) follows.
Moreover, we easily obtain the stated formula for the expected value, and also the result for the
second moment of Wn. The results for the higher moments can be obtained in a similar way
to that used for model M . Concerning the asymptotic expansions we can proceed as we did in
the proof of Corollary 1; we omit the details.

6.2. Martingales and absolute continuity

Since δn−1,1 = 0 we obtain, for Wn = Wn/Tn,

E(Wn | Fn−1) = Wn−1.

Hence, Wn is a martingale. Since it is a positive martingale, it converges almost surely to a
limit W∞. Note that we have Wn ∼ Wn/cmn provided Wn → ∞ and, thus, we can obtain the
moments of W∞ via the moments of Wn/n.

Concerning the absolute continuity of the distribution of W∞ we can adapt the argumentation
of Chen and Wei [2]. For the convenience of the reader we outline the main steps, quote the
main results of [2], and present the new ingredient of the proof for model R in Lemma 2. Let
(�, F , P) be the probability space. In order to prove that the distribution of W∞ has a density,
we introduce a sequence of events (��)�≥1 with �� ⊂ ��+1 and P{∪∞

�=1��} = 1. Then, W∞
is restricted to �� and it is shown that it has a density f�. The proof is then finished by proving
that f = lim�→∞ f� exists and that f is the density of W∞.

Proposition 1. ([2].) Let(��)�≥1be a sequence of increasing events with P{∪∞
�=1��} = 1.

If there exist nonnegative Borel measurable functions (f�)�≥1 satisfying P(��∩W−1∞ (B)) =∫
B

f�(x) dx for all Borel sets B, then f = lim�→∞ f� exists almost everywhere, and f is the
density of W∞.

In order to construct the sequence of events (��)�≥1 we can follow [2].

Proposition 2. For fixed W0, B0, c, and m let

�� = {ω : W�(ω) ≥ cm, B�(ω) ≥ cm}, � ≥ 1.

Then, �� ⊂ ��+1 and P{⋃∞
�=1 ��} = 1.
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In order to show that W∞ has a density by restricting W∞ to ��, it suffices to show that the
restriction of W∞ to ��,j = {ω : W�(ω) = j} has a density for each j with cm ≤ j ≤ T�−1.
For this the following result is needed, which is the main new ingredient in our argument
(compared to the argument used in the case of model M).

Lemma 2. The sum
∑m

i=0 P{Wn+1 = j + ck | Wn = j + c(k − i)} satisfies
m∑

i=0

P{Wn+1 = j + ck | Wn = j + c(k − i)}

= 1

T m
n

m∑
�=0

T �
n

m−�∑
i=0

(
m

i

)(
m − i

�

)
(j + c(k − i))i(−j − c(k − i))m−i−�.

Consequently, for a fixed �, for all n ≥ �, cm ≤ j ≤ T�−1, and k < m(n + 1), and a suitably
chosen constant κ > 0, we have

m∑
i=0

P{Wn+1 = j + ck | Wn = j + c(k − i)} ≤ 1 − 1

n
+ κ

n2 .

Remark 5. Note that the corresponding result of Chen and Wei for model M (Lemma 4.1 and
Lemma 4.2 of [2]) can be extended and largely simplified noting that

m∑
i=0

(
j + c(k − i)

i

)(
Tn − j − c(k − i)

m − i

)

=
m∑

f =0

T
f
n

m−f∑
i=0

(
j + c(k − i)

i

)m−i∑
�=f

[
�
f

]
(−1)�−f

(−j−c(k−i)
m−i−�

)
�! .

Proof of Lemma 2. We have
m∑

i=0

P{Wn+1 = j + ck | Wn = j + c(k − i)}

= 1

T m
n

m∑
i=0

(
m

i

)
(j + c(k − i))i(Tn − j − c(k − i))m−i

= 1

T m
n

m∑
i=0

(
m

i

)
(j + c(k − i))i

m−i∑
�=0

(
m − i

�

)
T �

n (−j − c(k − i))m−i−�

= 1

T m
n

m∑
�=0

T �
n

m−�∑
i=0

(
m

i

)(
m − i

�

)
(j + c(k − i))i(−j − c(k − i))m−i−�,

giving
m∑

i=0

P{Wn+1 = j + ck | Wn = j + c(k − i)} = 1 − mc

Tn

+ O

(
1

n2

)
.

Using Tn = nmc + T0, we further have

mc

Tn

= 1

n
+ O

(
1

n2

)
.

Hence, the stated result follows.
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The proof of Theorem 3 can be finished by combining the results of Propositions 1 and 2,
and Lemma 2; it is identical to the proof in [2] (Proof of Theorem 4.2) and therefore the details
are omitted.

7. Outlook

An interesting line of research would be to extend the results for models M and R to
nonbalanced urns with ball replacement matrix given by⎡

⎢⎢⎢⎢⎣
ma 0

(m − 1)a b

. . . . . .

a (m − 1)b

0 mb

⎤
⎥⎥⎥⎥⎦ ,

with a, b ∈ N.
For both nonbalanced models M and R, by simple calculation, we have that the random

variable Wn = Wn/Tn is a strict submartingale with respect to the natural filtration Fn,
E(Wn | Fn−1) ≥ Wn−1 if a > b, and Wn is a strict supermartingale with respect to Fn if
a < b. Since 0 ≤ Wn ≤ 1, by the martingale convergence theorem, Wn converges a.s. to
a random variable W∞. However, in contrast to the balanced versions it seems much more
difficult to obtain closed-form expressions for the moments of Wn.

One can analyze a generalized Friedman’s urn, with ball replacement matrix

M =

⎡
⎢⎢⎢⎢⎣

0 mc

c (m − 1)c

. . . . . .

(m − 1)c c

mc 0

⎤
⎥⎥⎥⎥⎦

and parameters c ∈ N and m ≥ 1. If, say, m − � white balls and � black balls have been drawn
from the urn, 0 ≤ � ≤ m, then the drawn balls are returned to the urn together with additional
c� white balls and c(m − �) black balls. It is possible to look at drawing the m balls without
replacement, which we call model FM , or to look at drawing the m balls with replacement, or
simply model FR. In any case, the distributional equation, for the number of white balls Wn

after n draws, is given by

Wn
d= Wn−1 +

m∑
k=0

(m − k)c 1n(W
kBm−k), (20)

with

P{1n(W
kBm−k) = 1 | Fn−1} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Wn−1

k

)(
Tn−1−Wn−1

m−k

)
(
Tn−1
m

) model FM,(
m
k

)
Wk

n−1(Tn−1 − Wn−1)
m−k

T m
n−1

model FR,

(21)

0 ≤ k ≤ m, and n ≥ 1. We can obtain the moments of Wn, for both models FM and FR, in a
similar way to that used to obtain our previous results for models M and R. In particular, the
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expectation and the variance can be obtained; we get, for example, the result

E(Wn) =

⎧⎪⎪⎨
⎪⎪⎩

(mc)2
(
n
2

)+ mcT0n + (T0 − mc)W0

mc(n − 1) + T0
, mc �= T0,

mc(n + 1)

2
, mc = T0,

n ≥ 0, being valid for both models FM and FR. In contrast to the generalized Pólya urn
models M and R the simple martingale structure of Wn/Tn is not present anymore. However,
we can use supermartingale theory to prove that Wn/Tn converges to 1/2 almost surely. Here
we only consider the model FM since the proof of the model FR is similar. Let

Zn = Wn

Tn

− 1

2
.

We find that

E(Zn | Fn−1) = Wn−1 + cm − cmWn−1/Tn−1

Tn

− 1

2
= (1 − 2λn)Zn−1, (22)

where λn = cm/Tn, and

E(Z2
n | Fn−1) = E

((
Zn + 1

2

)2

− Zn − 1

4

∣∣∣∣ Fn−1

)

= E(W 2
n | Fn−1)

T 2
n

− E(Zn | Fn−1) − 1

4
. (23)

Using (20), (21), and Zn = Wn/Tn − 1
2 , we have

E(W 2
n | Fn−1)

T 2
n

=
(

(1 − 2λn)
2 − λ2

n(Tn−1 − m)

m(Tn−1 − 1)

)
Z2

n−1

+ (1 − 2λn)Zn−1 + 1

4
+ λ2

n(Tn−1 − m)

4m(Tn−1 − 1)
. (24)

Thus, by (22)–(24), we obtain

E(Z2
n | Fn−1) =

(
(1 − 2λn)

2 − λ2
n(Tn−1 − m)

m(Tn−1 − 1)

)
Z2

n−1 + λ2
n(Tn−1 − m)

4m(Tn−1 − 1)

≤ (1 − 2λn)
2Z2

n−1 + λ2
n

4m
. (25)

Let an = (1 − 2λn+1)
2 and bn = λ2

n+1/(4m). Then we see that 0 < an < 1 and 0 < bn < λ2
n

for n ≥ 1. Thus, from (25),

E(Z2
n + λn | Fn−1) ≤ Z2

n−1 + λ2
n + λn

= Z2
n−1 + cm(cm + Tn)

T 2
n

≤ Z2
n−1 + cm

Tn − cm

= Z2
n−1 + λn−1.
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This implies Z2
n + λn is a positive supermartingale. Applying the supermartingale convergence

theorem, Z2
n + λn converges almost surely and so does Z2

n since λn = cm/Tn converges to 0.
Let limn→∞ Z2

n = Z almost surely. If we can claim E(Z2
n) → 0 then, by the dominated

convergence theorem, E(Z) = 0 and so Z = 0 almost surely, which implies that Zn converges
to 0 almost surely. Hence, Wn/Tn converges to 1

2 almost surely.
Next, taking the expectation on both sides of (25), we have that E(Z2

n) ≤ an−1E(Z2
n−1) +

bn−1. Note that

n∏
i=1

ai =
n∏

i=1

(1 − 2λi+1)
2 =

(
T0T1

TnTn+1

)2

→ 0 as n → ∞

and
∞∑

n=1

bn =
∞∑

n=1

λ2
n+1

4m
= c2m

4

∞∑
n=1

1

(T0 + cm + cmn)2 < ∞.

Therefore, E(Z2
n) → 0 now follows by applying the following lemma which can also be found

in [3].

Lemma 3. Suppose {xn}n≥1, {an}n≥1, and {bn}n≥1 are nonnegative real sequences satisfying
xn+1 ≤ anxn + bn, where 0 < an < 1 for n ≥ 1. If

∏n
i=1 ai → 0 and

∑∞
n=1 bn < ∞, then

xn → 0.

Proof. First, note that xn+1 ≤ xn + bn since 0 < an < 1. Thus, xn+1 ≤ x1 +∑n
i=1 bi ≤

x1 +∑∞
i=1 bi , which implies that {xn}n≥1 is uniformly bounded by a positive constant M .

Given ε > 0, choose n0 satisfying
∑∞

n=n0
bi < ε/(1 + M), and then choose n1 > n0 for

which
∏n

i=n0
ai < ε/(1 + M) whenever n > n1. Now, for each n > n1, we have

xn+1 ≤ anxn + bn

≤ anan−1xn−1 + bn−1 + bn

...

≤
( n∏

i=n0

ai

)
xn0 +

n∑
i=n0

bi

≤ εM

1 + M
+ ε

1 + M

= ε.

Hence, xn → 0 as in the assertion.
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