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Abstract. For a C' function f: R" — R (n > 2), we consider the least number
k of distinct critical points that f must possess when restricted to the sphere
S={xeR":|x|| =1}. Clearly k > 2 (for f attains its absolute minimum and max-
imum on S), and a result of Lusternik and Schnirelmann establishes that k = n if fis
even. Here we prove that k=n if, for a given orthonormal system (e;),

max f< min f, foralli=1,...n— 1, where V; is the subspace spanned by ¢y, ..., ¢;
Nale NalZes
and Vi its orthogonal complement. It is shown that this criterion is satisfied by

suitably restricted perturbations of quadratic forms having » distinct eigenvalues.
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Let f:R" — R be a C' function, and let S = {x € R": ||x|| = 1} be the unit
sphere in R"; we denote by (x,y) the usual scalar product of x,y € R" and by
Ix]l = (x, x)"/? the euclidian norm. If f is even, i.e. f(—x) = f(x) for x € R", then
according to a famous result of Lusternik and Schnirelmann [4] - reviewed, for
example, in the surveys [7], [8], [9] and [11] - fs = f| has at least n distinct (pairs of)
critical points, i.e. n points x; € S at which the derivative f'i(x;) = 0 or equivalently
VI (x;) = Aixi, A = (Vf(x)), x;), with Vf denoting the gradient of f. (Note that cri-
tical points occur in antipodal pairs (x, —x) because of the evenness of f.) Moreover

if (¢;);<;<, is an orthonormal basis of R”, if V; =[ey, ..., ¢;] denotes the subspace
spanned by ej,...,e; (1 <i<n) and Vi the subspace orthogonal to V;, then the
corresponding critical values ¢; = f(x;) satisfy

Bi-i<c¢<a (I1<i<n) (1.1)
where

o= rsnﬂa;ff, Bi1 = Srrgl;gf (1.2)

with the understanding that gy = msinf (while «,, = rn;le ). The estimate (1.1) fol-

lows easily by the minimax expression of the ¢;, which will be recalled later.

It is natural to ask what can be said for an '€ C! which is not even. In this note
we use the same ideas introduced by Lusternik and Schnirelmann, and later exten-
ded by Krasnoselskii [3], Palais [6], Schwartz [10], Rabinowitz [7, 8, 9], to give a
simple criterion for the existence of n distinct critical points of a general f € C'.
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THEOREM 1. Let f'€ CY(R"), n > 2, let (e;), i<, be an orthonormal basis of R", and
let «;, B; be defined as in (1.2). If a; < B; for | <i<n—1, then fs has n distinct cri-
tical values c; (1 < i < n), which moreover satisfy the inequality (1.1).

We can say this in other terms: if the n subintervals J; = [, ;] (i=1,...,n)
of the range [By, a,] of f do not overlap, then f has (at least) n critical values, one in
each J;.

Theorem 1 is an easy consequence of the following result.

THEOREM 2. Let f€ CY(R") and let V, W be complementary subspaces of R" so
that R" =V @ W. Set

o = max/, g =minf. (1.3)

Then if @ < B, fs has a critical value ¢ < a. Moreover, given any subspace Vy of 'V, we

have ¢ > 0 = Sm{ll}oigmﬁ
Proof. Set
= jnf max/ () 14
where
F ={FC S\ W:Fcompact, Cat(F; S\ W) > 1} (1.5)

and Cat(F; S\ W) denotes the Lusternik-Schnirelmann category of the set F in
S\ W. That is to say, F is the family of all compact subsets of S\ W that are not
contractible to a point by a continuous deformation in S\ W.

To prove that c is a critical value having the required properties, we first use the
following two facts, proofs of which can be found, for example, in [3, Chapter 6,
Lemma 2.6 and 2.7].

1) SNVeF;
(ii) If F e F, then FN(Vy & W) # @ for any subspace V), of V.

Using (i) and (ii), the estimate 6 < ¢ < « follows readily from the definitions. It
remains to show that ¢ is critical. We argue by contradiction, using the standard
deformation technique due to Palais [6], Rabinowitz [8, 9] et al. (though for our
purposes, the simpler version given in [7] would suffice). Indeed if not, then there
would be a (continuous) deformation H : [0, 1] x S — S with the following properties:

(@) f(H(t, x)) < f(x),¥(1,x) € [0, 1] x S;
(b) there exists an € with 0 <€ < 8—« such that f(x) < ¢+ ¢ implies that
f(H(l,x) <c—e.
Let F. € F be such that f(x) < ¢+ € for all x € F,; then by (a) we have
JHE X)) =f(x) <c+e<p  ((1.x) €[0, 1] x Fo),

which implies that H(z, x)¢ W, for all (¢, x) € [0, 1] x F,. Therefore H deforms F in
S\ W to the set G. = {H(l, x) : x € F.}, and since the category of a set does not
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decrease under deformations, it follows that G, € F. Also by (b), maxf < ¢ — € and
soc= mf max f < ¢ — €, a contradiction. G

Theorem 1 follows from Theorem 2 on taking, for 2<i<n-—1,
V=Vi=lel,...,e], W=V, and Vy =[e], so that Vo@® W =V+, and 6 = Bi_,.

The corresponding critical values ¢; are thus defined by

¢ = 1nf max f(x) (1.6)
FeF; xeF
where
= {FC S\ Vi : Fcompact, Cat(F; S\ Vi) > 1}. (1.7)

For i=1 and i=n, the existence of a critical value in [By, o] and [B,_1, o],
respectively, is trivial since By = msinf and «, = m;le. However, the conditions

o) < B1 and o, < B,_; ensure that By and «, “‘do not mix”” with the remaining ¢;’s.
Let us further remark that o, = ¢,, with ¢, defined by (1.6), (1.7) for i = n. Indeed, it
is easily seen that F, = {S}; i.e. the only subset of .S which is not contractible to a
point in S is S itself. We are unable to prove in general the corresponding equality

Bo = c1.

REMARK 1. More generally, fs has (at least) s + 1 distinct critical values, where
s is the total number of indices i € {1,...,n — 1} such that «; < ; (of course, the
case s = 0 is included). It remains an open question as to what properties (if any) the
numbers ¢; - which are well-defined anyway by the formulas (1.6),(1.7) - have in
general and what happens in particular when ¢; = ¢j41 = - - - = ciyp, for some i and
p > 0. One obvious remark is that if the stronger condition

( min f=) i1 = = iy = =Uiyp (= max f)
sVt SV
holds, then f is constant on SNJe;, ... ey,], and so there is a p-dimensional con-

tinuum of critical points of f5 corresponding to this constant value.

REMARK 2. Returning to Theorem 1 - whose assumptions imply a priori that
the ¢;’s are all distinct - an independent open problem is to see how many critical
points of fg correspond to the same critical value ¢;. In analogy with the case in
which f(x) :%(Ax, x) is the quadratic form associated with a symmetric n x n
matrix 4, or more generally the case in which fis an even function, one expects that
there are at least two.

REMARK 3. In case fis even, fs possesses at least n distinct (pairs of) critical
points. They are associated with the critical values ¢; = igf max f where

= {F C §: F compact, symmetric, y(F) > i},

y(F) denoting the genus of F; for this matter, see in particular Rabinowitz [7, 8, 9]
and Szulkin [11]. (In the original work of Lusternik and Schnirelmann [4], the ¢;’s
were defined via the category of sets in the projective space obtained by identifying
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antipodal points of S; that the two approaches are equivalent was proved in [7].) The
estimate B <¢; <oa;(i=1,...,n—1) mentioned in the Introduction follows
easily from the properties of y; in particular the following two:

(1) y(SN V) =iif Vis a subspace of dimension i;
(ii) if F € F; and dimW < i, then FN W # §.

REMARK 4. A more general version of Theorem 2 is given in [1] (see also [2]),
where it is used to prove the existence of normed eigenfunctions for a class of semi-
linear elliptic problems. It was suggested by a result of Krasnoselskii ([3, Chapter 6,
Theorem 2.2]) and provides a sort of constrained version of Rabinowitz’ Saddle
Point Theorem ([9, Theorem 4.6]; see also [5, Theorem 4.7]).

REMARK 5. The above results hold unaltered if S is replaced by
rS ={x € R": ||x|| = r} or more generally by a C' submanifold of R" that is sphere-
like; i.e. diffecomorphic to S via the radial projection p(x) = x/| x| (x # 0).

One disadvantage of Theorem 1 is that it relates the existence of critical points
of f to its behaviour along a given orthonormal system. Sometimes however, the
choice of this system is transparent from the problem itself, as shown by the fol-
lowing example.

PPROPOSITION 1. Let A = (a;) be a symmetric n x n matrix having n simple
eigenvalues 1) < A3 < ... < A%, and let
iy 0 0. ;
d=min{A; , — 21/ :1 <i<n-—1}.

Also, let Fe C(R",R") be a gradient vector field such that F(0) =0 and, for some

p.q€R,
F N
U9 o< =, (H)
(x, x)
If g — p < d, then A+ F has n distinct norm-one eigenvectors; i.e. n points x; € S such
that
Ax; 4+ F(x;) = Aix;.
Proof. We use Theorem 1, taking as orthonormal basis the normalized eigen-
vectors e¢; of 4, Ae; = A?ei. Then fori=1,...,n we have
A = max (Ax, = min (4x, x). 1.8
; xg}%( X, X) _in, (Ax, x) (1.8)

Set fo(x) = %(Ax, x) and f(x) = fo(x) + h(x), where
1
h(x) = / (F(tx), x) dt (1.9)
0

is the primitive of F vanishing at x = 0; thus Vf(x) = Ax + F(x), for x € R". Then
using (1.9) and (H), it follows easily that for x € S we have
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p X q. .
2 2

Given 1 <i<n-—1, (1.8) and (1.10) imply that

fx) =i +4q), xeSnV;
f(x) =30, +p). xeSNVE

0

and the result follows, since by assumption A? +¢ < 17, + p. It also follows from

Theorem 1 that
MAp<ea=fx)<A+q (A <i<n). (1.11)

REFERENCES

1. R. Chiappinelli, Bounds on eigenvalues of nonlinearly perturbed compact selfadjoint
operators, Panamer. Math. J. 8 (1998), No. 2, 1-29.

2. R. Chiappinelli, Constrained critical points and eigenvalue approximation for semi-
linear elliptic operators, Forum Math. 11 (1999), 459-481.

3. M. A. Krasnoselskii, Topological methods in the theory of nonlinear integral equations
(Pergamon Press, 1964).

4. L. Lusternik and L. Schnirelmann, Méthodes topologiques dans les problemes var-
iationnels (Hermann, 1934).

5. J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems (Springer-
Verlag, 1989).

6. R. Palais, Critical point theory and the minimax principle, in Global Analysis, Proc.
Symp. Pure Math. Vol. 15 (Amer. Math. Soc., 1970), 185-212.

7. P. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mountain J.
Math. 3 (1973), 161-202.

8. P. Rabinowitz, Variational methods for nonlinear eigenvalue problems, in Eigenva-
lues of nonlinear problems (G. Prodi, ed.) (Cremonese, 1974), 141-195.

9. P. Rabinowitz, Minimax methods in critical point theory with applications to differ-
ential equations, CBMS Regional Conference Series Math. Vol. 65 (Amer. Math. Soc., 1986).

10. J. T. Schwartz, Generalizing the Lusternik-Schnirelmann theory of critical points,
Comm. Pure Appl. Math. 17 (1964), 307-315.

11. A. Szulkin, Critical point theory of Lusternik-Schnirelmann type and applications to
partial differential equations, in Minimax results of Lusternik-Schnirelmann type and applica-
tions, Proc. NATO ASI (Les Presses de 1’Université de Montréal, 1989), 35-96.

https://doi.org/10.1017/5S0017089500020152 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500020152

