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On the Duality between Coalescing
Brownian Motions

Jie Xiong and Xiaowen Zhou

Abstract. A duality formula is found for coalescing Brownian motions on the real line. It is shown

that the joint distribution of a coalescing Brownian motion can be determined by another coalescing

Brownian motion running backward. This duality is used to study a measure-valued process arising as

the high density limit of the empirical measures of coalescing Brownian motions.

1 Introduction

The duality concerned in this paper is the duality between the martingale problems
for two Markov processes (see section 4.4 of [6]). It can be loosely described as fol-
lows: processes X and Y are dual to each other with respect to a dual function f

defined over an appropriate space if P[ f (Xt ; Y0)] = P[ f (X0; Yt )], t > 0. Under such

a dual relationship problems concerning one process can be transformed into prob-
lems concerning the other. It has been a powerful technique in the study of certain
stochastic systems. For example, the voter model is dual to systems of coalescing ran-
dom walks. This coalescing duality plays a central role in the analysis of the voter

model (see [10]). Dualities are also used intensively in the study of measure-valued
stochastic processes such as superprocesses, stepping-stone models and interactive
Fleming-Viot processes. A prime application of dualities in those models is to prove
the uniqueness of a solution to a desired martingale problem. We refer to [4, 12] for

literatures therein on details in this respect.
Coalescing Brownian motion was first studied in [1] and [8], where infinite sys-

tems of coalescing Brownian motions later called coalescing Brownian flows were
considered. Recently, results were obtained in [13] concerning two families of inter-

acting Brownian motions with one family of Brownian motions running forward and
the other running backward. In such a stochastic system coalescing occurs among the
Brownian motions running in the same direction and reflecting occurs among those
in the opposite direction. The proofs were based on discrete approximations. The

duality plays an important role in all the above mentioned work.
Coalescing Brownian motion is interesting because it captures the interactions be-

tween Brownian motions. It also serves as the dual process of other measure-valued
Markov processes. For example, systems of coalescing Brownian motions are used to
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On the Duality between Coalescing Brownian Motions 205

define and study the continuous sites stepping-stone models with Brownian migra-
tion (see [7, 5]).

The coalescing Brownian motion considered in this paper can be described intu-
itively as follows. An n-dimensional coalescing Brownian motion X̂ = (X̂1, . . . , X̂n) is
a system of n indexed interactive Brownian motions. Each process X̂i evolves accord-
ing to a one-dimensional Brownian motion, independent of the others, until two of

them meet. Once X̂i and X̂ j , 1 ≤ i < j ≤ n, first meet, X̂ j assumes the value of X̂i

after that, and we say the j-th process is attached to the i-th process which is still free.
The system then evolves in the same fashion. A rigorous definition of the coalescing
Brownian motion is postponed to Section 2.

In this paper we are going to propose another duality on the coalescing Brownian
motions. Theorem 1.1, the main result of this paper, concerns a duality involving
two systems of coalescing Brownian motions. Some notations are needed before we
are ready to introduce this result.

Given a positive integer n, let Pn denote the set of ordered partitions of Nn :=
{1, . . . , n}. That is, an element π of Pn is a collection π = {A1(π), . . . , Ah(π)} of
subsets of Nn with the property that

⋃

i Ai(π) = Nn and all the integers contained
in Ai(π) are smaller than those in A j(π) for i < j. The sets A1(π), . . . Ah(π) are the

blocks of the ordered partition π and h is the length of π, which is denoted by l(π).

Theorem 1.1 Suppose that X̂ = (X̂1, . . . , X̂n) is an n-dimensional coalescing Brow-

nian motion with X̂(0) = (x1, . . . , xn), x1 < · · · < xn. Then for any π ∈ Pn and any

(y1, . . . , y2l(π)), y1 < · · · < y2l(π), we have

(1.1) P

{

l(π)
⋂

j=1

⋂

i∈A j

{X̂i(t) ∈ (y2 j−1, y2 j)}
}

= P

{

l(π)
⋂

j=1

⋂

i∈A j

{xi ∈ (Ŷ2 j−1(t), Ŷ2 j(t))}
}

,

where Ŷ = (Ŷ1, . . . , Ŷ2l(π)) is a 2l(π)-dimensional coalescing Brownian motion with

Ŷ(0) = (y1, . . . , y2l(π)).

With this duality the joint distribution of one coalescing Brownian motion can be
expressed in terms of the distribution of random intervals driven by another coalesc-
ing Brownian motion running backward. The coalescing Brownian motion could be
thought as self dual in this sense. There is no interaction between the two coalescing

Brownian motions. To the authors’ knowledge such a duality has not been pointed
out even in the setting of coalescing simple random walks.

There are standard ways to show a dual relationship between two martingale prob-
lems (e.g., see section 4.4 of [6]). But in general, to be able to apply Ito’s formula,

only smooth functions are chosen as the dual functions, which is not the case in our
duality. To overcome this technical difficulty we adopt a modification of the standard
approach. We first obtain approximate dualities with respect to smoothing functions
of the original dual function. We then take a limit to reach the exact duality. Such

an approach seems to be of independent interest. It could serve as a prototype for
showing other dual relationships involving interacting Brownian motions.

A probability-measure-valued process is studied later in this paper. Such a process
Z arises as the high density limit of the empirical measures of coalescing Brownian
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motions. In Theorem 3.5 we are going to show that this M1(R)-valued process Z

solves the following Martingale problem:

Mt (φ) := Zt (φ) − Z0(φ) − 1

2

∫ t

0

Zs(φ
′ ′) ds, t ≥ 0, φ ∈ C2(R)

is a martingale with quadratic variation process

〈M(φ)〉t =

∫ t

0

ds

∫

∆

φ ′(x)φ ′(y)Zs (dx)Zs (dy),

where ∆ := {(x, x) : x ∈ R}. An interesting feature of this martingale problem is
that its solution is not unique.

Since the above mentioned martingale problem is not well posed, coalescing du-

ality (1.1) plays a crucial role in characterizing and analyzing the process Z. The
uniqueness of Z is justified in Theorem 3.3 using the coalescing duality (1.1). It can
be shown that the marginal distribution of Z is determined by systems of coalesc-
ing Brownian motions. The same duality is also applied to show that Z is a Markov

process and it only takes values of measures with discrete supports. Some of the
arguments there have the flavor of the proof in Theorem 4.4.2 of [6].

The paper is arranged as follows. After an introduction of the main results in
Section 1, we proceed to prove the coalescing duality in Section 2. Then the duality

is applied to study the measure valued process Z in Section 3.

2 Coalescing Duality

The ordered partitions in Pn can be used to keep track of interactions in a n-dimen-
sional coalescing Brownian motion at a time. Given π ∈ Pn, each block in π corre-
sponds to a free process. The block contains the index of that free process and indices
of all the other processes attached to it. One can think of the ordered partition π as

an equivalence relation on Nn and write i ∼π j if i and j belong to the same block of
π ∈ Pn. Let

aπ(i) := min{1 ≤ j ≤ n : i ∼π j}, 1 ≤ i ≤ n

and
ai(π) := min Ai(π), 1 ≤ i ≤ l(π).

Then aπ(i) is just the index of the free process to which the i-th process is attached.
a1(π), . . . , al(π)(π) are all the indices of the free processes at an increasing order.

For π ′ ∈ Pn, write π ≺ π ′ or π ′ ≻ π if π ′ is obtained by merging some of the
blocks in π. Write π � π ′(π ′ � π) if π ≺ π ′(π ′ ≻ π) or π ′

= π. The history

of interactions in a coalescing Brownian can be specified by a sequence of ordered
partitions π1 ≺ π2 ≺ · · · ≺ πk.

Given π ∈ Pn, we can define an l(π)-dimensional subspace R
n
π of R

n by identifying
the coordinates with indices from the same block of π. More precisely,

R
n
π := {(xaπ(1), . . . , xaπ(n)) : xaπ(i) ∈ R, 1 ≤ i ≤ n}.
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Put
R̂

n
π := R

n
π \ ⋃

π ′≻π

R
n
π ′ .

By definition R̂
n
π ∩ R̂

n
π ′ = ∅ for π 6= π ′. R̂

n
π will serve as the effective state space of

the coalescing Brownian motion when the coalescing interaction is determined by π.
When the coalescing interaction is determined by π, the n-dimensional coalescing

Brownian motion is essentially an l(π)-dimensional process. Define Jπ(x1, . . . , xn)
:= (xa1(π), . . . , xal(π)(π)), (x1, . . . , xn) ∈ R

n
π . Notice that Jπ is a bijection between R

n
π

and R
l(π).

For example,

R
4
{{1,2},{3,4}} = {(x1, x1, x2, x2) : x1, x2 ∈ R},

R̂
4
{{1,2},{3,4}} = {(x1, x1, x2, x2) : x1, x2 ∈ R, x1 6= x2}

and
J{{1,2},{3,4}}(x1, x1, x2, x2) = (x1, x2).

Write
R

n
0 := {(x1, . . . , xn) ∈ R

n : x1 ≤ · · · ≤ xn}
and

R
n
1 := {(x1, . . . , xn) ∈ R

n : x1 < · · · < xn}.
Given an n-dimensional Brownian motion X = (X1, . . . , Xn) starting from

(x1, . . . , xn) ∈ R
n
1 , the n-dimensional coalescing Brownian motion X̂ = (X̂1, . . . , X̂n)

can be constructed from X inductively as follows. Suppose that times 0 =: τ0 ≤ · · · ≤
τk ≤ ∞ and partitions {{1}, . . . , {n}} =: π0 ≺ · · · ≺ πk � {{1, . . . , n}} have al-

ready been defined and X̂ has been defined on [0, τk). If πk = {{1, . . . , n}}, then
X̂t = (X1(t), . . . , X1(t)) for t ≥ τk. Otherwise, let πk = {A1(πk), . . . , Al(πk)(πk)}.
Put

(2.1) τk+1 := inf{t > τk : ∃i, Xai (πk)(t) = Xai+1(πk)(t)}.

Suppose that Xai (πk)(τk+1) = Xai+1(πk)(τk+1) for some 1 ≤ i < l(πk); then define

πk+1 := {A1(πk+1), . . . , Al(πk)−1(πk+1)},

Ar(πk+1) :=











Ar(πk), for 1 ≤ r < i,

Ai(πk) ∪ Ai+1(πk), for r = i,

Ar+1(πk), for i < r ≤ l(πk) − 1,

(2.2)

and X̂(t) := (Xaπk
(1)(t), . . . , Xaπk

(n)(t)) for τk ≤ t < τk+1.
When the starting point is not in R

n
1 , the n-dimensional coalescing Brownian mo-

tion can be defined similarly.

One can easily see that X̂ is an n-dimensional continuous martingale with quadra-
tic variations

〈X̂i, X̂ j〉t =

{

t, i = j,

t − Ti j ∧ t, i 6= j,
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where Ti j := inf{t ≥ 0 : X̂i(t) = X̂ j(t)}.

FX̂
t denotes the σ-field generated by X̂. Write C2

b(R
n) for the collection of func-

tions on R
n with bounded first and second partial derivatives. Define an operator L

on C2
b(R

n) by

(2.3) L f (x) :=
1

2

∑

π∈Pn

1
R̂n

π
(x)∆l(π)( f ◦ J−1

π )( Jπ(x)), f ∈ C2
b(R

n), x ∈ R
n
0 ,

where ∆d denotes the d-dimensional Laplacian operator. The next lemma gives the
generator of the coalescing Brownian motion.

Lemma 2.1 Let X̂ be an n-dimensional coalescing Brownian motion such that X̂(0) ∈
R

n
1 . Then for any f ∈ C2

b(R
n), f (X̂(t)) −

∫ t

0
L f (X̂(s)) ds is an FX̂

t -martingale.

Proof Given f ∈ C2
b(R

n), applying Ito’s formula we have

f (X̂(t)) − f (X̂(0))

(2.4)

=
1

2

n
∑

i, j=1

∫ t

0

∂2 f

∂xi∂x j

(X̂(s)) d〈X̂i , X̂ j〉s +

n
∑

i=1

∫ t

0

∂ f

∂xi

(X̂(s)) dX̂i(s)

=
1

2

n
∑

i, j=1

∑

π∈Pn

∫ t

0

1
R̂n

π
(X̂(s))

∂2 f

∂xi∂x j

(X̂(s)) d〈X̂i , X̂ j〉s +

n
∑

i=1

∫ t

0

∂ f

∂xi

(X̂(s)) dX̂i(s)

=
1

2

∑

π∈Pn

l(π)
∑

k=1

∑

i, j∈Ak(π)

∫ t

0

1
R̂n

π
(X̂(s))

∂2 f

∂xi∂x j

(X̂aπ(1)(s), . . . , X̂aπ(n)(s)) ds

+

n
∑

i=1

∫ t

0

∂ f

∂xi

(X̂(s)) dX̂i(s)

=
1

2

∑

π∈Pn

∫ t

0

1
R̂n

π
(X̂(s))∆l(π)( f ◦ J−1

π )( Jπ(X̂(s))) ds +

n
∑

i=1

∫ t

0

∂ f

∂xi

(X̂(s)) dX̂i(s)

=

∫ t

0

L f (X̂(s)) ds +

n
∑

i=1

∫ t

0

∂ f

∂xi

(X̂(s)) dX̂i(s).

Hence, f (X̂(t)) −
∫ t

0
L f (X̂(s)) ds is an FX̂

t -martingale.

Define

P
∗
2m := {π ∈ P2m : aπ(2i) = 2i, aπ(2i + 1) = 2i or 2i + 1, 1 ≤ i ≤ m − 1}.
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i.e., each π∗ ∈ P∗
2m is obtained by merging the {2i} and the {2i + 1} blocks in π0 for

some 1 ≤ i ≤ m. For example,

P
∗
6 =

{

{

{1}, {2}, {3}, {4}, {5}, {6}
}

,
{

{1}, {2, 3}, {4}, {5}, {6}
}

,

{

{1}, {2}, {3}, {4, 5}, {6}
}

,
{

{1}, {2, 3}, {4, 5}, {6}
}

}

.

Given π = {A1(π), . . . , Al(π)(π)} ∈ Pn, for any x ∈ R
n and y ∈ R

2l(π)
0 , define

fσπ(x; y) :=

l(π)
∏

j=1

∏

i∈A j (π)

∫ y2 j

y2 j−1

φσ(z − xi) dz,

where φσ denotes the density function of the normal distribution with mean 0 and

variance σ2. Write φ := φ1. It is easily seen that fσπ(x; y) is a smoothing of the

function f (x; y) :=
∏l(π)

j=1

∏

i∈A j
1(y2 j−1,y2 j )(xi).

For any θ ∈ Pn, ϑ ∈ P∗
2l(π) and x ′ ∈ R

l(θ), y ′ ∈ R
l(ϑ), let

fθϑ(x ′; y ′) := fσπ( J−1
θ (x ′); J−1

ϑ (y ′))

be a function on R
l(θ)+l(ϑ). For y ∈ R̂

2l(π)
ϑ , define fθy ∈ C(R

l(θ)) by

fθy(x ′) := fθϑ(x ′; Jϑ(y)) = fσπ( J−1
θ (x ′); y), x ′ ∈ R

l(θ).

Similarly, for x ∈ R̂
n
θ , define fxϑ ∈ C(R

l(ϑ)) by

fxϑ(y ′) := fθϑ( Jθ(x); y ′) = fσπ(x; J−1
ϑ (y ′)), y ′ ∈ R

l(ϑ).

Given π = {A1, A2, . . . , Al(π)}, θ ∈ Pn and ϑ ∈ P
∗
2l(π), for any x ∈ R

n and

y ∈ R
2l(π), write

Gθϑ(x; y) := S1
θϑ(x; y) + S2

θϑ(x; y) + S3
θϑ(x; y) + S4

θϑ(x; y),

where

S1
θϑ(x; y) :=

l(θ)
∑

i=1

l(π)
∑

j=1

∑

k,l∈A j ,k6=l
aθ(k)=ai (θ)=aθ(l)

φσ(yaϑ(2 j) − xai (θ))φσ(yaϑ(2 j−1) − xai (θ)),

S2
θϑ(x; y) :=

l(θ)
∑

i=1

∑

1≤ j, j ′≤l(π)

j 6= j ′

∑

k∈A j ,l∈A j ′

aθ(k)=ai (θ)=aθ(l)

[

φσ(yaϑ(2 j) − xai (θ))φσ(yaϑ(2 j ′) − xai (θ)) + φσ(yaϑ(2 j−1) − xai (θ))φσ(yaϑ(2 j ′−1) − xai (θ))

+ φσ(yaϑ(2 j) − xai (θ))φσ(yaϑ(2 j ′−1) − xai (θ))1{aϑ(2 j)6=aϑ(2 j ′−1)}

+ φσ(yaϑ(2 j−1) − xai (θ))φσ(yaϑ(2 j ′) − xai (θ))1{aϑ(2 j−1)6=aϑ(2 j ′)}
]

,

https://doi.org/10.4153/CJM-2005-009-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-009-2


210 J. Xiong and X. Zhou

S3
θϑ(x; y) :=

l(π)
∑

j=1

∑

k,l∈A j

aθ(k)6=aθ(l)

[

φσ(yaϑ(2 j) − xaθ(k))φσ(yaϑ(2 j) − xaθ(l))

+ φσ(yaϑ(2 j−1) − xaθ(k))φσ(yaϑ(2 j−1) − xaθ(l))
]

,

and

S4
θϑ(x; y) :=

∑

1≤ j≤l(π)−1

aϑ(2 j)=aϑ(2 j+1)

∑

k∈A j ,l∈A j+1

aθ(k)6=aθ(l)

φσ(y2 j − xaθ(k))φσ(y2 j − xaθ(l)).

We remark that we have suppressed the dependence of both σ and π in the definitions
of fθϑ, fxϑ, fθy and Gθϑ.

One can verify that for any x ∈ R̂
n
θ and y ∈ R̂

2l(π)
ϑ ,

(2.5) ∆l(θ) fθy ◦ Jθ(x) − ∆l(ϑ) fxϑ ◦ Jϑ(y)

=

l(θ)
∑

i=1

∂2 fθy

∂xai (θ)
2

(xa1(θ), . . . , xal(θ)(θ)) −
l(ϑ)
∑

j=1

∂2 fxϑ

∂ya j (ϑ)
2

(ya1(ϑ), . . . , yal(ϑ)(ϑ))

= −I1 + I2 − I3 + I4,

where

I1 :=

l(θ)
∑

i=1

l(π)
∑

j=1

∑

k,l∈A j ,k6=l
aθ(k)=ai (θ)=aθ(l)

φσ(yaϑ(2 j) − xaθ(k))φσ(yaϑ(2 j−1) − xaθ(l))

×
∏

i ′ 6=k,l
i ′∈A j

∫ yaϑ(2 j)

yaϑ(2 j−1)

φσ(x − xaθ(i ′)) dx
∏

j ′ 6= j

∏

i ′∈A j ′

∫ yaϑ(2 j ′)

yaϑ(2 j ′−1)

φσ(x − xaθ(i ′)) dx,

I2 :=

l(θ)
∑

i=1

∑

1≤ j, j ′≤l(π)

j 6= j ′

∑

k∈A j ,l∈A j ′

aθ(k)=ai (θ)=aθ(l)

[

φσ(yaϑ(2 j) − xaθ(k))φσ(yaϑ(2 j ′) − xaθ(k))

+ φσ(yaϑ(2 j−1) − xaθ(l))φσ(yaϑ(2 j ′−1) − xaθ(l))

− φσ(yaϑ(2 j) − xaθ(k))φσ(yaϑ(2 j ′−1) − xaθ(l))1{aϑ(2 j)6=aϑ(2 j ′−1)}

− φσ(yaϑ(2 j−1) − xaθ(k))φσ(yaϑ(2 j ′) − xaθ(l))1{aϑ(2 j−1)6=aϑ(2 j ′)}
]

×
∏

i ′ 6=k
i ′∈A j

∫ yaϑ(2 j)

yaϑ(2 j−1)

φσ(x − xaθ(i ′)) dx
∏

i ′ 6=l
i ′∈A j ′

∫ yaϑ(2 j ′)

yaϑ(2 j ′−1)

φσ(x − xaθ(i ′)) dx

×
∏

j ′ ′ 6= j, j ′

∏

i ′∈A j ′ ′

∫ yaϑ(2 j ′ ′)

yaϑ(2 j ′ ′−1)

φσ(x − xaθ(i ′)) dx,
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I3 :=

l(π)
∑

j=1

∑

k,l∈A j

aθ(k)6=aθ(l)

[

φσ(yaϑ(2 j) − xaθ(k))φσ(yaϑ(2 j) − xaθ(l))

+ φσ(yaϑ(2 j−1) − xaθ(k))φσ(yaϑ(2 j−1) − xaθ(l))
]

×
∏

i ′ 6=k,l
i ′∈A j

∫ yaϑ(2 j)

yaϑ(2 j−1)

φσ(x − xaθ(i ′)) dx
∏

j ′ 6= j

∏

i ′∈A j ′

∫ yaϑ(2 j ′)

yaϑ(2 j ′−1)

φσ(x − xaθ(i ′)) dx

and

I4 :=
∑

1≤ j≤l(π)−1

aϑ(2 j)=aϑ(2 j+1)

∑

k∈A j ,l∈A j+1

aθ(k)6=aθ(l)

φσ(yaϑ(2 j) − xaθ(k))φσ(yaϑ(2 j+1) − xaθ(l)).

×
∏

i ′ 6=k
i ′∈A j

∫ yaϑ(2 j)

yaϑ(2 j−1)

φσ(x − xaθ(i ′)) dx
∏

i ′ 6=l
i ′∈A j+1

∫ yaϑ(2 j+2)

yaϑ(2 j+1)

φσ(x − xaθ(i ′)) dx

×
∏

j ′ 6= j, j+1

∏

i ′∈A j ′

∫ yaϑ(2 j ′)

yaϑ(2 j ′−1)

φσ(x − xaθ(i ′)) dx.

It then follows that for any x ∈ R̂
n
θ and y ∈ R̂

2l(π)
ϑ ∩ R

2l(π)
0 ,

(2.6) |∆l(θ) fθy ◦ Jθ(x) − ∆l(ϑ) fxϑ ◦ Jϑ(y)| ≤ Gθϑ(x; y).

Remark 2.2 Observe that there are some cancellations occurring in (2.5). Because
of these cancellations (2.6) holds. It will lead to (2.7) later, which is crucial to the

proof of Theorem 1.1.

Proof of Theorem 1.1 The outline of the proof is the following. We first pose the
martingale problems for both X̂ and Ŷ with respect to the test functions { fθϑ}. Then
we apply the standard approach to set up an approximate duality for X̂ and Ŷ. By

letting σ → 0+ we would eventually obtain the exact duality.

For any ϑ ∈ P
∗
2l(π) and y ∈ R̂

2l(π)
ϑ , by Lemma 2.1

∑

θ∈Pn

fθy ◦ Jθ(X̂(t))1{X̂(t)∈R̂
n
θ} −

∑

θ∈Pn

∫ t

0

1

2
∆l(θ) fθy ◦ Jθ(X̂(s))1{X̂(s)∈R̂

n
θ} ds

= fσπ(X̂(t); y) −
∫ t

0

Lx fσπ(X̂(s); y) ds

is a martingale, where Lx is L acting on the first n variables of fσπ .

https://doi.org/10.4153/CJM-2005-009-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-009-2


212 J. Xiong and X. Zhou

Given θ ∈ Pn and x ∈ R̂
n
θ , for any ϑ ∈ P2l(π) − P∗

2l(π) we have fσxϑ(y ′) = 0, y ′ ∈
R̂

l(ϑ). Then

∑

ϑ∈P∗
2l(π)

fxϑ ◦ Jϑ(Ŷ(t))1{Ŷ(t)∈R̂
2l(π)

ϑ } −
∑

ϑ∈P∗
2l(π)

∫ t

0

1

2
∆l(ϑ) fxϑ ◦ Jϑ(Ŷ(s))1{Ŷ(s)∈R̂

2l(π)

ϑ } ds

= fσπ(x; Ŷ(t)) −
∫ t

0

Ly fσπ(x; Ŷ(s)) ds

is also a martingale by Lemma 2.1. This time Ly is L acting on the last 2l(π) variables

of fσπ .
Since we can assume that X̂ and Ŷ are independent, it follows that

d

ds
P[ fσπ(X̂(s); Ŷ(t − s))]

=
d

ds
P

[

∑

ϑ∈P∗
2l(π)

∑

θ∈Pn

fσπ(X̂(s); Ŷ(t − s)), X̂(s) ∈ R̂
n
θ , Ŷ(t − s) ∈ R̂

2l(π)
ϑ

]

=
d

ds
P

[

∑

ϑ∈P∗
2l(π)

∑

θ∈Pn

fθϑ( Jθ(X̂(s)); Jϑ(Ŷ(t − s))), X̂(s) ∈ R̂
n
θ , Ŷ(t − s) ∈ R̂

2l(π)
ϑ

]

=

∑

ϑ∈P∗
2l(π)

∑

θ∈Pn

P

[ 1

2
∆l(θ) fθŶ(t−s) ◦ Jθ(X̂(s)), X̂(s) ∈ R̂

n
θ , Ŷ(t − s) ∈ R̂

2l(π)
ϑ

]

−
∑

ϑ∈P∗
2l(π)

∑

θ∈Pn

P

[ 1

2
∆l(ϑ) fX̂(s)ϑ ◦ Jϑ(Ŷ(t − s)), X̂(s) ∈ R̂

n
θ , Ŷ(t − s) ∈ R̂

2l(π)
ϑ

]

.

Integrating the previous equation from 0 to t , by (2.6) we have
(2.7)

∣

∣

∣

∑

θ∈Pn

P
[

fσπ(X̂(t); y), X̂(t) ∈ R̂
n
θ

]

−
∑

ϑ∈P∗
2l(π)

P
[

fσπ(x; Ŷ(t)), Ŷ(t) ∈ R̂
2l(π)
ϑ

]

∣

∣

∣

=

∣

∣

∣

∑

ϑ∈P∗
2l(π)

∑

θ∈Pn

P
[

fσπ(X̂(t); Ŷ(0)), X̂(t) ∈ R̂
n
θ , Ŷ(0) ∈ R̂

2l(π)
ϑ

]

−
∑

ϑ∈P∗
2l(π)

∑

θ∈Pn

P
[

fσπ(X̂(0); Ŷ(t)), X̂(0) ∈ R̂
n
θ , Ŷ(t) ∈ R̂

2l(π)
ϑ

]

∣

∣

∣

=
1

2

∣

∣

∣

∑

ϑ∈P∗
2l(π)

∑

θ∈Pn

∫ t

0

P
[

∆l(θ) fθŶ(t−s) ◦ Jθ(X̂(s)) − ∆l(ϑ) fX̂(s)ϑ ◦ Jϑ(Ŷ(t − s)),

X̂(s) ∈ R̂
n
θ , Ŷ(t − s) ∈ R̂

2l(π)
ϑ

]

ds
∣

∣

∣

≤ 1

2

∑

ϑ∈P∗
2l(π)

∑

θ∈Pn

∫ t

0

P
[

Gθϑ(X̂(s); Ŷ(t − s)), X̂(s) ∈ R̂
n
θ , Ŷ(t − s) ∈ R̂

2l(π)
ϑ

]

ds.
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Now we are left to show that the right hand side of (2.7) goes to 0 as σ → 0+. We
first show that

(2.8) lim
σ→0+

∫ t

0

P
[

φσ(Ŷ1(t − s) − X̂1(s))φσ(Ŷ1(t − s) − X̂2(s)), Tx
12 > s

]

ds = 0,

where Tx
12 := inf{s ≥ 0 : X̂1(s) = X̂2(s)}.

The heuristic is that φσ(Ŷ1(t − s)− X̂1(s))φσ(Ŷ1(t − s)− X̂2(s))1{Tx
12>s} is big only

if Ŷ1(t − s), X̂1(s) and X̂2(s) are all close to each other. Due to the independence of Ŷ1

and X̂i , and the restriction Tx
12 > s, the probability of the latter event is small enough

to make (2.8) hold.

We now proceed to carry out the above mentioned heuristic argument. Let φ
denote the density of the standard normal distribution. Given ǫ > 0 small enough,
for σǫ < s < t −σ, by the reflection principle for Brownian motion we can show that

(2.9)

P
[

φσ(Ŷ1(t − s) − X̂1(s))φσ(Ŷ1(t − s) − X̂2(s)), Tx
12 > s

]

≤ 1

2σ2π
P

{

Tx
12 > s, X̂2(s) − X̂1(s) < σ1−ǫ, |Ŷ1(t − s) − X̂1(s)| < σ1−ǫ

}

+ P
[

φσ(Ŷ1(t − s) − X̂1(s))φσ(Ŷ1(t − s) − X̂2(s)), X̂2(s) − X̂1(s) ≥ σ1−ǫ
]

+
1

σ
√

2π
P

[

φσ(Ŷ1(t − s) − X̂1(s)), |Ŷ1(t − s) − X̂1(s)| ≥ σ1−ǫ
]

≤ σ1−ǫ

σ2π
√

2π(t − s)

∫ σ1−ǫ
√

2σǫ

0

φ(x − (x2 − x1)) − φ(−x − (x2 − x1)) dx

+
1

σ2
√

2π
φ(

1

2σǫ
) +

1

σ2
√

2π
φ(

1

σǫ
)

≤ σ1−5ǫ(x2 − x1)

4π2
+

1

σ2
√

2π
φ(

1

2σǫ
) +

1

σ2
√

2π
φ(

1

σǫ
).

For 0 < s ≤ σǫ, it follows that

(2.10) P
[

φσ(Ŷ1(t − s) − X̂1(s))φσ(Ŷ1(t − s) − X̂2(s)), Tx
12 > s

]

≤ 1

2σ2π
P
{

X̂2(s) − X̂1(s) < 2σǫ, Tx
12 > s}

+
1

σ2
√

2π
φ(σǫ−1)P{X̂2(s) − X̂1(s) ≥ 2σǫ

}

≤ 1

2σ2π

(

1 − Φ(
x2 − x1

2
√

2σǫ
)

)

+
1

σ2
√

2π
φ(σǫ−1),
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where Φ is the normal distribution function. Moreover, for t − σ ≤ s < t ,

(2.11) P
[

φσ(Ŷ1(t − s) − X̂1(s))φσ(Ŷ1(t − s) − X̂2(s)), Tx
12 > s

]

≤ 1

2πσ2
P

{

|Ŷ1(t − s) − X̂1(s)| ≤ σ1−ǫ, |Ŷ1(t − s) − X̂2(s)| ≤ σ1−ǫ
}

+
1√
2πσ

P
[

φσ(Ŷ1(t − s) − X̂1(s)), |Ŷ1(t − s) − X̂1(s)| > σ1−ǫ
]

+
1√
2πσ

P
[

φσ(Ŷ1(t − s) − X̂2(s)), |Ŷ1(t − s) − X̂2(s)| > σ1−ǫ
]

≤ 1

π2σ2ǫs
+

1

πσ2
e−

1
2σǫ .

Combining (2.9), (2.10) and (2.11), (2.8) follows readily.
Similarly, we can also show that

lim
σ→0+

∫ t

0

P
[

φσ(Ŷ1(t − s) − X̂i(s))φσ(Ŷ1(t − s) − X̂ j(s)), Tx
i j > s

]

ds = 0

and

lim
σ→0+

∫ t

0

P
[

φσ(Ŷi(t − s) − X̂k(s))φσ(Ŷ j(t − s) − X̂k(s)), T
y
i j > t − s

]

ds = 0,

where T
y
i j := inf{t ≥ 0 : Ŷi(t) = Ŷ j(t)} for 1 ≤ i < j ≤ n.

As a result,

(2.12)

∫ t

0

P
[

Gθϑ(X̂(s); Ŷ(t − s)), X̂(s) ∈ R̂
n
π, Ŷ(t − s) ∈ R̂

2l(π)
ϑ

]

ds

≤
∫ t

0

P
[

S1
θϑ(X̂(s); Ŷ(t − s))

]

ds +

∫ t

0

P
[

S2
θϑ(X̂(s); Ŷ(t − s))

]

ds

+

∫ t

0

P
[

S3
θϑ(X̂(s); Ŷ(t − s))

]

ds +

∫ t

0

P
[

S4
θϑ(X̂(s); Ŷ(t − s))

]

ds

−→ 0 as σ → 0+.

Therefore,

P

{

l(π)
⋂

j=1

⋂

i∈A j

{X̂i(t) ∈ (y2 j−1, y2 j)}
}

= lim
σ→0+

∑

θ∈Pn

P
[

fσπ(X̂(t); y), X̂(t) ∈ R̂
n
θ

]

= lim
σ→0+

∑

ϑ∈P∗
2l(π)

P

[

fσπ(x; Ŷ(t)), Ŷ(t) ∈ R̂
2l(π)
ϑ

]
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= P

{

l(π)
⋂

j=1

⋂

i∈A j

{xi ∈ (Ŷ2 j−1(t), Ŷ2 j(t))}, TY > t
}

= P

{

l(π)
⋂

j=1

⋂

i∈A j

{xi ∈ (Ŷ2 j−1(t), Ŷ2 j(t))}
}

,

where TY := inf{t > 0 : Ŷ2i−1(t) = Ŷ2i(t), 1 ≤ i ≤ l(π)}. Duality (1.1) then follows.
The proof of Theorem 1.1 is thus finished.

Remark 2.3 One can easily see that (1.1) also holds when y1 ≤ y2 ≤ · · · ≤ y2m.
Moreover, the following generalized version of Theorem 1.1 also holds.

Corollary 2.4 Given π = {A1, . . . , Al(π)} ∈ Pn and y = (y1, . . . , y2l(π)) such that

y1 ≤ y2 ≤ · · · ≤ y2l(π), let X̂ be a n-dimensional coalescing Brownian motion with

initial distribution µ ∈ M1(R
n). Let Ŷ be a 2l(π)-dimensional coalescing Brownian

motion with Ŷ(0) = (y1, . . . , y2l(π)). Then we have

(2.13)

∫

µ(dx)P

{

l(π)
⋂

j=1

⋂

i∈A j

{X̂i(t) ∈ (y2 j−1, y2 j)}
}

=

∫

µ(dx)P

{

l(π)
⋂

j=1

⋂

i∈A j

{xi ∈ (Ŷ2 j−1(t), Ŷ2 j(t))}
}

.

3 A Measure-Valued Process

The duality obtained in the previous section can be applied to study a measure-valued
Markov process which describes the evolution of the following particle system: parti-

cles with possibly different masses evolve according to coalescing Brownian motions.
Their respective masses are added together whenever two particles merge into one
particle.

In this section we are going to show that the above mentioned model arises from a

high density limit of the empirical measures of coalescing Brownian motions. It was
expected in [3] that a more complex measure-valued diffusion process (superprocess
with coalescing spatial motion) should arise as a high density limit of coalescing-
branching particle systems; also see [2]. The superprocess with coalescing spatial

motion has been constructed and characterized in [3] without consideration of the
particle systems.

M1(R) denotes the space of probability measures on R equipped with the topology

of weak convergence. As usual, we write C(M1(R)) as the space of bounded contin-
uous M1(R)-valued functions, and write D(M1(R)) as the space of cadlag M1(R)-
valued functions.

Definition 3.1 A collection of processes {Zα, α ∈ I} with paths in D(M1(R)) is C-
relatively compact in D(M1(R)) iff it is relatively compact and all weak limit points
are continuous a.s..
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Let Z0 be a probability measure on R. (X̂1, . . . , X̂n) is an n-dimensional coalescing
Brownian motion such that X̂1(0), . . . , X̂n(0) are i.i.d. samples from Z0. Let Zn

t :=
1
n

∑n
i=1 δ{X̂i (t)} be the empirical measure of (X̂1, . . . , X̂n).

Lemma 3.2 {Zn} is C-relatively compact in D(M1(R)).

Proof This proof is a modification of the proof of proposition 2.4.2 in [12]. For

any ǫ > 0 and T > 0, choose a compact set K0 ⊂ D(R) such that P
Z0{X ∈ Kc

0} <
ǫ2. Let K := {xt : t ≤ T, x ∈ K0}. Then K is compact in R and P

Z0{Xt ∈ Kc,
∃t ≤ T} ≤ P

Z0{X ∈ Kc
0} < ǫ2. Let Rn(t) := 1

n

∑n
i=1 sup0≤s≤t 1Kc (X̂i(s)). Since Rn(t)

is increasing in t , we then have

P{ sup
0≤t≤T

Zn
t (Kc) > ǫ} ≤ P{ sup

0≤t≤T

Rn(t) > ǫ}

≤ 1

ǫ
P[Rn(T)]

=
1

ǫ
P{X(t) ∈ Kc, ∃t ≤ T}

< ǫ.

Now we are going to show that, for any f ∈ C2
b , {Zn

. ( f )} is C-relatively compact

in D(R+, R). By Ito’s formula,

Zn
t ( f ) =

1

n

n
∑

i=1

[

f (X̂i(0)) +

∫ t

0

f ′(X̂i(s)) dX̂i(s) +

∫ t

0

1

2
f ′ ′(X̂i(s)) ds

]

.

1
n

∑n
i=1

∫ t

0
1
2

f ′ ′(X̂i(s)) ds is C-relatively compact following from the Arzela-Ascoli

theorem and Proposition 6.3.26 of [9]. Since

〈 1

n

n
∑

i=1

∫ .

0

f ′(X̂i(s)) dX̂i(s)
〉

t
=

1

n2

n
∑

i, j=1

∫ t

0

f ′(X̂i(s))2 d〈X̂i, X̂ j〉s,

where 〈X̂i, X̂ j〉s = s − Ti j ∧ s, by the Arzela-Ascoli theorem,

{〈 1

n

n
∑

i=1

∫ .

0

f ′(X̂i(s)) dX̂i(s)
〉

t

}

is C-relatively compact. Theorem 6.4.13 and Proposition 6.3.26 in [9] then imply

that the collection of martingales { 1
n

∑n
i=1

∫ .

0
f ′(X̂i(s)) dX̂i(s)} is C-relatively com-

pact. Also notice that 1
n

∑n
i=1 f (X̂i(0)) → Z0( f ) a.s. {Zn( f )} is thus C-relatively

compact. So by Theorem 2.4.1 in [12] (with D(MF(R)) replaced by D(M1(R)) ), we
can conclude that {Zn} is C-relatively compact.

Adjoin ∞ to R to make R̄ := R∪{∞} a compact space. Each M1(R)n-valued pro-
cess can also be treated as a M1(R̄)n-valued process. The next theorem characterizes
the weak limit of (Zn) by specifying all its “joint moments”.
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Theorem 3.3 {Zn} has a unique C(M1(R))-valued weak limit Z. Z is a Markov

process. It satisfies that for any a1 ≤ · · · ≤ a2m, and any rk ∈ N+, k = 1, . . . , m,

(3.1) P

[

m
∏

k=1

Zt ([a2k−1, a2k])rk

]

= P

[

m
∏

k=1

Z0([Ŷ2k−1(t), Ŷ2k(t)])rk

]

,

where (Ŷ1, . . . , Ŷ2m) is a 2m-dimensional coalescing Brownian motion starting at

(a1, . . . , a2m).

Proof Let Z be any fixed limit point of {Zn}, i.e., Znq
D−→ Z in D(M1(R)) as q →

∞ for a subsequence {nq}. By Theorem 1.1, there is a 2m-dimensional coalescing

Brownian Ŷ independent of {X̂n} such that Ŷ(0) = (a1, . . . , a2m) and for all n ∈
N+, t > 0,

(3.2) P

[

m
∏

k=1

Zn
t ([a2k−1, a2k])rk

]

= P

[

m
∏

k=1

( 1

n

n
∑

i=1

1{X̂i (t)∈[a2k−1,a2k]}

) rk
]

=

(

m
∏

k=1

1

nrk

)

n
∑

i11,...,i1r1
,...,im1,...,imrm =1

P

[

m
∏

k=1

rk
∏

j=1

1{X̂ik j
(t)∈[a2k−1,a2k]}

]

=

(

m
∏

k=1

1

nrk

)

n
∑

i11,...,i1r1
,...,im1,...,imrm =1

P

[

m
∏

k=1

rk
∏

j=1

1{X̂ik j
(0)∈[Ŷ2k−1(t),Ŷ2k(t)]}

]

= P

[

m
∏

k=1

( 1

n

n
∑

i=1

1{X̂i (0)∈[Ŷ2k−1(t),Ŷ2k(t)]}

) rk
]

= P

[

m
∏

k=1

Zn
0 ([Ŷ2k−1(t), Ŷ2k(t)])rk

]

.

Since P[Zn
t ([a − ǫ, a + ǫ])] = P[Zn

0 ([Ŷ a−ǫ(t), Ŷ a+ǫ(t)])] ≤ P{Tǫ > t}, where

(Ŷ a−ǫ(t), Ŷ a+ǫ(t)) is a coalescing Brownian motion with initial value (a − ǫ, a + ǫ)
and Tǫ := inf{t ≥ 0 : Ŷ a−ǫ(t) = Ŷ a+ǫ(t)}, then uniformly in n,

P

[

m
∏

k=1

Zn
t ([a2k−1 − ǫ, a2k + ǫ])rk

]

− P

[

m
∏

k=1

Zn
t ([a2k−1, a2k])rk

]

→ 0

as ǫ → 0+. Let n = nq → ∞ and we can obtain (3.1).

Now we are going to show that

(3.3) (Zn
t1
, . . . , Zn

tm
)

D−→ (Zt1
, . . . , Ztm

), m ∈ N+, 0 ≤ t1 < · · · < tm,
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from which we will conclude that Z is the unique limit of {Zn}.
Observe that the algebra generated by {⊗m

i=1 fi : fi ∈ C(R̄)} strongly separates

points (see section 3.4 of [6] for the definition). By Theorem 3.4.5 in [6] and standard
arguments we only need to show that

(3.4)

lim
n→∞

P

[

m
∏

i=1

Zn
ti

([a2i−1, a2i])
]

= P

[

m
∏

i=1

Zti
([a2i−1, a2i])

]

, a2i−1 < a2i, i = 1, . . . , m.

Instead of showing (3.4), we are going to show the apparently stronger result below
by induction on m.

(3.5)

lim
n→∞

P

[

m
∏

i=1

Zn
ti

([a2i−1, a2i])ri

]

= P

[

m
∏

i=1

Zti
([a2i−1, a2i])ri

]

, ri ∈ N+, i = 1, . . . , m.

The case with m = 1 just follows from our proof of (3.1). Suppose that (3.5) hold for
m ≤ j. We want to show that it also holds for m = j + 1. By the Markov property of
X̂n := (X̂1, . . . , X̂n) and (3.1), we have

P

[

j+1
∏

i=1

Zn
ti

([a2i−1, a2i])ri

]

= P

[

P

[

Zn
t j+1−t j

([a2 j+1, a2 j+2])r j+1 |X̂n
t j

]

j
∏

i=1

Zn
ti

([a2i−1, a2i])ri

]

= P

[

Zn
t j

([Ŷ1(t j+1 − t j), Ŷ2(t j+1 − t j)])r j+1

j
∏

i=1

Zn
ti

([a2i−1, a2i])ri

]

,

where (Ŷ1, Ŷ2)is a 2-dimensional coalescing Brownian motion starting at (a2 j+1, a2 j+2)

and independent of {Zn}.
Let n → ∞; by the inductive assumption and the fact that

P[1[Ŷ1(t j+1−t j ),Ŷ2(t j+1−t j )](x)]

is a continuous function of x, through standard arguments we have

lim
n→∞

P

[

j+1
∏

i=1

Zn
ti

([a2i−1, a2i])ri

]

= P

[

Zt j
([Ŷ1(t j+1 − t j), Ŷ2(t j+1 − t j)])r j+1

j
∏

i=1

Zti
([a2i−1, a2i])ri

]

= lim
q→∞

P

[

Z
nq

t j
([Ŷ1(t j+1 − t j), Ŷ2(t j+1 − t j)])r j+1

j
∏

i=1

Z
nq

ti
([a2i−1, a2i])ri

]
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= lim
q→∞

P

[

j+1
∏

i=1

Z
nq

ti
([a2i−1, a2i])ri

]

= P

[

j+1
∏

i=1

Zti
([a2i−1, a2i])ri

]

.

Hence, (3.5) holds for m = j + 1.

We are left to show that Z has the Markov property. For any 0 ≤ s1 < · · · <
sk ≤ s < t , any k ∈ N+, mi ∈ N+, i = 1, . . . , k + 1, any a2i−1,1 < a2i,1 < a2i−1,2 <
a2i,2 < · · · < a2i−1,mi

< a2i,mi
, i = 1, . . . , k + 1 and any ri, j ∈ N+, j = 1, . . . , mi, i =

1, . . . , k + 1, it follows from the Markov property of X̂n and the coalescing duality
(1.1) that

P

[

mk+1
∏

j=1

Zt ([a2k+1, j , a2k+2, j])rk+1, j

k
∏

i=1

mi
∏

j=1

Zsi
([a2i−1, j , a2i, j])ri, j

]

= lim
n→∞

P

[

mk+1
∏

j=1

Zn
t ([a2k+1, j , a2k+2, j])rk+1, j

k
∏

i=1

mi
∏

j=1

Zn
si

([a2i−1, j , a2i, j])ri, j

]

= lim
n→∞

P

[

P

[

mk+1
∏

j=1

Zn
t ([a2k+1, j , a2k+2, j])rk+1, j |X̂n

s

]

k
∏

i=1

mi
∏

j=1

Zn
si

([a2i−1, j , a2i, j])ri, j

]

= lim
n→∞

P

[

mk+1
∏

j=1

Zn
s ([Ŷ2 j−1(t − s), Ŷ2 j(t − s)])rk+1, j

k
∏

i=1

mi
∏

j=1

Zn
si

([a2i−1, j , a2i, j])ri, j

]

= P

[

mk+1
∏

j=1

Zs([Ŷ2 j−1(t − s), Ŷ2 j(t − s)])rk+1, j

k
∏

i=1

mi
∏

j=1

Zsi
([a2i−1, j , a2i, j])ri, j

]

,

where (Ŷ1, . . . , Ŷ2mk+1
) is a two-dimensional coalescing Brownian motion starting

from (a2k+1,1, a2k+2,1, . . . , a2k+1,mk+1
, a2k+2,mk+1

). By the Stone-Weierstrass theorem and

standard arguments again, we have, for any g ∈ C(M1(R̄)),

P[g(Zt )|Zs ′ , s ′ ≤ s] = g∗(Zs),

where g∗ is a function on M1(R̄)). Z is thus a Markov process.

Remark 3.4 Notice that Z never charges {∞}. But we need the one-point com-
pactification to be able to apply the Stone-Weierstrass theorem.

Since

Mn
t ( f ) = Zn

t ( f ) − Zn
0 ( f ) −

∫ t

0

Zn
s (

1

2
f ′ ′) ds, f ∈ C2

b,
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is a martingale with quadratic variation process

〈Mn( f )〉t =
1

n2

n
∑

i, j=1

∫ t

τi j∧t

f ′(X̂i(s)) f ′(X̂ j(s)) ds

=

∫ t

0

ds

∫

∆

f ′(x) f ′(y)Zn
s (dx)Zn

s (dy),

where ∆ := {(x, y) ∈ R
2 : x = y}. It is not surprising that Z solves the following

martingale problem.

Theorem 3.5 The process Z in Theorem 3.3 solves the following martingale problem:

(3.6) Mt ( f ) = Zt ( f ) − Z0( f ) −
∫ t

0

Zs(
1

2
f ′ ′) ds, f ∈ C2

b,

is a martingale with quadratic variation process

(3.7) 〈M( f )〉t =

∫ t

0

ds

∫

∆

f ′(x) f ′(y)Zs (dx)Zs (dy).

Proof Let T12 be the first time that X̂1(t)−X̂2(t)√
2

hits 0. Before T12, X̂1(t)−X̂2(t)√
2

and

X̂1(t)+X̂2(t)√
2

are independent Brownian motions.Therefore,

P[ f ′(X̂1(s)) f ′(X̂2(s))1{T12<s}]

=

∫ s

0

dF x1−x2√
2

(r)

∫

R

dxpr(x − x1 + x2√
2

)

∫

R

dy f ′(y)2 ps−r(y − x√
2

)

=

∫ s

0

dF x1−x2√
2

(r)

∫

R

dxpr(x − x1 + x2√
2

)

∫

R

dy f ′(y)2
√

2p2s−2r(
√

2y − x)

=

∫ s

0

dF x1−x2√
2

(r)

∫

R

dy f ′(y)2
√

2p2s−r(
√

2y − x1 + x2√
2

)

=

∫ s

0

dF x1−x2√
2

(r)

∫

R

dy f ′(y)2 ps−r/2(y − x1 + x2

2
),

where Fx is the distribution of the hitting time of 0 by a Brownian motion starting at
x, i.e.,

Fx(dr)

dr
=

|x|√
2πr3

e−
x2

2r .

Hence,

P[〈Mn( f )〉t − 〈Mn( f )〉s |Fs]

= P[〈Mn( f )〉t − 〈Mn( f )〉s |Zn
s ]

=

∫

R2

Zn
s (dx1)Zn

s (dx2)

∫ t−s

0

dl

∫ l

0

dF x1−x2√
2

(r)

∫

R

dy f ′(y)2 pl− r
2
(y − x1 + x2

2
).
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Similar to the proof of the tightness of Zn, we can prove that {〈Mn( f )〉} is tight
in C([0,∞), R). We assume that (Zn, 〈Mn( f )〉) → (Z, Λ). Further, it is easy to show

that for fixed t > 0 and f ∈ C2
b(R), Zn

t ( f )2 and 〈Mn( f )〉t are uniformly integrable.
Then it is easy to see that Mt ( f ) is a square integrable martingale with quadratic

variation process Λ(t). Then

P[Λ(t) − Λ(s)|Fs]

= lim
n→∞

P[〈Mn( f )〉t − 〈Mn( f )〉s |Fs]

= lim
n→∞

∫

R2

Zn
s (dx1)Zn

s (dx2)

∫ t−s

0

dl

∫ l

0

dF x1−x2√
2

(r)

∫

R

dy f ′(y)2 ps− r
2
(y − x1 + x2

2
)

=

∫

R2

Zs(dx1)Zs(dx2)

∫ t−s

0

dl

∫ l

0

dF x1−x2√
2

(r)

∫

R

dy f ′(y)2 pl− r
2
(y − x1 + x2

2
).

Therefore,

(3.8)

∫ t

0

ds
1

δ
P[Λ(s + δ) − Λ(s)|Fs]

=

∫ t

0

ds
1

δ

∫ δ

0

dl

∫

R2

Zs (dx1)Zs (dx2)

∫ l

0

dF x1−x2√
2

(r)

∫

R

dy f ′(y)2 pl− r
2
(y − x1 + x2

2
).

By Theorem 37 of ([11, p. 126]) and the continuity of Λ, the right hand side of

(3.8) converges to Λ(t) as δ → 0. On the other hand, the other side of (3.8) is

lim
δ→0

∫ t

0

ds
1

δ

∫ δ

0

dl

∫

R2

f ′(
x1 + x2

2
)2F x1−x2√

2

([0, l])Zs (dx1)Zs (dx2)

=

∫ t

0

ds

∫

∆

f ′(
x1 + x2

2
)2Zs (dx1)Zs (dx2)

+ lim
δ→0

∫ t

0

ds
1

δ

∫ δ

0

dl

∫

R2\∆

f ′(
x1 + x2

2
)2F x1−x2√

2

([0, l])Zs (dx1)Zs (dx2)

while the second term is bounded by

lim
δ→0

∫ t

0

ds

∫

R2\∆

f ′(
x1 + x2

2
)2F x1−x2√

2

([0, δ])Zs (dx1)Zs (dx2) = 0.

Therefore, Λ(t) equals the right hand side of (3.7) and hence, Z solves the martingale
problem (3.6)–(3.7).

Remark 3.6 The solution to the martingale problem (3.6)–(3.7) is not unique. For
example, if the initial measure is 1

2
(δ{0}+δ{1}), then for a two-dimensional coalescing

Brownian motion (X̂1
t , X̂2

t ) starting at (0, 1), the process 1
2
(δ{X̂1

t }+δ{X̂2
t }) is a solution.

On the other hand, 1
2
(δ{B1

t }+δ{B2
t }) is also a solution where (B1

t , B2
t ) is a standard two-

dimensional Brownian motion starting at (0, 1). The martingale problem does not
appear to be the best way to characterize the desired model.
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Let St be the support of Zt . The coalescing duality (1.1) can be used to derive
another seemingly different duality.

Proposition 3.7 Given y1 < · · · < y2m and a 2m-dimensional coalescing Brownian

motion Ŷ = (Ŷ1, . . . , Ŷ2m) with initial value (y1, . . . , y2m), then

(3.9)

P

{

n
⋂

i=1

{X̂i(t) ∈
m
⋃

j=1

[y2 j−1, y2 j]}
}

= P

{

n
⋂

i=1

{X̂i(0) ∈
m
⋃

j=1

[Ŷ2 j−1(t), Ŷ2 j(t)]}
}

.

Consequently,

(3.10) P

{

St ⊂
m
⋃

j=1

[y2 j−1, y2 j]
}

= P

{

S0 ⊂
m
⋃

j=1

[Ŷ2 j−1(t), Ŷ2 j(t)]
}

.

Proof By (3.2) we can show that

P

[(

m
∑

j=1

Zn
t ([y2 j−1, y2 j])

) k]

= P

[(

m
∑

j=1

Zn
0 ([Ŷ2 j−1(t), Ŷ2 j(t)])

) k]

.

Let k → ∞; we have

P

{

Zn
t

(

m
⋃

j=1

[y2 j−1, y2 j]
)

= 1
}

= P

{

Zn
0 (

m
⋃

i=1

[Ŷ2 j−1(t), Ŷ2 j(t)]) = 1
}

.

Then (3.9) follows, and (3.10) follows by letting n → ∞ in (3.9).

Remark 3.8 It is not hard to see that (3.9) is essentially the continuous space coun-
terpart of the duality in the one-dimensional nearest neighbor voter model.

The coalescing duality can also be used to show that St is discrete for t > 0. Write
|A| for the cardinality of set A ⊂ R.

Proposition 3.9 For each t > 0, P
[ ∣

∣St ∩ [−M, M]
∣

∣

]

≤ 2M√
πt

, M > 0.

Proof By (3.10) and the reflection principle of Brownian motion,

(3.11) P{St ∩ (a, b) 6= ∅} = 1 − P{St ⊂ (−∞, a] ∪ [b,∞)}
≤ 1 − P{Ta,b < t}

=
1√
2πt

∫ ∞

0

e
−(x− b−a√

2
)2

/2t − e
−(x+ b−a√

2
)2

/2t
dx,
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where Ta,b is the time when two independent Brownian motions starting at a and b

respectively first meet. Therefore, for any M > 0,

(3.12)

P
[
∣

∣St ∩ [−M, M]
∣

∣

]

= lim
n→∞

P

[

n−1
∑

i=−n

1{St∩( iM
n

, (i+1)M
n

)6=∅}

]

≤ lim
n→∞

n−1
∑

i=−n

1√
2πt

∫ ∞

0

e
−(x− M√

2n
)2

/2t − e
−(x+ M√

2n
)2

/2t
dx

=
2M√
πt

.

Remark 3.10 The bound in Proposition 3.9 is rather crude since it holds for pro-
cesses with any initial value S0. A sharper result can be obtained if the configuration
of S0 is known. One would certainly expect that, almost surely, St is finite over any
compact set for all t > 0. But we do not have a proof yet.
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