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Abstract

Indices of cumulative risk (CR) have long been used in developmental research to encode the number of risk factors a child or adolescent
experiences that may impede optimal developmental outcomes. Initial contributions concentrated on indices of cumulative environmental
risk; more recently, indices of cumulative genetic risk have been employed. In this article, regression analytic methods are proposed for inter-
rogating strongly the validity of risk indices by testing optimality of compositing weights, enabling more informative modeling of effects of CR
indices. Reanalyses of data from two studies are reported. One study involved 10 environmental risk factors predicting Verbal IQ in 215 four-
year-old children. The second study included an index of genetic CR in a G×E interaction investigation of 281 target participants assessed at
age 15 years and then again at age 31 years for observed hostility during videotaped interactions with close family relations. Principles to guide
evaluation of results of statistical modeling are presented, and implications of results for research and theory are discussed. The ultimate goals
of this paper are to develop stronger tests of conjectures involving CR indices and to promote methods for improving replicability of results
across studies.
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The notion of risks to optimal developmental outcomes has been a
topic of considerable interest in the field of developmental psycho-
pathology for over half a century, if not longer. Head Start pro-
grams were begun in the 1960s in an attempt to remediate
environmental shortcomings for children from disadvantaged
backgrounds, under the assumption that various environmental
factors that presage poorer educational outcomes might be miti-
gated through the development of early childhood programs of
instruction and enrichment (Love, Chazan-Cohen, & Raikes, 2007;
Beatty & Zigler, 2012). Several years earlier, the Collaborative
Perinatal Project (CPP) was initiated in 1958 under the assumption
that a continuum of reproductive casualty may account for many
poor birth and early child outcomes, and over 50,000 women
and their offspring were eventually recruited into the CPP
(Broman, Nichols, & Kennedy, 1975; Broman, 1987). The primary
focus of the CPP was risk factors for outcomes such as cerebral
palsy, intellectual disability, and low general intellectual function-
ing. The host of risk factors invoked in reproductive casualty
involved many presumptive harmful factors spanning the prenatal
(e.g., poor prenatal nutrition), perinatal (e.g., anoxia, improper use
of forceps), and postnatal periods (e.g., poor infant nutrition,
low SES).

Extending the scope of risk factors, Sameroff and Chandler
(1975) coined the term continuum of caretaking casualty,

hypothesizing that a large number of environmental risk factors
are hazards to optimal child development. The theoretical model
developed by Sameroff and Chandler involved transactions
among the child, the parents, and the environment within which
the family was living. Sameroff and Chandler emphasized that,
although many reproductive risks certainly should be consid-
ered, no adequate accounting of intellectual or other develop-
mental deficits has stemmed directly only from reproductive
risks. In the vast majority of cases, however, an array of caretak-
ing risks appear to be required for an adequate representation of
the course of impaired development during infancy, childhood,
and adolescence. These caretaking risk factors characterize the
environment within which the child is developing, leading to
indexes often identified as indices of environmental cumulative
risk (CR).

More recently, research on gene and gene X environment
(G×E) interaction effects on behavior has increased exponentially
as a large number of single nucleotide polymorphisms (SNPs) can
be obtained from the human genome. Each SNP can be scored in a
discrete fashion, indicating the number of particular alleles present
for that SNP.Many studies utilizing SNPs as the basis for G×E test-
ing have conducted analyses on only one or another of select target
SNPs. However, building on successful use of environmental risk
indices, some researchers have promoted the use of summative
scores across multiple SNPs, which yield scores on an index of
genetic CR (e.g., Belsky & Beaver, 2011). More complicated analy-
ses use results from genome-wide association studies (GWASs) to
supply weights when forming a genome-wide index of genetic CR
(Belsky & Harden, 2019).
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The idea of formulating a risk index was based on observations
by clinically oriented researchers. For example, Rutter (1981)
noted that children seem relatively resilient to experiencing one
or a small number of risk factors. But, as the number of risk factors
to which a child is exposed increases, the likelihood of negative
developmental outcomes increases. In one of the earliest studies
using a risk index for caretaking casualty, Sameroff, Seifer,
Barocas, Zax, and Greenspan (1987) identified 10 risk factors
for low intelligence, scored each risk factor in dichotomous fashion
(0 = low risk, 1 = high risk), and summed the risk factors into a
cumulative index that could range from 0 to 10, representing the
number of risks a child faced. They then contrasted alternate
regression models, finding that the use of all 10 risk factors
allowed stronger prediction of 4-year-old children’s Verbal
IQ than any single predictor. Given the success of the
Sameroff et al. research, the use of risk indices has burgeoned
over the past three decades.

A key issue in use of a CR index is the optimal weighting of the
components of the index. CR indices have been constructed in
many ways across studies. Evans, Li, andWhipple (2013) provided
a comprehensive review of theory, methodological concerns, and
research findings using CR indices. The current paper builds on
the work of Sameroff et al. (1987), Evans et al. (2013), and others
to consider in more detail several issues of importance in the con-
struction and evaluation of CR indices. Specifically, statistical
methods are described for interrogating, or testing severely, the
validity of CR indices as typically formed. Mayo (2018) recently
advocated severe testing of theoretical conjectures, arguing that
severe testing can uncover problems that deserve attention, prob-
lems that might be masked with less severe testing. Furthermore, if
conjectures are tested severely and survive these tests, firmer
inductive support for the conjectures accrues. In a related tone,
Rodgers (2019) argued that data might profitably be conceptual-
ized as valuable capital and that an investigator spends some
capital when estimating each parameter in a statistical model. In
effect, one invests capital in the process of estimating each param-
eter, and a researcher should be vigilant to assess the return on
investment in terms of the quality of the resulting model, including
its estimates and their associated SEs.

The current manuscript first presents issues involved in form-
ing a CR risk from multiple indicators, beginning with the scaling
of indicators of risk. Then, methods are described for testing
severely or interrogating a risk index, which involves crucial tests
of how CR index composites are optimally formed. Following this,
two empirical examples are described, one interrogating an index
of environmental CR, and the second an index of genetic CR.
Discussion revolves around recommendations for stronger testing
of theoretical conjectures. If CR indices are tested more severely
and informatively and pass these tests, this may also promote suc-
cessful replication efforts across studies, addressing current press-
ing questions about the replicability of research in many areas of
psychology.

Forming an index of cumulative risk

Indices of CR are formed from multiple indicators, which can be
derived in multiple forms and from multiple domains. All aspects
of the formation of CR indices and their use in analytic models
should be scrutinized to ensure that researchers benefit most from
their use.

Discrete versus continuous indicators

One of the first matters confronting researchers using CR indica-
tors is the scaling of the indicators included in the index. In perhaps
the first study to use a CR index, Sameroff et al. (1987) employed
discrete indicators, each scored in dichotomous fashion. Later
researchers have attempted to use indicators scaled in more con-
tinuous or quantitative fashion. Each method has strengths, and
each has weaknesses, all worthy of critical appraisal.

Discrete or categorical indicators
If Shakespeare had been a practicing scientist, he might have
observed that “Some variables are born discrete, some achieve
discreteness, and some have discreteness thrust upon ‘em”
(cf. Staunton, 1860/1983, p. 1003; Twelfth Night, Act II, Scene
5). A variable might be considered “born discrete” if its conception,
measurement, and essential nature were discrete or categorical in
form. One instance of such a variable is treatment assignment in an
experiment. In a simple experiment, participants are assigned ran-
domly to a treatment or a control condition, and assignment to
condition is recorded as a discrete score (e.g., 0= control, 1= treat-
ment), with numeric assignment indicating group membership,
not “more or less” of anything. Gene SNPs, mentioned earlier,
are also candidate variables that can be considered to be “born dis-
crete.” For example, the 5HTTLPR SNP has alleles characterized as
either short (s) or long (l). Because a person inherits one of these
alleles from the mother and one from the father, an individual can
be characterized as ss, sl, or ll. Because the s allele has been found to
confer more environmental susceptibility, the 5HTTLPR SNP is
often scored discretely as 0, 1, or 2, indicating the number of
s alleles at that particular location on the genome.

Ethnic group status, a component of many CR indices, is
another example of a variable that might be considered “born dis-
crete” (or naturally discrete), at least at first glance. Families in the
Sameroff et al. (1987) study were identified as being of White,
Black, or Puerto Rican ethnicity. Participants from the latter two
ethnic groups were identified as at relatively higher risk relative
to White participants, given discrimination and segregation that
often accompany being a member of a disadvantaged or underre-
presented group. Hence, a dichotomous score of 0 = White, 1 =
non-White, was used as one component of the CR index.
Whether a discrete classification into mutually exclusive ethnic
groups is currently optimal or will be optimal in the future, given
the mixed ethnicity of many individuals, is beyond the scope of the
present paper to consider in detail, but will gain in importance in
the future.

As for variables that “achieve discreteness,” father absence from
the home may be one example. Suppose a researcher desired an
index of father involvement in a child’s life, with lower levels of
paternal involvement typically associated with increased risk for
negative child outcomes. If father involvement were measured
as, for example, hours per day the father interacts with the child,
the researcher could easily leave the variable scored in quantitative
form. However, presence (= 0) or absence (= 1) of the father or
father figure in the home may be simpler to measure and is an
obvious, if imprecise proxy for low levels of father involvement
with the child and, thus, greater risk of negative developmental
outcomes.

Turning to variables that have discreteness imposed on them,
several variables used by Sameroff et al. (1987) are of this form.
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For example, mothers in the Sameroff et al. study completed three
anxiety scales. Scores on these scales were standardized and
summed, and the high-risk group was identified as the 25% of
mothers with the highest anxiety scores. Clearly, a mother with
a high level of anxiety almost certainly provides a less optimal care-
giving environment for her child than a mother with a low level of
anxiety. Scored as 0 (= low risk) vs. 1 (= high risk) does result in a
variable for which a higher score conveys higher risk, although
whether dichotomizing the quantitative form of the variable
deserves critical appraisal.

Continuous or quantitative indicators
Continuous indicators are ones that can take on a relatively large
number of values with no “holes” in the number line. Height is one
example. Height is typicallymeasured discretely in a practical sense
(e.g., to the nearest quarter inch), even though – in theory – all pos-
sible values between any two heights are admissible. Quantitative
indicators are variables for which a higher score indicates more (or
less) of a characteristic. If a scale has 10 items each answered on a 1-
to-5 scale, the resulting sum score is, strictly, not continuous, as
only integer values are allowed. Still, such a variable is a quantita-
tive variable, with a higher score indicating more of what is
assessed than a lower score.

Psychometric experts, including MacCallum, Zhang, Preacher,
and Rucker (2002, Maxwell and Delaney (1993), and Preacher,
Rucker, MacCallum and Nicewander (2005), have long decried
dichotomizing continuous or quantitative scores. In general, it is
unwise to dichotomize a quantitative indicator of risk, rather than
leaving it in its quantitative form. Given limited space and the fact
that risk indices analyzed below are discrete indicators, discussion
of how to deal with quantitative indicators is beyond the scope of
this paper.

Problems of sample specificity
Currently, replicability of results across studies – more directly,
lack of replicability of results across studies – is an issue of immense
importance (Ioannidis, 2005; Simmons, Nelson, & Simonsohn,
2011). Efforts therefore should be made to ensure that comparable
measurement operations and decisions are made across studies so
that researchers can determine clearly whether research findings
have been replicated. Evans et al. (2013) noted that standardizing
scores to M= 0, SD = 1 is sample-specific and poses challenges
when making comparisons across studies. This approach does
placemultiple variables in a given sample on the same scale, so they
can be more reasonably composited into a risk index. But, if a par-
ticular sample were recruited from a high-risk subpopulation, a
standardized mean of zero on X for that sample may have little
comparability to a standardized mean of zero on X for a more rep-
resentative sample from the population. Thus, converting to stand-
ardized scores within samples may destroy the ability to make
informed comparisons across samples or studies.

The same criticism applies to the dichotomizing of scores, par-
ticularly given concerns about whether dichotomizing can be rec-
ommended. Sameroff et al. (1987) dichotomized several risk
dimensions so the 25% of the sample with the most “risky” scores
were given a score of 1, and the remainder of the sample was given a
score of 0. But, the top 25% of a sample from a very high-risk sub-
population may represent a very different level of risk than the top
25% of a representative sample from the population. If researchers
want to replicate results across studies, comparable measurement
operations must be implemented so that risk in one sample can be
compared informatively to risk in other samples.

Interrogating or testing severely a risk index

Testing hypotheses versus interrogating a model

The standard application of hypothesis testing in psychology, using
a null hypothesis statistical test (NHST) approach, is to state a null
hypothesis, H0, and amutually exclusive and exhaustive alternative
hypothesis, HA. For example, the null hypothesis might propose
that all population regression coefficients in a regression equation
are simultaneously zero, and the alternative hypothesis would be
that at least one population regression coefficient is not zero.
Data are collected, and a regression model is estimated, allowing
a test of the null hypothesis. If the null hypothesis is rejected,
the alternative hypothesis can be accepted, resulting in a confirma-
tion of the hypothesis motivating the investigation. Hence, this
approach has a bias in favor of confirmation, and only the theoreti-
cally uninteresting null hypothesis is tested.

A contrasting approach has been called severe testing by Mayo
(2018), an approach positing that disconfirmation is the path for-
ward in science. This approach is consistent with the ideas of
Popper (1935/1959), Meehl (1990), and others that we should test
our predictions, not null hypotheses, and test them as strongly or
severely as possible. Under this approach, an investigator should
develop a theoretical model for phenomena in a domain and then,
after collecting data, test whether that model fits the data. When
testing model predictions, this testing should involve severe testing
of predictions or interrogating the fit of the model. If the model fits
the data adequately, themodel has survived a severe test and gained
inductive support. Or, if the model is rejected as having poor fit to
the data (i.e., model predictions are disconfirmed), something
valuable has been learned – the theory was unable to account
for the data, so requires modification to be in better accord with
observations.

As applied to the construction of a CR index, the standard
NHST approach might test whether a CR index formed as the
sum of several risk indicators was a better predictor of a negative
developmental outcome than was the single best indicator of risk.
The contrasting, severe testing approach would test as directly and
severely as possible whether equal weighting of risk indicators was
acceptable or should be rejected in favor of a more complex and
adequate form of weighting. If equal weighting cannot be rejected,
the “equal weights” hypothesis has been interrogated and passed a
severe test, supporting this simple weighting scheme.

Summing indicators into a CR: The importance of metric

Once indicators of risk are identified, a researcher is confronted
with the question of how to sum or combine multiple indicators
into an index of CR. Evans et al. (2013) summarized typical
approaches in the form of two options: First, if continuous risk
indices are available and are in different metrics, one can standard-
ize and sum the variables, although this makes sense only if risk
indicators are correlated. Second, if risk indicators are not highly
interrelated, researchers could dichotomize each indicator and
then sum these into a cumulative index of risk.

Differing with Evans et al. (2013), I contend that the degree of
correlation among risk indicators should play no role in decid-
ing how to transform and sum variables. The sum of a set of
indicators – quantitative or discrete, correlated or uncorrelated –
can have substantial reliability in terms of stability over time
and validity even if the sum has poor internal consistency
(or homogeneity) reliability at a given point in time (Revelle &
Condon, 2019).
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The more important concern is the comparability of the metric
of indicators. If one intends to sum a set of indicators, indicators
must be on the same metric or approximately the same metric so
indicators will have comparable contribution to the sum. The core
criterion to satisfy for two measures to be considered to be on the
same metric is that a one-unit increase on one variable is compa-
rable or essentially identical to a one-unit increase on the other var-
iable. Standardizing each of a set of quantitative indicators to
M= 0, SD= 1 achieves a common metric across indicators, as a
one-unit increase on any variable standardized in this fashion is
a 1.0 SD increase. But, dichotomously scored variables, if scored
in “0 vs. 1” fashion, also fall on a comparable metric across indica-
tors, so the sum of such variables has ready interpretation. Once
indicators are on the same metric, summing is reasonable and is
often strongly recommended.

Indeed, summing a set of uncorrelated indicators can have
advantages, such as leading to greater simplicity in analyses when
predicting an outcome variable. Then, only a single predictor – the
summed index of CR – is used as the representation of risk, so only
a single regression weight for risk is estimated, rather than one
regression weight for each of the separate indicators. To reiterate,
the sum of a set of uncorrelated indicators may have substantial
reliability in an “over time,” stability sense, and considerable val-
idity, even if little internal consistency. So, regardless of the degree
of correlation among risk indicators, the sum of indicators may
have important benefits for analysis and interpretation.

To weight differentially or not: Interrogating a weighting
sccheme

Equal versus differential weighting of risk indicators when forming
a sum is a key issue. If multiple risk indicators are on the samemet-
ric, summing the indicators may serve a legitimate scientific pur-
pose regarding equal versus differential weighting of indicators,
regardless of their degree of intercorrelation. Consider an outcome
variable Y and two risk indicators,X1 andX2, which are assumed to
be on the same metric (e.g., standardized to have equal means and
equal variances, or both 0 – 1 dichotomies). A regression equation
could be written as:

Yi ¼ B0 þ B1Xi1 þ B2Xi2 þ Ei (1)

where Yi is the score of person i on the outcome variable, Xi1 and
Xi2 are scores of person i on the two risk indicators, respectively, B0
is the intercept, B1 and B2 are the raw score regression coefficients
for the two risk indicators, respectively, and Ei represents error in
predicting Y for person i. This equation would have a squared
multiple correlation, or R2, that indicates the proportion of vari-
ance in Y accounted for by the weighted predictors. [Note: to ease
presentation, the subscript i for person will be deleted from sub-
sequent equations, with no loss in generality.].

Regardless of the degree of correlation between the two risk
indicators, summing the two indicators would lead to the following
equation:

Y ¼ B0 þ BCðX1 þ X2Þ þ E� (2)

where BC represents the raw score regression weight constrained to
equality across the two risk indicators, E* represents the prediction
error in this equation, and other symbols were defined above.
Based on parameter nesting, Equation 2 is nested within Equa-
tion 1, as Equation 2 places an equality constraint on the two

regression coefficients in Equation 1. Given the nesting, one could
test the difference in explained variance for the two equations with
the typical F-ratio for nested regression models (cf. Cohen, Cohen,
West, & Aiken, 2003, p. 89), as:

F p1�p2,N�p1ð Þ ¼
R2
Eq1 � R2

Eq2

� �
=ðp1 � p2Þ

ð1� R2
Eq1Þ=ðN � p1Þ

(3)

where R2
Eq1 andR

2
Eq2 are squared multiple correlations under Equa-

tion 1 and Equation 2, respectively, p1 and p2 are the number of
regression slopes estimated in the two equations, respectively,
and N is sample size. The resulting F ratio has (p1 – p2) and
(N – p1) degrees of freedom and tests the hypothesis that the
two regression slopes in Equation 1 are equal. If the F ratio were
larger than the critical value at a pre-specified level (e.g., α = .05),
the hypothesis of equality of regression coefficients could be
rejected, and differential weighting of risk indicators is justified.
On the other hand, if the F ratio did not exceed the critical value,
the hypothesis of equality of regression coefficients cannot be
rejected, and equal weighting is appropriate.

Note that Equations 1 and 2 easily generalize to situations with
more than two risk indicators, but only if all indicators are on the
samemetric. If one had 10 risk indicators, an initial equation would
have 10 predictors X1throughX10 each with its own regression
weight, as:

Y ¼ B0 þ B1X1 þ B2X2 þ . . .þ B10X10 þ E (4)

where symbols were defined above, and Equation 2 would then
become:

Y ¼ B0 þ BCðX1 þ X2 þ . . .þ X10Þ þ E� (5)

where BC represents the raw score regression weight constrained to
equality across all 10 risk indices, and other symbols were defined
above. The proper adaptation of Equation 3 would then provide an
omnibus test of equality of the regression weights across all 10 risk
indicators, an F-ratio that, in this case, would have 9 and (N – 11)
degrees of freedom. If the resulting F ratio were nonsignificant, the
hypothesis that the regression weights were simultaneously equal
could not be rejected, justifying equal weighting of all 10 indicators
when forming a CR index. Of course, if the F ratio were significant,
the hypothesis of equality of regression weights would be reject-
able, and a more informed and complex form of weighting might
be considered. If equality of all regression weights were rejected,
theory or the pattern of weights when all were freely estimated
might offer options for more complex, but still restricted weighting
schemes.

In evaluating comparisons such as those outlined in
Equations 1 through 5, sample size and power to reject the hypoth-
esis of equality of regression weights must be considered. As sam-
ple size increases, power to reject the “equal weights” hypothesis
will increase. With extremely large sample size, an “equal weights”
hypothesis might be rejectable via statistical test, even if the
differences in the regression weights across predictors are trivial
in magnitude. Hence, some notion of practical significance of
the difference must also be weighed, whether of the magnitude
of the differences in the raw score regression weights or the differ-
ence in the R2 values for the equations. Conversely, small sample
size and resulting low power may lead to difficulty in rejecting the
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hypothesis of equality of regression weights even if these weights, in
truth, differ in the population, essentially committing a Type II error.
But, with small sample size, it may be more appropriate to proceed in
the presence of a possible Type II error rather than promote differen-
tial weighting that cannot be justified statistically.

Equality versus differential weighting of predictors in regres-
sion analysis has surfaced as an issue with regularity over time
(e.g., Wilks, 1938; Wainer, 1976; Dawes, 1979). Many have argued
that equal weights are expected to lead to little loss in predictive
accuracy relative to differential weights in many situations.
Regrettably, this literature is beset with conflicting claims, much
too voluminous to review here. In a different, though related vein,
experts recently have discussed the fungibility, or exchangeability, of
coefficients in regression (e.g., Waller, 2008) and structural equation
models (e.g., Lee, MacCallum, & Browne, 2018). These researchers
have cautioned against having too much faith in precise, optimal
regression weights. For example, in a regression equation with three
ormore predictors, if a small drop in explained variance is allowed, an
infinite number of different sets of regression weights all produce the
same R2, and many of these sets of regression weights may have little
similarity to the optimal least squares estimates in the equation that
maximizes R2. Thankfully, if equal weighting of predictors is justified,
the problem of fungible regression weights largely vanishes, as the
number of regression weight estimates is reduced and the flexibility
of the equation is curtailed.

In prior work on CR indices, equal weighting of risk indicators
has virtually always been utilized. Equal weights may not be opti-
mal in a least squares sense, but may be preferred on several
grounds, including parsimony, efficiency, and openness to replica-
tion in subsequent studies. However, the issue of equal versus dif-
ferential weighting of risk indicators should be interrogated or
subjected to severe test, as this may impact the relations between
a CR index and outcomes it should predict, so has a bearing on the
construct validity of the CR index.

Three guiding principles

When formulating and then interrogating a cumulative index
derived from a number of risk indicators, the weighting and sum-
ming of indicators should be guided by justifiable analytic princi-
ples. Three principles are here proposed.

Principle one: Do no harm overall
This principle represents the admonition that a model employing a
CR index formedwith equal weighting of risk indicators should not
lead to a substantial reduction inmodel fit relative to that explained
by a model with CR indicators having differential weights. A CR
index can function as direct (or main) effect or as a component
of an interaction when predicting a negative developmental outcome.
If amodelwith an equallyweightedCR index has fit similar to amodel
in which risk indicators have differential weights, no harm overall has
occurred. But, if amodelwith an equallyweightedCR index hasworse
fit than a model with differential weights for risk indicators, overall
harm has occurred, and the a priori equal weighting of indicators into
the CR index should be reconsidered and rejected.

Principle two: Do no harm in particular
Here, the concern is with each individual component of a CR
index. If risk indicators are equally weighted when forming an
index of CR, some method should be used to determine whether
the equal weighting has distorted the predictive effect of each risk
indicator. If one or more risk indicators are compromised by

the equal weighting, the formulation of the CR index should be
reconsidered.

Principle three: Do some good
As Evans et al. (2013) noted, the use of a CR index has a number of
beneficial effects, including simplicity and reduction of potential
multicollinearity if the components of the CR index had been used
as separate, correlated predictors. Certainly, the use of a CR index
will reduce the number of estimated regression slopes – a notable
simplification – and may lead to improvements in other aspects of
the equation, such as smaller standard errors of parameter esti-
mates. If all or most of these improvements should occur, consid-
erable good would have been bought by the use of the CR index.

Example 1: Interrogating an environmental risk index

Background

The study by Sameroff et al. (1987) was one of the first, if not the
first, to use a CR index of environment risk for low intelligence.
The sample consisted of 215 mothers and children, and child
WPPSI Verbal IQ at age 4 years was the outcome variable. The
10 dichotomously scored risk factors are shown in Table 1.
Certain variables (e.g., ethnic status, family support) were scored
in direct and unambiguous fashion, and others (e.g., occupation,
education) were dichotomized at commonly used points on their
respective continua. For the remaining six variables, Sameroff et al.
identified cut-scores that would leave about 25% of the sample with
the highest risk receiving a risk score of 1, with the remaining
75% being assigned a risk score of 0. Additional details about each
of the predictors were provided by Sameroff et al.

In Table 2, correlations among the 10 risk factors and the
WPPSI Verbal IQ outcome variable are shown, along with esti-
mated means and SDs of the variables (see Supplementary
Material for how information from Sameroff et al., 1987, was used
to develop Table 2). Inspection of Table 2 reveals that all 10 risk
factors have negative correlations with WPPSI Verbal IQ, consis-
tent with mean differences between low-risk and high-risk groups
reported by Sameroff et al. The correlations in Table 2 also exhibit a
strong positive manifold of correlations, with 44 of the 45 correla-
tions among risk factors of positive valence. The single exception
was the small negative correlation, r = −.03, between maternal
mental health and ethnic status.

The risk factors shown in Table 1 are a varied amalgam of risk
factors. The first four risk factors in Table 1 will hereinafter be
called the Classic 4,1 given substantial research published over
the past half century or longer on relations of these variables to
child intelligence. From early work by Terman (1916) and
Brigham (1923), down through work by Broman (1987; Broman
et al., 1975), Jensen (1998) and Herrnstein and Murray (1994),
and recently Johnson, Brett, and Deary (2010), researchers have
studied relations of SES (occupation), education, and ethnicity
with intelligence. The fourth indicator in the Classic 4 set –mater-
nal interaction – is also based on substantial work. Yarrow and
associates (e.g., Messer, Rachford, McCarthy, & Yarrow, 1987;
Yarrow, MacTurk, Vietze, McCarthy, Klein, & McQuiston,
1984; Yarrow, Rubenstein, & Pedersen, 1975) reported strong

1I used the terminology of “classical versus modern” to provide shorthand labels for sets
of predictors. “Classic 4” refers to the four risk factors featured in countless publications
and theorizing over the past half century or more when investigating relations to child
intelligence. “Modern 6” refers to the remaining six risk factors, which have received more
recent attention as risk factors for low intelligence, but still decidedly less systematic atten-
tion than the Classic 4.
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relations between parental stimulation and interaction during a
child’s infancy and young child problem-solving. Other work by
Bradley and Caldwell and colleagues (Bradley & Caldwell, 1980;
Bradley, Caldwell, & Elardo, 1977; Elardo, Bradley, & Caldwell,
1975) found strong relations (e.g., correlations ranging from .36
to .66) between observed mother-child interaction during the
child’s infancy and child IQ at 3 years.

In contrast to the Classic 4, the remaining six risk variables, here
referred to as the Modern 6, have received much less research
attention with regard to predicting children’s intelligence.
Certainly, father absence, high maternal anxiety, high numbers
of difficult life events, and the remaining indicators likely confer
risk for poorer development in general. But, these six indicators
have received far less consistent attention as predictors of low child
IQ as have the first four risk indicators.

Regression analyses

Because the 215 observations had complete data on all variables,
the summary data in Table 2 can be used to perform regression
analyses. For all multiple regression analyses reported here, I used
ordinary least squares (OLS) estimation in the PROC REG pro-
gram in SAS (all analysis scripts are contained in Supplementary
Material). To evaluate model fit, I used the R2 for a model and
differences in R2 for competing models, the F-test for differences
in fit of nested models, the adjusted R2 (adj-R2, which has a penalty
for model complexity), and the Schwarz Bayesian Information
Criterion (BIC).2 BIC values are not on a standardized metric,
but lower values indicate better model fit.

Replicating results reported by Sameroff et al.
Sameroff et al. (1987) reported that the single best predictor
of Child Verbal IQ was occupation, R2 = .35. They noted that
including all 10 risk factors led to a much higher level of explained
variance, R2 = .51. Unfortunately, Sameroff et al. did not present
any additional details, such as parameter estimates, and their SEs,

for this 10-predictor model, so it is not possible to evaluate their
reported results further.

I first wanted to replicate results reported by Sameroff et al.
(1987) to verify that data in Table 2 were sufficient to reproduce
their results. Model 1, shown in Table 3, used occupation as the
sole predictor of child Verbal IQ and led to an R2 = .348.
Adding the nine remaining risk factors led to Model 2 in
Table 3, which had R2 = .519. Both of these models replicated
closely R2 values reported by Sameroff et al. Note that, in Model
2, only the Classic 4 predictors had regression weights significant
at p < .05, and none of the Modern 6 met this criterion.

Interrogating weightings of all 10 indicators
Two a priori restricted models for the 10 risk indicators were can-
didates for interrogation or severe testing. The first model was one
in which the regression weights for all 10 risk factors are con-
strained to equality. If one intended to employ an equally weighted
sum of the 10 risk factors, as Sameroff et al. (1987) did later in their
article, the resulting composite used as predictor in a regression
model would lead to results that would be identical to a model with
10 predictors, but with regression weights for all 10 predictors con-
strained to equality. Given multicollinearity among risk indicators,
constraining all regression weights to equality could have little
effect on model fit, but deserves testing. The PROC REG program
has an option for constraining regression weights; if constraints are
imposed, tests of constraints or restrictions are also supplied.3

Constraining all 10 regression weights to equality led to Model
3. Because 10 regression weights were constrained to equality, only
a single regression weight was estimated, so 9 constraints or restric-
tions on weights were imposed. Results are shown in Table 3,
which shows that Model 3 had an R2 = .442, a noticeable drop
in explained variance relative to Model 2, ΔR2 = − .077, that
was significant, F(9, 204)= 3.66, p = .0003. Some good was done,
as the constrained estimate of the raw score regression coefficient,
B = − 4.65, SE= 0.36, was accompanied by a much smaller stan-
dard error than was obtained by predictors in Model 2, but the
overall drop in fit was troubling. Moreover, 8 of the 9 tests of con-
straints (see Restrictions 1 through 9 in Table 3) led to significant t-
ratios (p< .05), suggesting that an equality constraint on regression
coefficients across all 10 predictors led to too great a restriction on
many of the regression coefficients. The upshot was that a model
with all 10 regression weights constrained to equality, when tested
severely, was rejected.

Given rejection of the first a priori model, the second a priori
model to be interrogated was one in which the Classic 4 risk factors
had regression weights constrained to equality, the Modern 6 risk
factors had weights constrained to equality, but the weights for the
Classic 4 and Modern 6 risk factors could differ. This model is
termed Model 4, which had an R2 = .505. Model 4 is nested within
Model 2 because it makes 8 fewer estimates, and the comparison
with Model 2 represents a severe test of the highly restrictedModel
4. For Model 4, the drop in explained variance relative to Model 2,
ΔR2 = − .014, was very small in magnitude and not statistically
significant, F(8, 204)= 0.74, p = .66. Moreover, as shown in
Table 3, not one of the 8 constraint tests inModel 4 was statistically

Table 1. Ten Risk Factors Used by Sameroff et al. (1987)

Risk Status

Risk Variable Low Risk (= 0) High Risk (= 1)

Occupation Skilled or higher Semiskilled or lower

Education High school graduate High school non-graduate

Ethnic status White Non-White

Interaction 75% most spontaneous 25% least spontaneous

Mental health 0 – 1 contact 2 or more contacts

Family size 1 – 3 children 4 or more children

Life events 75% with fewest 25% with most

Perspectives 75% least controlling 25% most controlling

Family support Father present Father absent

Anxiety 75% least anxious 25% most anxious

Note: Tabled material is adapted from Table 2 of Sameroff et al. with minor modification.

2The PROC REG procedure in SAS yields two different Bayesian information criteria.
One is labeled BIC and is the Sawa Bayesian information criterion; the other is labeled SBC
and is the Schwarz Bayesian information criterion. To maintain consistency of reference
with structural modeling results, I report the SBC values under the more common BIC
label.

3When restrictions on parameter estimates are invoked, the PROC REG procedure in
SAS introduces a Lagrangian parameter for each restriction. The parameter estimate and
standard error for each restriction are not on scales comparable to those for the intercept
and constrained regression coefficients and their SEs. However, the point estimate for a
restriction, when divided by its SE, is reported as a t-statistic, with probability value calcu-
lated using the beta distribution. See SAS 9.4 documentation for additional details.
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significant, supporting the contention that this pattern of con-
straints did not compromise any single regression weight estimate.
The adjusted R2, adj-R2 = .500, for Model 4 was the highest
adjusted R2 for any of the four models, attesting to the efficiency
of Model 4 and its estimates. In addition, the BIC for Model 4
was lower than comparable BIC values for the first three models,
implyingModel 4 was the optimal model for the data. The superior
fit of Model 4 relative to the more highly parameterized Model 2
represents superior return on investment in the efficient estimation
of parameters, in the terms outlined by Rodgers (2019).

The regression coefficients and their SEs for Model 4 are shown
in Table 3. The first four risk indicators had rather large coeffi-
cients, B = − 8.60, SE= 0.83, p < .0001, and the remaining six risk
indicators had coefficients about one-sixth as large, B = − 1.43,
SE= 0.71, p= .044, that just met the α= .05 criterion. So, all regres-
sion weights inModel 4 were statistically significant. Consider next
the comparison of Models 3 and 4. In Model 4, the Classic 4 and
Modern 6 risk indicators had different constrained estimates,
whereas in Model 3 these estimates were constrained equal.
Because the latter equality constraint led to a rather large and sig-
nificant drop in fit, F(1, 212)= 27.21, p < .0001, this comparison
supports the conclusion that the coefficients for Classic 4 and
Modern 6 risk indicators in Model 4 differed significantly at
p < .0001.

Comparisons among the four regression models satisfy the
three principles set forth earlier. First, Model 4 did no harm overall,
as it led to a small and nonsignificant drop inR2 relative to themost
highly parameterized model, Model 2. Second, Model 4 did no
harm in particular, because not one of the tests of parameter
restrictions in Model 4 was significant. Thus, the constraints did
not affect the ability of any one of the predictors to contribute
to prediction of the outcome variable. Third, Model 4 did some
good, as the SEs of parameter estimates were much reduced from
the values estimated under Model 2, and all regression coefficients
were statistically significant.

Structural equation modeling

I conducted comparable analyses to those reported in Table 3 using
structural modeling software (SEM) programs Mplus (Muthén &
Muthén, 1998-2019) and lavaan (Rosseel, 2012) in R. Essentially
identical results were obtained; given limitations of space, the full
set of analysis scripts and descriptions of SEM results were placed
in Supplementary Material.

Discussion

The results of re-analyses of the Sameroff et al. (1987) data have
two major implications, one more methodological and the other
more substantive. The first, more methodological implication is
that a single risk index created as the equally weighted sum of
all risk factors may not be optimal for all domains of negative
developmental outcome. That is, more differentiated summative
indices of CR may have substantial analytic benefits. If researchers
were to form the two separate unit-weighted CR indices suggested
by the re-analysis, they could evaluate whether the same differen-
tial pattern of relations with child intelligence held in other sam-
ples. Many additional analytic options readily come to mind. For
example, one could form a product of the two indices, representing
an interaction of the Classic 4 and the Modern 6, to see if the effect
of one of the CR indices varied as a function of the other. Thus, the
effect of the CR index with larger predictive influence might be
moderated by the number of risks to which the child was exposed
comprised by the other CR index (e.g., father absence, high mater-
nal anxiety, etc.).

The second, more substantive implication is that division into
more than a single CR index might allow a clearer interpretation of
results in the context of prior research. The re-analyses of Sameroff
et al. (1987) data suggested the presence of two sets of risk factors,
which I called the Classic 4 and Modern 6, for predicting child IQ.
Importantly, the “Classic 4 vs. Modern 6” contrast of the 10 risk
indicators may hold only for predicting child IQ or other forms

Table 2. Correlations and Descriptive Statistics for Child Verbal IQ and 10 Risk Variables from Sameroff et al. (1987)

Variable

Variable 1. VIQ 2. Occ 3. Educ 4. Eth 5. Inter. 6. Ment 7. Fam 8. Life. 9. Pers 10. Sup 11. Anx

1. WPPSI VIQ 1.00

2. Occupation −.59 1.00

3. Education −.56 .62 1.00

4. Ethnic −.51 .53 .49 1.00

5. Interaction −.39 .22 .21 .15 1.00

6. Mental health −.16 .25 .28 −.03 .17 1.00

7. Family size −.36 .31 .39 .25 .34 .26 1.00

8. Life events −.26 .21 .22 .04 .17 .25 .25 1.00

9. Perspectives −.50 .53 .54 .57 .17 .09 .34 .22 1.00

10. Fam. support −.30 .33 .30 .38 .14 .19 .19 .08 .18 1.00

11. Anxiety −.24 .32 .24 .11 .14 .49 .15 .28 .13 .23 1.00

Mean 102.0 .20 .40 .39 .25 .40 .18 .25 .25 .25 .25

SD 18.0 .400 .490 .488 .433 .490 .384 .433 .433 .433 .433

Note: N= 215. The correlations in the table above have been re-arranged from those reported by Sameroff et al. (1987). As explained in the Appendix, three risk factor variables were reverse
scored, and the correlation between WPPSI Verbal IQ and Occupation of r = −.59 as reported in text of the Sameroff et al. article was used, replacing the r = −.58 in their Table 3.
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Table 3. Alternative Regression Models for the Sameroff et al. (1987) Data

Model 1 Model 2

Variable df B (SE) ta df B (SE) ta

Intercept 1 107.31 (1.11) 96.57 1 113.98 (1.44) 79.14

Occupation 1 − 26.55 (2.49) −10.66 1 − 10.82 (3.12) −3.46

Education 1 − 6.92 (2.52) −2.74

Ethnic 1 − 6.17 (2.52) −2.45

Interaction 1 − 9.38 (2.18) −4.31

Mental health 1 2.05 (2.20) 0.93

Family size 1 − 1.82 (2.67) −0.68

Life Events 1 − 3.78 (2.21) −1.71

Perspectives 1 − 4.02 (2.77) −1.45

Support 1 − 1.57 (2.28) −0.69

Anxiety 1 − 1.77 (2.43) −0.73

Restriction 1

Restriction 2

Restriction 3

Restriction 4

Restriction 5

Restriction 6

Restriction 7

Restriction 8

Restriction 9

R2 .348 .519

Adjusted R2 .345 .496

F(ν1,ν2) b 113.74 (1, 213) 22.03 (10, 204)

BIC c 1160.61 1143.49

Model 3 Model 4

Variable df B (SE) ta df B (SE) ta

Intercept 1 115.12 (1.37) 84.22 1 114.91 (1.29) 89.04

Occupation 1 − 4.65 (0.36) − 12.98 1 − 8.60 (0.83) − 10.38

Education 1 − 4.65 (0.36) − 12.98 1 − 8.60 (0.83) − 10.38

Ethnic 1 − 4.65 (0.36) − 12.98 1 − 8.60 (0.83) − 10.38

Interaction 1 − 4.65 (0.36) − 12.98 1 − 8.60 (0.83) − 10.38

Mental health 1 − 4.65 (0.36) − 12.98 1 − 1.43 (0.71) − 2.02

Family size 1 − 4.65 (0.36) − 12.98 1 − 1.43 (0.71) − 2.02

Life Events 1 − 4.65 (0.36) − 12.98 1 − 1.43 (0.71) − 2.02

Perspectives 1 − 4.65 (0.36) − 12.98 1 − 1.43 (0.71) − 2.02

Support 1 − 4.65 (0.36) − 12.98 1 − 1.43 (0.71) − 2.02

Anxiety 1 − 4.65 (0.36) − 12.98 1 − 1.43 (0.71) − 2.02

Restriction 1 − 1 − 151.9 (53.1) − 2.86 − 1 − 27.68 (44.1) − 0.63

Restriction 2 − 1 − 272.5 (89.4) − 3.05 − 1 4.93 (65.4) 0.08

Restriction 3 − 1 − 472.6 (125.4) − 3.77 − 1 31.50 (68.4) 0.46

Restriction 4 − 1 − 614.8 (124.8) − 4.92 − 1 119.16 (64.9) 1.84

Restriction 5 − 1 − 268.7 (104.5) − 2.57 − 1 106.50 (77.8) 1.37

Restriction 6 − 1 − 227.1 (106.8) − 2.13 − 1 19.03 (81.8) 0.23

Restriction 7 − 1 − 149.9 (93.2) − 1.60 − 1 − 44.51 (83.7) − 0.53

(Continued)
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of ability, such as achievement test scores or school grade point
average. Developmentalists study a very broad array of consequen-
tial outcomes, including child mental health, conduct disorder
problems, peer relations, attachment, and so forth.When research-
ing these other domains of behavior, theModern 6might have pre-
dictive power that is equal to or even substantially stronger than
the predictive power of the Classic 4. The relative predictive power
of the two separate indices of CR across different domains of child
and adolescent behavior might lead to more productive insights
into relations between risk factors and child development than
forcing all indicators into a single index that offers less flexibility
in modeling.

Example 2: Interrogating a genetic risk index

Background

The second example is fromMasarik et al. (2014), which used a CR
index of genetic risk across five SNPs. Based on prior research
investigating SNPs for environmental susceptibility, Masarik
et al. designated the alleles as conferring susceptibility: (a) the short
(s) allele of the 5-HTTLPR SNP in 5HTT; (b) the A1 allele of the
Taq1A polymorphism in ANKK1 (often called DRD2 in prior
work); (c) the 7R allele of exon-3 VNTR inDRD4; (d) the 10R allele
of the 5’ VNTR in DAT; and (e) the Met allele of the Val158Met
polymorphism in COMT. [For ease of presentation, the italicized
acronyms for each allele are used in the remainder of this paper.].

Each of the five SNPs was originally assigned scores of 0, 1, or 2
based on how many of the plasticity alleles were observed. To en-
able more precise tests of possible forms of gene action, I created
two redefined scores for each SNP, shown in Table 4. The domi-
nant code reflects the assumption that only a single plasticity allele
is needed to drive a genetic effect, and the presence of a second
plasticity allele provides no additional risk or plasticity. The reces-
sive code represents the hypothesis that no effect of the SNP would
be seen unless two plasticity alleles are present. If the dominant and
recessive codes are entered as separate predictors in an equation,
several informative patterns might arise: (a) significant effect of the
dominant code and near zero effect of the recessive code would
support a conclusion that the SNP effect was dominant; (b) signifi-
cant effect of the recessive code and near zero effect of the domi-
nant code would support recessive gene action; and (c) equal
regression weights for the dominant and recessive codes would
support a conclusion of linear gene action.

The Masarik et al. (2014) investigation was of G×E interaction,
and the environmental variable analyzed here was parental hostil-
ity toward a target adolescent when the adolescent was approxi-
mately 15 years of age. Parents and the adolescent engaged in
videotaped interactions as they discussed several issues, including
recent disagreements. Observers coded the videotaped interactions
on 1-to-9 rating scales for three items – hostility, angry coercion,
and antisocial behavior – of each parent toward the adolescent.
Ratings were made for each parent and during each of two inter-
action tasks. The ratings were averaged across parents and across
tasks to form a scale score for parental hostility, which could range
from 1 to 9.

The outcome variable was obtained 16 years later when the tar-
get adolescents were now young adults averaging about 31 years of
age. At this measurement point, each target individual was video-
taped interacting with a romantic partner using similar methods as
used for the prior parent-adolescent interactions. Observers coded
these interactions using the same rating scales, which were again
averaged into a scale for target hostility toward romantic partner.

Target participant sex (coded 0 =male, 1 = female) was used as
a covariate, following Masarik et al. (2014). To allow comparisons
of results across OLS regression and ML analyses using SEM soft-
ware, analyses are restricted to the 281 participants who had com-
plete data on the variables to be analyzed. For details on measures
and procedures, see Masarik et al. (2014).

Preliminary considerations

At least four concerns arise with analyzing genetic SNP effects
in this data set. The first issue involves potential correlations of
SNPs with other variables in the data set and among SNPs.
Significant correlations of gene SNPs with variables such as paren-
tal hostility lead to difficulties in interpretation, such as passive

Table 3. (Continued )

Model 1 Model 2

Variable df B (SE) ta df B (SE) ta

Restriction 8 − 1 − 265.2 (99.4) − 2.67 − 1 − 19.50 (60.0) − 0.33

Restriction 9 − 1 − 189.5 (72.3) − 2.62

R2 .442 .505

Adjusted R2 .439 .500

F(ν1,ν2) b 168.36 (1, 213) 108.14 (2, 212)

BIC c 1127.37 1106.79

Note: N= 215. Tabled values are raw score regression coefficients, their SEs in parentheses, and associated t-ratios. The R2 is the squared multiple correlation; the adjusted R2 is the shrunken
estimate of squaredmultiple correlation that adjusts for model complexity. a The t ratio has df equal to ν2 for the F ratio for the equation, shown below. With 204 or more df, the critical t value at
the .05 level is 1.98. b For the F ratio for eachmodel, ν1= numerator degrees of freedom, and ν2= error (or denominator) degrees of freedom. c BIC is the Schwarz Bayesian Information Criterion.

Table 4. Dominant and Recessive Codes for an Individual SNP

Number of relevant alleles Dominant code Recessive code

0 0 0

1 1 0

2 1 1
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gene-environment correlation. In Table 5, the correlations among
five variables are shown: target (aged 31 years) hostility toward
romantic partner, parental hostility toward target (aged 15 years),
a gene SNP total score (sum across the 5 SNPs), a gene Dominant
score (sum of the 5 dominant SNP scores), and a gene Recessive
score (sum of the 5 recessive SNP scores). The r = .280 correlation
of the first two variables is a strong inter-generational (i.e., parent
behavior to offspring behavior) relation, particularly given the
16 years elapsed between the two measures. The correlations of
target hostility with the three SNP scores were very small and non-
significant, as were correlations of parental hostility with the SNP
scores. The lack of any substantial correlation between gene SNP
scores and environment scores simplifies theoretical and empirical
considerations.

A second issue involves correlations among SNP scores, pro-
vided in Table 6. The first five variables in the table are the dom-
inant scores for the five SNPs, and the remaining five variables are
corresponding recessive scores. The five underscored coefficients
in Table 6 are correlations between the dominant and recessive
scores for each SNP. These correlations are structurally positive
(i.e., necessarily positive) because one cannot have a score of 1

on the recessive score unless one has a 1 on the dominant score.
These scores must correlate positively, and all were statistically sig-
nificant (ps < .01), although not large. The other 40 correlations
shown in Table 6 averaged almost precisely zero (−.003). Only
one of these 40 correlations met the α = .05 criterion for signifi-
cance, so the SNP scores were essentially independent.

The third issue is the form analyses might take. With a large
number of SNP scores available, one could analyze (a) only a gene
total score; (b) 5 linear (0,1,2) SNP scores; (c) only the 5 dominant
SNP scores and/or their sum; (d) only the 5 recessive SNP scores
and/or their sum; (e) the dominant and recessive total scores, or (f)
10 separate dominant and recessive SNP scores. For simplicity,
only analyses using the gene total score and the 10 separate dom-
inant and recessive SNP scores are reported here, emphasizing
strengths and weaknesses of each approach. Parent hostility, the
key environmental predictor, was mean-centered, to simplify
interpretation.

A fourth issue is whether it is reasonable to form an equally
weighted sum of a set of scores, here SNP scores, that are essentially
uncorrelated. Based on homogeneity reliability theory, this makes
no sense at all, as no increase in reliability would accompany the

Table 5. Correlations of Target and Parent Hostility with Target Gene Indexes, based on Masarik et al. (2014) Data

T Host P Host T Gene Total T Gene Dom T Gene Rec

Target Hostility 1.000

Parent Hostility .280 1.000

T Gene Total − .046 − .024 1.000

T Gene Dom − .060 − .111 .807 1.000

T Gene Rec − .015 .073 .802 .295 1.000

Mean 3.486 3.630 4.381 3.192 1.189

SD 1.652 1.426 1.392 0.869 0.869

Note: N= 281. Target Hostility and T Host= Target Hostility toward Romantic Partner at Age 31 years, Parent Hostility and P Host= Parent Hostility toward Target Aged 15 years, T Gene Total=
Target Gene Total Index, T Gene Dom = Target Gene Dominant Index, T Gene Rec = Target Gene Recessive Index. Correlations greater than ∼ |.12| are significant at p < .05, correlations greater
than ∼ |.154| are significant at p < .01.

Table 6. Correlations among Five Gene Dominant and Recessive Codes for Target Adolescent, using Masarik et al. (2014) Data

ANKK1da DRD4d DATd 5HTTd COMTd ANKK1r DRD4r DATr 5HTTr COMTr

ANKK1d 1.000

DRD4d − .149 1.000

DATd .005 .015 1.000

5HTTd .045 − .090 .089 1.000

COMTd .002 − .075 .001 − .064 1.000

ANKK1r .280 − .036 − .012 − .013 .050 1.000

DRD4r − .097 .180 − .064 .014 − .004 − .027 1.000

DATr .036 − .036 .320 .092 − .007 − .005 .065 1.000

5HTTr .092 − .018 .090 .310 − .085 .065 − .073 .038 1.000

COMTr − .034 .033 − .050 .032 .350 .046 .016 .027 − .037 1.000

Mean 0.342 0.359 0.925 0.754 0.811 0.039 0.018 0.559 0.228 0.345

SD 0.475 0.481 0.263 0.431 0.392 0.194 0.132 0.497 0.420 0.476

Note: N= 281. Underscored correlations must be non-zero, given the construction of the dominant and recessive codes for individual SNPs. Correlations greater than ∼ |.12| are significant at
p < .05, correlations greater than ∼ |.154| are significant at p < .01. a In SNP names, d = dominant code, r = recessive code.
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summing of uncorrelated scores. But, the equally weighted sum of
a set of uncorrelated indicators might possess considerable reliabil-
ity in terms of stability over time. Moreover, the sum can be used to
test whether the risk indicators have significantly different weights
in predicting an outcome. What is needed is a test of whether this
equality constraint is reasonable or whether it costs too much in
predictive power, and such tests are demonstrated in the following
section.

Regression analyses

Four regression models were fit using the genetic total score as the
Gene variable, with parent hostility as Environment variable, to
predict target hostility with romantic partner. The first model,
Model 1 in Table 7, employed Female as control variable and used
the E and Gmain effects as predictors. InModel 1, only Female and
the Environment main effect were significant, and the overall
model had a fairly large R2 = .1589. Adding the G×E interaction
resulted in Model 2, which exhibited a moderately higher R2 =
.1734. The increase in explained variance,ΔR2= .0145, was signifi-
cant, F(1, 276)= 4.87, p= .03, and the regression coefficient for the
G×E interaction, B = 0.10 (SE= 0.05), p = .03, was significant and
in the predicted direction.

Belsky and colleagues (Belsky, Pluess, & Widaman, 2013;
Belsky & Widaman, 2018; Widaman, Helm, Castro-Schilo,

Pluess, Stallings, & Belsky, 2012) contrasted strong and weak ver-
sions of differential susceptibility theory predictions and advocated
comparative testing of these versions. Under the strong version, the
Environment main effect should be zero in persons with no plas-
ticity alleles; under the weak version, the Environment main effect
might be non-zero even in persons with no plasticity alleles. To test
whether the strong version was supported in this data set,
I restricted the Environment main effect to zero in Model 3. As
seen in Table 7, the drop in R2 was miniscule, ΔR2 = −.001, and
not significant, F(1, 276)= 0.33, p = .56, and the regression coef-
ficient for the G×E interaction, B= 0.07 (SE= 0.01), was signifi-
cant, t(276) = 5.45, p < .0001. The improved level of statistical
significance for the G×E interaction was the result of the much
smaller SE for the interaction coefficient in Model 3 (SE= 0.01)
relative to the comparable value in Model 2 (SE= 0.05). As seen
in Table 7, the test of the restriction of the E main effect to zero
did not approach significance, t(276) = − 0.58.

I fit one final model, Model 4, which added a restriction that the
G main effect was zero. Because the E main effect was mean-cen-
tered, this represents a test that the G effect was zero at the mean of
the E predictor. As seen in Table 7, the drop in explained variance
moving fromModel 3 toModel 4 was small,ΔR2=−.0006, and not
significant, F(1, 277)= 0.23, p = .63, and the test of the restriction
was nonsignificant, t(277) = − 0.48. The regression coefficient for
the G×E interaction remained unchanged in Model 4, a model in

Table 7. Alternative Regression Models for Target Hostility using Total Gene Index for Masarik et al. (2014) Data

Model 1 Model 2

Variable df B (SE) ta df B (SE) ta

Intercept 1 3.07 (0.32) 9.48 1 3.11 (0.32) 9.64

Female 1 0.94 (0.18) 5.10 1 0.95 (0.18) 5.22

E (Par Hostility) 1 0.32 (0.06) 4.97 1 − 0.12 (0.21) − 0.57

G CR Index 1 − 0.03 (0.07) − 0.38 1 − 0.03 (0.07) − 0.52

GxE Interaction 1 0.10 (0.05) 2.21

R2 .1589 .1734

Adjusted R2 .1498 .1615

F(ν1,ν2) b 17.44 (3, 277) 14.48 (4, 276)

BIC 255.07 255.80

df Model 3 t df Model 4 t

Intercept 1 3.10 (0.32) 9.63 1 2.96 (0.14) 21.83

Female 1 0.94 (0.18) 5.20 1 0.95 (0.18) 5.25

E (Par Hostility) 1 0.00 (———) – 1 0.00 (——) –

G CR Index 1 − 0.03 (0.07) − 0.48 1 0.00 (——) –

GxE Interaction 1 0.07 (0.01) 5.45 1 0.07 (0.01) 5.46

Restriction 1 − 1 − 6.32 (11.0) − 0.58 − 1 − 5.98 (11.0) − 0.54

Restriction 2 − 1 − 16.87 (35.1) − 0.48

R2 .1724 .1718

Adjusted R2 .1635 .1658

F(ν1,ν2) b 19.24 (3, 277) 28.83 (2, 278)

BIC 250.50 245.09

Note: N= 281. E (Par Hostility) stands for “Environment main effect, Parental Hostility”; G CR Index stands for “Gene main effect, a CR Index formed as the sum of scores on 5 target genes”; and
GxE interaction is the product of the environmental and gene main effects. Tabled values are raw score regression coefficients, their SEs in parentheses, and associated t-ratios. The R2 is the
squaredmultiple correlation; the adjusted R2 is the shrunken estimate of the squaredmultiple correlation. a The t ratio has df equal to ν2 for the F ratio for the equation, shown below. b For the F
ratio for each model, ν1 = numerator degrees of freedom, and ν2 = error (or denominator) degrees of freedom.
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which theG×E interaction explained about half of the 17 percent of
variance explained by the equation. The adjusted R2 value for
Model 4 was higher than comparable values for other models,
and the BIC value was lower than for other models, attesting to
the efficiency and optimality of Model 4.

Interrogating the weighting of SNPs
Models 1 through 4 utilized an equally weighted sum of the 5 SNP
scores, so implicitly assumed that SNPs did not differ in their
effects. This approach may have masked differential effects of
the SNPs, so four additional regression models were tested, using
the 5 dominant and 5 recessive SNP scores as separate predictors.
In these analyses, the Gene main effect was represented by 10 sep-
arate dichotomous predictors, and the G×E interaction was repre-
sented by 10 product vectors, where each product vector was the
product of a SNP score and parent hostility. With this approach, it
becomes possible to interrogate or test more severely the equal
weighting of SNPs.

The first of these models, identified as Model 5 in Table 8, used
Female as control variable, parent hostility as Environment varia-
ble, and the 10 SNP scores to represent the main effect of Genes;
this model explained over 17 percent of the variance in the out-
come variable, R2 = .1755. As in the comparable Model 1
(Table 7), the E main effect was significant, B= 0.31 (SE= 0.07),
p < .0001, but none of the 10 SNP scores met the .05 level of
significance.

Model 6 added the 10 product vectors comprising the G×E
interaction (see Table 8). Compared with Model 5, Model 6
explained more variance, R2 = .2128, but this increase in explained
variance, ΔR2 = .0373, was nonsignificant, F(10,258)= 1.22, p =
.28. Inspection of parameter estimates and their SEs in Table 8
reveals that not one of the G main effects had an effect significant
at p< .05, and only one of the 10 G×E product terms (for the dom-
inant effect of DAT) barely met the .05 level. In short, Model 6
looks like a veritable sea of nonsignificance.

However, restrictions on model parameter estimates can test
whether coefficients differed from values that were predicted a pri-
ori. Model 7 invoked three restrictions: (a) due to presence of esti-
mates for a G×E interaction, the main effect of the E variable was
fixed at zero, (b) coefficients for the 10 gene SNP main effects were
constrained to equality, and (c) coefficients for the 10 G×E inter-
action vectors were constrained to equality. In Table 8, Model 7,
with R2= .1724, explained less variance thanModel 6, but the drop
in fit,ΔR2 = −.0404, was not significant, F(19, 258)= 0.70, p= .82.
This F-ratio is an overall or setwise test of the 19 restrictions in
Model 7 and supports the contention that the 19 restrictions did
no harm overall (or as a set). To ensure that no harm was done
in particular, tests of parameter restrictions in Model 7 are shown
in Table 9. There, the first restriction is the restriction of the Emain
effect to zero, Restrictions 2 – 10 reflect the equality constraint on
the 10 SNPmain effect coefficients, and Restrictions 11 – 19 reflect
the equality constraint on the 10 G×E interaction coefficients. Not
one of the tests of individual restrictions was significant at the
.05 level

The final model, Model 8, added to Model 7 a constraint that
the gene main effect coefficients be fixed at zero (see Table 8).
Model 8 had a slightly lower level of explained variance, a drop
in explained variance, ΔR2 = −.0006, that was neither large nor
significant, F(1, 277)= 0.23, p = .63. To ensure that no harm
was done to any single estimate, tests of restrictions in Model 8
are presented in Table 9. Not one of the 20 restrictions in

Model 8 neared statistical significance, all ps > .22, so no single
estimate was unduly harmed.

Note that Models 7 and 8 in Table 8 are identical in all ways –
explained variance, parameter estimates and their SEs, adjusted
R2 – to Models 3 and 4, respectively (cf. Table 7). Models 3 and
4 employed the Gene total score, so implicitly forced equality con-
straints on main and interactive effects of the gene SNP variables
assuming that gene effects were (a) linear for each SNP and (b)
equal in magnitude across SNPs. Models 7 and 8 enforced these
constraints explicitly. The mathematical identity of all character-
istics of Models 3 and 7 and of Models 4 and 8 is a brute force dem-
onstration that the same end is achieved if one employs an a priori
equally weighted sum of a set of indicators versus if one employs
the indicators as separate predictors but forces equality constraints
that embody those used in the a priori summation. Model 7, with
its 19 restrictions, arrived at the same point asModel 3, but allowed
the data to “complain” if any of the individual restrictions harmed
the ability of any one of the genetic main or interaction compo-
nents to contribute to the model. In effect, tests of restrictions
in Model 7 allowed individual SNP components to “call foul” if
a given constraint was overly restrictive. That not a single restric-
tion was associated with statistical significance is a telling outcome
that justifies the restrictions on a one-by-one basis. Similar com-
ments apply to the identity between Models 4 and 8, as both of
these models added the constraint that the gene main effect
was zero.

In sum, Model 8 satisfies the three principles laid out early in
the paper. First, Model 8 did no harm in general. It explained less
variance than the most highly parameterized model, Model 6, but
decreases in explained variance were nonsignificant. Second,
Model 8 did no harm in particular, as not one of the 20 restrictions
imposed onModel 8 led to any indication that a restriction harmed
the contribution of any individual model component. Third,
Model 8 did considerable good, withmuch smaller SEs of estimates
relative toModel 6, a larger adjusted R2 thanModels 5, 6, and 7, the
lowest (i.e., best) BIC value of any of the models, and explicit jus-
tification of implicit assumptions made byModel 4. Thus, Model 8
reflects optimal return on investment when estimating regression
parameters (cf. Rodgers, 2019).

Structural equation modeling

I conducted comparable analyses to those reported in Table 8 using
SEM programs Mplus (Muthén & Muthén, 1998-2019) and the
lavaan package (Rosseel, 2012) in R. Essentially identical results
were obtained; given limitations of space, the full set of analysis
scripts and descriptions of SEM results were placed in
Supplementary Material.

Discussion

Results of the re-analyses of theMasarik et al. (2014) data have sev-
eral implications for research using CR indices when investigating
G×E interaction hypotheses. First, researchers can and should
evaluate constraints implicitly imposed when a genetic risk index
is used. If an equally weighted sum of gene SNPs is to be used, I
showed how to test explicitly such equality constraints. Jolicoeur-
Martineau, Belsky, Szekely, Widaman, Pluess, Greenwood, and
Wazana (2020) proposed a way to differentially weight a small num-
ber of gene SNPs, and others have used GWAS results to differen-
tially weight an extremely large number of gene SNPs (e.g., see
Belsky & Harden, 2019). Regardless of whether equal or differential
weighting of SNPs is used, researchers should adopt methods that
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Table 8. Alternative Regression Models for Hostility using Individual SNP Codes for Masarik et al. (2014) Data

Model 5 Model 6

Variable df B (SE) ta df B (SE) ta

Intercept 1 3.19 (0.45) 7.12 1 3.46 (0.46) 7.48

Female 1 0.92 (0.19) 4.91 1 0.89 (0.19) 4.70

Parent Hostility 1 0.31 (0.07) 4.75 1 − 0.58 (0.32) − 1.79

ANKK1d 1 0.06 (0.20) 0.29 1 0.01 (0.21) 0.07

DRD4d 1 0.01 (0.20) 0.04 1 0.04 (0.20) 0.18

DATd 1 − 0.11 (0.37) − 0.28 1 − 0.26 (0.38) − 0.67

5HTTd 1 0.11 (0.23) 0.50 1 0.07 (0.23) 0.28

COMTd 1 − 0.24 (0.26) − 0.93 1 − 0.26 (0.26) − 1.00

ANKK1r 1 − 0.35 (0.49) − 0.72 1 − 0.26 (0.50) − 0.52

DRD4r 1 0.35 (0.72) 0.49 1 0.02 (0.92) 0.02

DATr 1 − 0.15 (0.20) − 0.75 1 − 0.19 (0.20) − 0.95

5HTTr 1 − 0.26 (0.23) − 1.12 1 − 0.26 (0.23) − 1.11

COMTr 1 0.31 (0.21) 1.48 1 0.29 (0.21) 1.39

PHost x ANKK1d 1 0.09 (0.15) 0.58

PHost x DRD4d 1 0.10 (0.16) 0.62

PHost x DATd 1 0.62 (0.31) 1.99

PHost x 5HTTd 1 0.14 (0.18) 0.78

PHost x COMTd 1 0.25 (0.19) 1.36

PHost x ANKK1r 1 0.36 (0.34) 1.05

PHost x DRD4r 1 0.56 (0.59) 0.95

PHost x DATr 1 − 0.11 (0.14) − 0.75

PHost x 5HTTr 1 0.10 (0.16) 0.63

PHost x COMTr 1 − 0.13 (0.15) − 0.86

R2 .1755 .2128

Adjusted R2 .1386 .1457

F(ν1,ν2) b 4.76 (12, 268) 3.17 (22, 258)

BIC 300.19 343.56

Model 7 Model 8

Variable df B (SE) ta df B (SE) ta

Intercept 1 3.10 (0.32) 9.63 1 2.96 (0.14) 21.83

Female 1 0.95 (0.18) 5.20 1 0.95 (0.18) 5.25

Parent Pos Eng 1 0.00 (——) – 1 0.00 (——) –

ANKK1d 1 − 0.03 (0.07) − 0.48 1 0.00 (——) –

DRD4d 1 − 0.03 (0.07) − 0. 48 1 0.00 (——) –

DATd 1 − 0.03 (0.07) − 0. 48 1 0.00 (——) –

5HTTd 1 − 0.03 (0.07) − 0. 48 1 0.00 (——) –

COMTd 1 − 0.03 (0.07) − 0. 48 1 0.00 (——) –

ANKK1r 1 − 0.03 (0.07) − 0. 48 1 0.00 (——) –

DRD4r 1 − 0.03 (0.07) − 0. 48 1 0.00 (——) –

DATr 1 − 0.03 (0.07) − 0. 48 1 0.00 (——) –

5HTTr 1 − 0.03 (0.07) − 0. 48 1 0.00 (——) –

COMTr 1 − 0.03 (0.07) − 0. 48 1 0.00 (——) –

PHost x ANKK1d 1 0.07 (0.01) 5. 45 1 0.07 (0.01) 5. 46

PHost x DRD4d 1 0.07 (0.01) 5. 45 1 0.07 (0.01) 5. 46

(Continued)
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test the optimality of the weights against models that relax the a pri-
ori constraints on weights. Successful demonstration that relaxing
constraints does not improve results provides positive support for
the more restricted sets of weights.

Second, analyses of individual genetic SNPs may be problem-
atic, given the restricted range of scores for such variables.
Individual SNPs have scores that fall on only a three-point scale
(i.e., scored 0, 1, 2). Individual items on a personality scale or ability
test scored on a three-point scale would never be expected to have
strong or consistent relations with other criteria, so personality and
ability items are typically summed into scale or test scores when
predicting outcomes. Why research investigating gene main effects
or G×E interactions has often been conducted with single SNP
scores, given their restricted range and resulting very low statistical
power, is an open question. Using some form of index of genetic
CR is analogous to computing a personality scale score across sev-
eral items. The items included can “borrow strength” from the
other items comprising the sum, even if the individual indicators
are uncorrelated, as was the case for the gene variables in this study.
The methods proposed in this paper can be used to evaluate
whether a priori weights used in computing the sum are justified.

A third implication is that one should use a confirmatory
approach to model fitting and model comparison, rather than
the exploratory approach that has been the standard for decades.
If one used the typically taught approach to testing interactions,
one would concentrate on the test of the G×E interaction when
it is entered into the model. When analyzing the Masarik et al.
(2014) data, this approach would have led to a decision that the
interaction barely met the .05 level. But, the comparative approach
of contrasting the fit of a priori models advocated by Belsky
and colleagues challenges researchers to compare models that
differ in their theoretical formulation. Under the strong form of
differential susceptibility theory, the environment main effect

Table 8. (Continued )

Model 5 Model 6

Variable df B (SE) ta df B (SE) ta

PHost x DATd 1 0.07 (0.01) 5. 45 1 0.07 (0.01) 5. 46

PHost x 5HTTd 1 0.07 (0.01) 5. 45 1 0.07 (0.01) 5. 46

PHost x COMTd 1 0.07 (0.01) 5. 45 1 0.07 (0.01) 5. 46

PHost x ANKK1r 1 0.07 (0.01) 5. 45 1 0.07 (0.01) 5. 46

PHost x DRD4r 1 0.07 (0.01) 5. 45 1 0.07 (0.01) 5. 46

PHost x DATr 1 0.07 (0.01) 5. 45 1 0.07 (0.01) 5. 46

PHost x 5HTTr 1 0.07 (0.01) 5. 45 1 0.07 (0.01) 5. 46

PHost x COMTr 1 0.07 (0.01) 5.45 1 0.07 (0.01) 5.46

R2 .1724 .1718

Adjusted R2 .1635 .1658

F(ν1,ν2)b 19.24 (3, 277) 28.83 (2, 278)

BIC 250.50 245.09

Note: N= 281. a The t ratio has df equal to ν2 for the F ratio for the equation, shown below. b For the F ratio for eachmodel, ν1= degrees of freedom numerator, and ν2= degrees of freedom error
(or denominator).

Table 9. Tests Restrictions on Regression Parameters in Models 7 and 8 for
Masarik et al. (2014) Data

Model 7 Model 8

Variable df B (SE) ta df B (SE) tb

Restriction 1 − 1 − 6.32 (11.0) − 0.58 − 1 − 5.98 (11.0) − 0.54

Restriction 2 − 1 − 3.22 (4.74) − 0.68 − 1 − 3.84 (4.91) − 0.78

Restriction 3 − 1 − 1.06 (5.61) − 0.19 − 1 − 1.86 (5.85) − 0.32

Restriction 4 − 1 − 9.49 (11.7) − 0.81 − 1 − 13.16 (14.0) − 0.94

Restriction 5 − 1 − 18.9 (13.3) − 1.42 − 1 − 24.69 (17.9) − 1.38

Restriction 6 − 1 − 0.86 (12.9) − 0.07 − 1 − 9.23 (21.6) − 0.43

Restriction 7 − 1 − 1.19 (13.7) − 0.09 − 1 − 11.68 (25.8) − 0.45

Restriction 8 − 1 4.02 (12.4) 0.32 − 1 − 7.95 (27.8) − 0.29

Restriction 9 − 1 − 1.31 (11.7) − 0.11 − 1 − 14.38 (29.6) − 0.49

Restriction 10 − 1 3.28 (9.21) 0.36 − 1 − 12.04 (33.1) − 0.36

Restriction 11 − 1 4.98 (7.29) 0.68 − 1 − 16.87 (35.1) − 0.48

Restriction 12 − 1 9.40 (8.86) 1.06 − 1 4.89 (7.28) 0.67

Restriction 13 − 1 − 5.80 (17.1) − 0.34 − 1 9.33 (8.85) 1.05

Restriction 14 − 1 − 2.35 (19.3) − 0.12 − 1 − 6.04 (17.1) − 0.35

Restriction 15 − 1 − 24.1 (19.8) − 1.22 − 1 − 2.32 (19.2) − 0.12

Restriction 16 − 1 − 17.8 (21.0) − 0.84 − 1 − 23.86 (19.8) − 1.21

Restriction 17 − 1 − 7.89 (19.8) − 0.40 − 1 − 17.83 (21.0) − 0.85

Restriction 18 − 1 − 2.35 (14.7) − 0.16 − 1 − 7.70 (19.7) − 0.39

Restriction 19 − 1 0.21 (13.2) 0.02 − 1 − 2.54 (14.7) − 0.17

Restriction 20 0.25 (13.2) 0.02

Note:N= 281. The beta distribution was used to compute probability levels for all t ratios (see
SAS 9.4). a The t ratios in this column have 277 df; all ps> .15. b The t ratios in this column have
278 df; all ps > .17.
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should be nil for individuals with no plasticity alleles when a G×E
interaction is included in the model. When such a constraint was
invoked in the current analyses, the G×E interaction went from
marginal significance to a very strong effect. Many research studies
may have failed to “find” a significant G×E interaction due to the
use of the low-powered, “recommended” way to test interactions.
Failures to detect G×E interaction effects that are non-zero in the
population amount to Type II errors, and such inadvertent failures
may be legion.

A fourth and perhaps most important implication of results
presented here is that prior behavior genetic (BG) andGWAS stud-
ies of behavioral outcomes may have followed research agendas
that are ultimately of questionable intent or utility. Virtually all
GWAS studies and most BG studies investigate only genetic main
effects. The typical GWAS study uses an extremely large number of
gene SNPs, perhaps a million or more, to determine whether each
individual SNP is related to a given outcome, but main or interac-
tive effects involving the environment are never included or tested.
If the process generating the data included a G×E interaction with
a strong differential susceptibility form, any genetic main effect
would be nil or approximately nil at the mean of any key environ-
mental variable, provided representative samples of persons and
their typical environments are included. A nil genetic main effect
in the presence of a G×E interaction does not mean that genes are
unimportant in accounting for the outcome variable, but does
imply that a robust effect of genes may be identified only if one
simultaneously accounts for environmental effects in the form
of a G×E interaction. Failure to include environmental main and
G×E interaction effects in GWAS studies may represent a search
for the proverbial needle in a metaphorical haystack, when, in fact,
no needle is present to be found.

To circumvent this problem, a GWAS team might consider
adding a measure of the environment into GWAS analyses. But,
how one includes and models the E main effect and G×E interac-
tion effect across a million or more SNPs become issues fraught
with problems. Using the standard GWAS approach, the team
might perform one million analyses – one for each SNP – each
of which would include G and E main effects and a G×E interac-
tion, with extremely careful control of Type I error rates. Or, they
might decide to perform a million analyses with the E main effect
fixed at zero, consistent with differential susceptibility model pre-
dictions. However, given the low power of such tests, this might be
a dubious approach. The Masarik et al. (2014) data revealed G×E
interaction components across just five SNPs that appeared to
result in a veritable sea of nonsignificance when tested individually,
but these became a robust G×E interaction once constraints across
the G×E effects were imposed. The lack of significance of tests of
those constraints lends substantial credibility to the equally
weighted form of the constraints.

General discussion

Developmental researchers have used risk indices in a number of
different forms and done so quite profitably. Some investigators
have used risk indices that were formed as the sum of multiple,
dichotomously scored risk indicators, whereas others have
summed standardized scores on more quantitative, continuous
variables into indices of CR. Certain basic ways to evaluate validity
of risk indices have been proposed. For example, if groups at differ-
ent levels of a CR index have mean values on an outcome variable
that are roughly linear, with higher risk associated with elevated
problematic outcomes, this has very reasonably been touted as

one form of evidence in support of the empirical and construct val-
idity of the index of CR.

One goal of the current study was to propose ways to interrog-
ate or test more severely (Mayo, 2018) the validity of an index of
CR within an individual study, including analytic advice on how to
perform more incisive analyses. If a researcher uses an equally
weighted sum of risk indicators, it behooves that researcher to
investigate whether the equality of the weights does any harm to
analytic results. Methods proposed in this paper supplement prior
work on equal weighting, providing model comparisons to test
weighting schemes more informatively. Equal weighting may work
well in most circumstances, but researchers should be made aware
if equal weighting of all indicators does any harm to the modeling
of data, and the methods proposed here support this goal of more
informed and informative severe testing.

Inmany cases, equality of weights will be justified, as in analyses
of the Masarik et al. (2014) data. In those analyses, the modeling
provided no indication at all that forcing equal weights was prob-
lematic in any way and demonstrated the basis for the notable
improvements associated with the highly constrained CR index.
In contrast, analyses of the Sameroff et al. (1987) data provided
evidence that a single unit-weighted sum of all 10 risk indices
was not optimal. But, even here, the analysis did not imply that
all 10 indicators should be used as separate, and separately
weighted, indices of risk. Instead, the analysis suggested that two
unit-weighted indices of CR would be optimal, slightly more com-
plex than the use of a single unit-weighted composite, but far, far
simpler than using 10 separate indicators.

Linear regressionmodels with OLS estimation and SEMmodels
with ML estimation led to very similar results. Because similar
results were obtained using SAS PROC REG and SEM software,
researchers should be encouraged initially to use analytic
approaches with which they are most familiar and then to
cross-validate results across multiple analytic approaches increase
confidence in implications of their model comparisons.

Indices of environmental and genetic CR have been used profit-
ably for many years, and the use of such indices has a large number
of benefits and strengths, noted by Evans et al. (2013) and Belsky
and Harden (2019), among others. Accompanying those strengths
are a number of potential weaknesses that deserve investigation.
The approaches advocated in the current paper are meant to sup-
plement the evaluation of indices of CR, so that more informative
use of such indices can occur. Failure to test the optimality of a
priori compositing of risk indicators can mask important features
of data, because non-optimal compositing of risk indices may lead
to a failure to identify most accurately the underlying processes
generating the data. Interrogating CR indices, as offered here, sat-
isfies both the severe testing of models advocated by Mayo (2018)
and the careful attention to return on investment when fitting
models, with regard to both overall model fit and with regard to
each parameter estimate, as promoted by Rodgers (2019). The
future remains bright for research applications of indices of CR,
supported by more self-critical, severely tested appraisal of their
formulation and use.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0954579421001097

Data availability statement. All Supplementary Material is accessible in an
Open Science Framework folder, located at https://osf.io/mynwh/. This
Supplementary Material includes reporting of SEM analyses of the two empiri-
cal examples in this manuscript, and includes SAS, Mplus, and R script files for
all analyses. Summary data for the first empirical example and raw data for the
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second empirical example are also archived there. No preregistration was
required for this paper as it did not involve the conducting of new empirical
studies, but relied on archival or previously published data. This study involved
publicly available archival or previously published data; no new data were
collected.
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