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SUMMARY

The classical Ross–Macdonald model is often utilized to model vector-borne infections; however,
this model fails on several fronts. First, using measured (or estimated) parameters, which values are
accepted from the literature, the model predicts a much greater number of cases than what is usually
observed. Second, the model predicts a single large outbreak that is followed by decades of much
smaller outbreaks, which is not consistent with what is observed. Usually towns or cities report a
number of recurrences for many years, even when environmental changes cannot explain the
disappearance of the infection between the peaks. In this paper, we continue to examine the pitfalls in
modelling this class of infections, and explain that, if properly used, the Ross–Macdonald model works
and can be used to understand the patterns of epidemics and even, to some extent, be used to make
predictions. We model several outbreaks of dengue fever and show that the variable pattern of yearly
recurrence (or its absence) can be understood and explained by a simple Ross–Macdonald model
modified to take into account human movement across a range of neighbourhoods within a city. In
addition, we analyse the effect of seasonal variations in the parameters that determine the number,
longevity and biting behaviour of mosquitoes. Based on the size of the first outbreak, we show that
it is possible to estimate the proportion of the remaining susceptible individuals and to predict the
likelihood and magnitude of the eventual subsequent outbreaks. This approach is described based
on actual dengue outbreaks with different recurrence patterns from some Brazilian regions.

Key words: Dengue, geo-spatial epidemiology, mathematical models, outbreak patterns, vector-
borne infections.

INTRODUCTION

Dengue is a human disease caused by four related but
distinct strains of flavivirus and is transmitted by
urban vectors [1–3]. It is currently considered the
most important vector-borne infection, affecting al-
most 400 million people every year in tropical coun-
tries [4]. Dengue outbreaks recur with patterns of
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different magnitude and frequency that challenge our
understanding based on the current knowledge of en-
vironment–mosquito–human interactions.

The Brazilian government maintains a database of
the weekly incidence of dengue for a large number
of cities in all regions of the country. This database
reveals a great variety of patterns as shown in the
four examples given in Figure 1.

This paper has three aims:

(1) To understand how so many different patterns ori-
ginate and to determine the mechanism under-
lying this diversity.

(2) To propose a mathematical model to explain the
patterns and to investigate if the mechanisms
involved are unique.

(3) To identify the variables and parameters that can be
used to predict when dengue transmission will cease
in a certain city and, if it persists, where it will occur
in the futurewith a certainprobability. Because these
probabilities depend on particular measurements
that may be demanding, our third goal should be
entitled: how to forecast dengue epidemics.

The paper is organized as follows. In the following sec-
tion, we describe a very simple model of dengue epi-
demics that incorporates elements that are novel to
the usual dengue models. These elements have been
partly described in two previous papers by Amaku
and colleagues [3, 5]. This model is in fact the classical
Ross–Macdonald model, but it has been modified to
avoid simple pitfalls in its application [5].

Next, we analyse the model and show that it can pre-
dict any pattern of epidemics. We also illustrate the pro-
duction of patterns using two mechanisms: the
movement of people and seasonality. In the Results sec-
tion, we introduce the calculation of a few quantities that
should allow public authorities to make predictions

about future events so that resources can be better allo-
cated. Finally, we present a summary of our findings.

HUMANS ARE THE REAL VECTOR OF
DENGUE

Aedes aegypti, the dengue mosquito, has a very short
lifespan typically lasting for 1 week [3] and has a short
flight range of ∼100 m. During these short spans of
life and flight range the mosquito covers a very
small area of the region where dengue epidemics
occur. Hence, considering that in large urban areas
dengue circulates from one neighbourhood to another,
we must assume that dengue is carried by humans who
are infected but are still able to circulate.

Based on this assumption, we propose a very simple
model that consists of N regions of a city that are more
or less geographically separate from one another other,
in the sense that the inhabitants of each of those regions
rarely visit the other regions (or visit at the ‘wrong’ time
of day). By this, we mean visits to other regions at a
time which would allow humans to be bitten by mosqui-
toes and acquire the infection. We will show that this
explains why, in some cities, there can be a dengue epi-
demic in one district and not in another nearby neigh-
bourhood during the same transmission season.

Themodel consists of the following system of differen-
tial equations.Tohelp the reader, themeaningof the sym-
bols are given inTable 1.HSi,HIiandHRiare thedensities
of susceptible, infected and recovered individuals, re-
spectively, who live in neighbourhood i. MSi, MLi and
MIi are the densities of susceptible, latent and infected
mosquitoes, respectively, that live in neighbourhood i.
The neighbourhoods are assumed to be homogeneous,
and the population density is obtained by multiplying
the density by the area of each neighbourhood.

The equations that describe the system are:

dHSi

dt
= −a1bHSi

∑
j

βHij
MIj

NHj
− μHHSi + ΛH

i ,

dHIi

dt
= a1bHSi

∑
j

βHij
MIj

NHj
− μH + γH + αH

( )
HIi,

dHRi

dt
= γHHIi − μHHRi,

dMSi

dt
= −a2c

MSi

NHi

∑
j

βMij HIj − μMMSi + ΛM
i ,

dMLi

dt
= a2c

MSi

NHi

∑
j

βMij HIj − a2cφ
MSi t− τ( )
NHi t− τ( )

∑
j

βMij HIj t− τ( ) − μMMLi,

dMIi

dt
= a2cφ

MSi t− τ( )
NHi t− τ( )

∑
j

βMij HIj t− τ( ) − μMMIi.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)
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where the indices i,j= 1, . . . , N correspond to different
neighbourhoods, φ is the proportion of latent mosqui-
toes that survive the incubation period τ, and

βHii = 1−
∑
j=i

βHij and βMii = 1−
∑
j=i

βMij ,

so that
∑
j

βHij =
∑
j

βMij = 1.

As an example to clarify the above equations, let us
consider two neighbourhoods and two human and in-
sect populations. Then, we have:

Fig. 1. Four different patterns of time distribution of dengue outbreaks in Brazil, 2000–2014.

Table 1. Variables, parameters, their biological meaning and the values of system (1)

Variable Biological meaning Initial value

HSi Susceptible humans Variable
HIi Infected humans Variable
HRi Recovered humans Variable
MSi Susceptible mosquitoes Variable
MLi Latent mosquitoes Variable
MIi Infected mosquitoes Variable
Parameter Biological meaning Value
a1 Biting rate of infected mosquitoes 7 week−1

a2 Biting rate of non-infected mosquitoes 7 week−1

b Probability of transmission from mosquitoes to humans 0·6
c Probability of transmission from mosquitoes to humans 0·5
βHij Proportion of individuals from neighbourhood i that visit neighbourhood j Variable
μH Per capita human mortality rate 2·74 × 10−4 week−1

ΛH
i Total growth rate of the human population Variable (usually zero)

γH Per capita human recovery rate 1 week−1

αH Humans mortality rate due to the disease zero
βMij Proportion of mosquitoes from neighbourhood i that bite humans from neighbourhood j Variable
μM Per capita mortality rate of mosquitoes 0·33 week−1

τ Extrinsic incubation period of dengue virus 1 week
φ Probability of survival through the extrinsic incubation period* 0·74
ΛM

i Total growth rate of the mosquito population Variable (usually zero)

* φ is usually taken to be exp(–μMτ).

Dengue patterns of propagation 3437

https://doi.org/10.1017/S0950268816001448 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268816001448


and

From the above equations, it becomes clear that only
humans travel from one neighbourhood to another.
For example, the proportion of susceptible and
infected humans from neighbourhood 1 that visit
neighbourhood 2 is denoted as βH12. In addition, we as-
sume that

βHij i = j
( )

and βMij i = j
( )

are small.

Seasonal fluctuations in the number of mosquitoes is
very common and may influence the pattern and dur-
ation of outbreaks. To introduce these fluctuations, we
replace the mosquito equations with:

dHS1

dt
= −a1bHS1 1− βH12

( )MI1

NH1
+ βH12

MI2

NH2

[ ]
− μHHS1 + ΛH

1 ,

dHS2

dt
= −a1bHS2 βH21

MI1

NH1
+ 1− βH21

( )MI2

NH2

[ ]
− μHHS2 + ΛH

2 ,

dHI1

dt
= a1bHS1 1− βH12

( )MI1

NH1
+ βH12

MI2

NH2

[ ]
− μH + γH + αH

( )
HI1,

dHI2

dt
= a1bHS2 βH21

MI1

NH1
+ 1− βH21

( )MI2

NH2

[ ]
− μH + γH + αH

( )
HI2,

dHR1

dt
= γHHI1 − μHHR1,

dHR2

dt
= γHHI2 − μHHR2.

dMS1

dt
=−a2c

MS1

NH1
1−βM12
( )

HI1+βM12HI2
[ ]−μMMS1+ΛM

1 ,

dMS2

dt
=−a2c

MS2

NH2
βM21HI1+ 1−βM21

( )
HI2

[ ]−μMMS2+ΛM
2 ,

dML1

dt
= a2c

MS1

NH1
1−βM12
( )

HI1+βM12HI2
[ ]−a2cφ

MS1 t− τ( )
NH1 t− τ( ) 1−βM12

( )
HI1 t− τ( )+βM12HI2 t− τ( )[ ]−μMML1,

dML2

dt
= a2c

MS2

NH2
βM21HI1+ 1−βM21

( )
HI2

[ ]−a2cφ
MS2 t− τ( )
NH2 t− τ( ) βM21HI1 t− τ( )+ 1−βM21

( )
HI2 t− τ( )[ ]−μMML2,

dMI1

dt
= a2cφ

MS1 t− τ( )
NH1 t− τ( ) 1−βM12

( )
HI1 t− τ( )+βM12HI2 t− τ( )[ ]−μMMI1

dMI2

dt
= a2cφ

MS2 t− τ( )
NH2 t− τ( ) βM21HI1 t− τ( )+ 1−βM21

( )
HI2 t− τ( )[ ]−μMMI2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)
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In system (3), M1
2 and M2

2 define the amplitude of the
oscillations in the density of mosquitoes due to sea-
sonality (this is a schematic model). In the absence
of infection, the equation for the mosquito popula-
tions can be solved exactly. The equation for the dens-
ity of mosquitoes and its solutions are:

dMSi

dt
= Mi

2
2πf
μM

( )
cos 2πft

( )[ ]
μM (MSi), i = 1, 2

(3a)
and

MSi = MSi(0) exp Mi
2 sin 2πft

( )[ ]
. (3b)

The above model for seasonality can be easily modified.
For instance, an upper limit to the mosquito population
can be introduced such that the model becomes more
realistic. We did this and the qualitative results
described in Figure 6 below showed very little change.

Note that, in system (3), the total number of mos-
quitoes is not affected by the infection. This is a
very good approximation for dengue because only a
very small number of mosquitoes are infected, and
their life expectancy is not affected by the disease.
However, the total number of infections varies with
the climatic factor compared to the case; in which,
the number of mosquitoes is constant. It also varies
with the moment of time that the infection is ‘intro-
duced’ into the population.

If the disease is introduced, for example in district 1,
it will eventually spread to other districts. This, how-
ever, can be a very slow process and because the
data reported represent the number of cases in a
given city per month, the duration of epidemics can
be very long because the disease is ‘travelling’ through
the city, carried by humans.

Remark 1. Choosing ΛH
i and ΛM

i in such a way that
the human and the mosquito populations are kept
constant, then dividing the equations of system (1)
by NHi and NMi, we obtain equations for the
proportions. Of course, if there is seasonality, this
cannot be done for the mosquito population.

Remark 2. The above equations refer to a single dengue
strain circulating in a given population. In some places,
however, more than one serotype can circulate
simultaneously in the same community. If we assume
that the circulation of one virus does not interfere with
the other, then the two viruses can be treated separately.

Remark 3. In this paper, we assumed two different
biting rates (denoted a1 and a2) for the infected and
non-infected mosquitoes, respectively. This was done
for the sake of generality. In the case of dengue, it is
accepted that they are both equal, although this may
not be true for other vector-borne infections (e.g. in
the case of plague [5]).

dMS1

dt
= 1+M1

2
2πf
μM

( )
cos 2πft

( )[ ]
μM (MS1+ML1+MI1)−a2c

MS1

NH1
1−βM12
( )

HI1+βM12HI2
[ ]−μMMS1 ,

M1
2

2πf
μM

( )
, 1,

dMS2

dt
= 1+M2

2
2πf
μM

( )
cos 2πft

( )[ ]
μM (MS1+ML1+MI1)−a2c

MS2

NH2
βM21HI1+ 1−βM21

( )
HI2

[ ]−μMMS2 ,

M2
2

2πf
μM

( )
, 1,

dML1

dt
= a2c

MS1

NH1
1−βM12
( )

HI1+βM12HI2
[ ]−a2cφ

MS1 t− τ( )
NH1 t− τ( ) 1−βM12

( )
HI1 t− τ( )+βM12HI2 t− τ( )[ ]−μMML1,

dML2

dt
= a2c

MS2

NH2
βM21HI1+ 1−βM21

( )
HI2

[ ]−a2cφ
MS2 t− τ( )
NH2 t− τ( ) βM21HI1 t− τ( )+ 1−βM21

( )
HI2 t− τ( )[ ]−μMML2,

dMI1

dt
= a2cφ

MS1 t− τ( )
NH1 t− τ( ) 1−βM12

( )
HI1 t− τ( )+βM12HI2 t− τ( )[ ]−μMMI1,

dMI2

dt
= a2cφ

MS2 t− τ( )
NH2 t− τ( ) βM21HI1 t− τ( )+ 1−βM21

( )
HI2 t− τ( )[ ]−μMMI2.

ML1(0) =ML2(0)= 1

MI1(0)=MI2(0)= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)
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ANALYSIS OF THE MODEL

The system of equations given above does not have an
analytical solution, even when there is just one neigh-
bourhood and no seasonal fluctuations. Even if an
analytical solution existed, it would be so complicated
that it would be of no use. We, therefore, list a number
of numerical results derived using the system and
show how they can be used.

The simple Ross–Macdonald model

Consider that we have just one human and one mos-
quito population. As noted by Amaku et al. [6], this
simple system is solved by assuming that an initial
population of infected hosts (either humans or mos-
quitoes) is uniformly distributed over the area that is
being studied. The result is a large outbreak, as
shown in Figure 1. This can be explained as follows:

R0 = a1a2bcφ
μM (μH + γH + αH)

NM(0)
NH(0) . (4)

If the basic reproduction number [7–9] of this model is
>1, the outbreak increases up to a certain point where
the number of susceptible individuals diminishes to a
certain value. The infection then disappears for a
number of years. This is not what is observed in real
outbreaks of dengue, as discussed earlier. This will
be elaborated upon later in the paper.

To determine when the number of new cases begins
to diminish, we use the following approximate thresh-
old [10]:

Th(t) = φa1a2bc
μM (μH + γH + αH)

MS(t)
NH(t)

HS(t)
NH(t)

= R0
MS(t)
NH(t)

HS(t)
NH(t)

NH 0( )
NM 0( ) . (5)

When R(t) crosses one from above (below), the inci-
dence and prevalence reach a maximum (minimum).
We consider only the first outbreak, namely the only
one that has physical meaning.

It is important to note three things:

(1) If nothing changes in the neighbourhood that we
are studying, then when the threshold, Th(t), is
reached, the outbreak is interrupted and the infec-
tion rapidly disappears. The number of residual
susceptible individuals, H′S, results in a new R0

that we call R0b=R0 H′S/NH, which is <1 in the
following year. Therefore, no outbreak is expected
with a likelihood that is numerically equal to this
new R0b (see discussion below). Conversely, if
something changes during the outbreak (heavy

rain, public health interventions, drought, etc.),
then the threshold may be reached, for example
by variation of the factor MS(t)/NH(t) in equation
(5). In this case, the remaining number of suscep-
tible individuals is large enough, and we expect
another outbreak in the following year because
the population of mosquitoes increases very rapid-
ly (see discussion below).

(2) The number of cases predicted by the model, if
nothing changes, is much larger than the number
of cases actually observed and reported in all den-
gue outbreaks of which we are aware. This
appears strange because the parameters used in
the model are obtained empirically; an explan-
ation for this will be given later.

(3) The total number of cases in the first outbreak pre-
dicted by this simple model increases with the two
components of R0 [11, 12]:

TH�M = NVa2c
NH γH + μH + αH

( ) , (6)

TM�H = a1bφ
μM

, (7)

with

R0 = TH�M × TM�H, (8)
as shown in Table 2.

The epidemics for a large R0 eventually saturate the
population; in other words, the proportion of infected
people approaches 1, as shown in Figure 2.

This result implies that for large values of R0, which
is the product of TH→M and TM→H, it is very unlikely
that the infection will return in the subsequent year
after the outbreak. We will return to this point later
in the paper.

Simulating some observed patterns of dengue
recurrence

The epidemic patterns (time distribution of yearly in-
cidence of the infection) in many cities in Brazil are
extremely complicated. However, the model given by
the system of equation (1) can be used to fit any
observed pattern. In the Results section, we show
two examples of such a fitting for two different cities
with completely different patterns: Natal and Recife
(both in northeast Brazil)

We now explain how this can be accomplished. As
stated above, the classical Ross–Macdonald model,
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Table 2. Percentage of (a) infected individuals, (b) latent mosquitoes, and (c) infected mosquitoes in the first
outbreak

TH→M/TM→H 0·71 0·80 0·89 0·98 1·06 1·15 1·24 1·33 1·42

(a) Percentage of infected individuals in the first outbreak
1·30 0·00 2·24 25·20 38·51 48·77 56·86 63·35 68·63 72·98
1·46 2·24 27·02 41·21 51·86 60·07 66·54 71·73 75·94 79·39
1·62 25·11 41·09 52·71 61·44 68·16 73·46 77·69 81·11 83·92
1·79 38·21 51·54 61·23 68·52 74·13 78·54 82·05 84·90 87·22
1·95 48·19 59·48 67·71 73·89 78·65 82·37 85·34 87·72 89·67
2·11 55·95 65·66 72·74 78·05 82·13 85·32 87·85 89·89 91·54
2·27 62·10 70·56 76·71 81·33 84·87 87·63 89·82 91·57 92·98
2·44 67·06 74·49 79·90 83·95 87·05 89·47 91·37 92·89 94·12
2·60 71·11 77·70 82·49 86·08 88·82 90·95 92·62 93·95 95·03

(b) Percentage of latent mosquitoes in the first outbreak
1·30 0·00 0·14 1·56 2·37 2·99 3·46 3·84 4·14 4·38
1·46 0·15 1·87 2·85 3·56 4·10 4·51 4·83 5·08 5·28
1·62 1·94 3·15 4·01 4·64 5·10 5·46 5·73 5·94 6·10
1·79 3·22 4·31 5·07 5·62 6·03 6·33 6·56 6·73 6·86
1·95 4·40 5·37 6·05 6·53 6·88 7·13 7·32 7·46 7·57
2·11 5·49 6·36 6·95 7·37 7·67 7·88 8·03 8·14 8·22
2·27 6·49 7·27 7·79 8·15 8·40 8·58 8·70 8·78 8·84
2·44 7·43 8·12 8·58 8·88 9·09 9·23 9·32 9·38 9·41
2·60 8·30 8·91 9·31 9·57 9·74 9·85 9·91 9·94 9·95

(c) Percentage of infected mosquitoes in the first outbreak
1·30 0·00 0·10 1·12 1·70 2·15 2·49 2·76 2·97 3·15
1·46 0·11 1·35 2·05 2·56 2·95 3·24 3·47 3·65 3·80
1·62 1·39 2·27 2·88 3·33 3·67 3·92 4·12 4·27 4·39
1·79 2·32 3·10 3·65 4·04 4·33 4·55 4·72 4·84 4·93
1·95 3·17 3·86 4·35 4·70 4·95 5·13 5·27 5·37 5·44
2·11 3·95 4·57 5·00 5·30 5·51 5·67 5·78 5·86 5·91
2·27 4·67 5·23 5·60 5·86 6·04 6·17 6·26 6·32 6·35
2·44 5·34 5·84 6·17 6·39 6·54 6·64 6·70 6·75 6·77
2·60 5·97 6·41 6·70 6·88 7·00 7·08 7·13 7·15 7·16

Fig. 2. Proportion of infected individuals in the first outbreak as a function of TH→M and TM→H.
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which is only one population of humans and one
population of mosquitoes with R0 > 1, produces a
large outbreak followed by smaller blips of infection
that are widely separated in time (typically decades)
and are, therefore, non-physical. This large outbreak
occurs because, as noted by Amaku et al. [6], this
equation is solved by assuming an initial population
of infected individuals uniformly distributed over the
region is being studied. Therefore, the disease occurs
simultaneously everywhere in the area and produces
a single very large outbreak, as shown in Figure 3.
After this peak, the infection dies out, which means
that the number of cases falls to zero and remains
close to zero for several years. This happens when
the threshold [10] is reached, which occurs even
when R0 is only slightly >1.

As mentioned above, however, other factors may
cause Th(t) to fall <1. For instance, factors affecting
survival of the mosquitoes, such as heavy rain,
drought, sanitary interventions and cold weather,
may result in Th(t) < 1. As a consequence, it is possible
to have a residual H ′

S(t)/NH (t) after an outbreak that
is large enough to guarantee an outbreak in the fol-
lowing year. However, due to smaller density of mos-
quitoes, the outbreak may not occur. To summarize, if
external factors do not interfere with the intensity of
transmission, the outbreak is interrupted by the lack
of enough susceptible individuals to maintain it. In
such a case, we will have a residual H ′

S(t)/NH(t) low
enough that an outbreak in the following year is ren-
dered unlikely. If, however, the outbreak is inter-
rupted by external factors before H ′

S(t)/NH (t) is low
enough, then the new R0b will be >1, and an outbreak

in the following year may occur. The size of the new
outbreak will be dependent on the number of suscep-
tible individuals available to be infected and may be
larger or smaller than the first outbreak.

If we subdivide the populations into several sub-
populations and introduce the disease in just one of
them, then we have as many peaks as the number of
sub-populations. In this case, the total population is
referred to as a ‘meta-population’ in the literature
[11]. Figure 4 illustrates the pattern obtained with
three identical sub-populations.

Introducing seasonality completely changes the pat-
tern in Figure 4, as illustrated in Figure 5.

An important observation: invariance of the total
number of cases after the first outbreak

It is important to note that the total number of cases is
independent of the pattern of outbreaks (time distribu-
tion of incidence of cases) if there is no seasonality.
Instead, it depends on the values of the parameter
that determine the intensity of transmission at the be-
ginning of the epidemic. In fact, the number of cases
in the single outbreak produced by the simple Ross–
Macdonald model is almost the same as the total
number of cases resulting from summing the three
peaks in the case illustrated by Figure 4. A small dif-
ference occurs because the single peak of the Ross–
Macdonald model has a small duration of time,
whereas in the other cases, the outbreaks last for a
few years and, therefore, demographic effects (people
are born and die) take place in between. Obviously,
when the mortality and birth rates are negligible, the

Fig. 3. Simulation of an outbreak when the initial condition is spread throughout the area: a single large peak is
obtained.
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total number of cases in the first and only outbreak is
independent of the pattern of dengue recurrence.

However, when the basic reproduction number is
too low (only slightly >1), although the threshold
given by equation (5) is reached, the number of
remaining susceptible individuals after the outbreak
may be large (see Fig. 2).

Effect of seasonality

When seasonality is considered, the total number of
mosquitoes is no longer constant and can vary consid-
erably over the course of the year. In Figure 5, we intro-
duced seasonality to modify the patterns shown in
Figure 4. The total number of cases after 3 years of
simulation is significantly higher than when seasonality

is not considered. The total number of cases depends
on the time of the year that the infection is ‘introduced’.
In Figure 6, we show the variation in the number of
cases as a function of the moment the infection is intro-
duced for four different mosquito:human ratios at time
t= 0. In the figure, the dotted lines represent the
averages around which the number of cases oscillate.

Although we do not know for certain whether there
is any preferential moment for the infection to be
introduced in a non-affected area by an infected indi-
vidual, it is expected that there is a higher probability
of introduction during periods of higher infection inci-
dence. Note that the number of cases depends on this
moment, which is sufficient to influence the number of
cases if the number of susceptible individuals is high
enough (above the threshold).

Fig. 4. Simulated pattern obtained with three identical sub-populations geographically separated. The infection was
introduced in the first sub-population and propagated to the others.

Fig. 5. The effect of seasonality on the pattern shown in Figure 4.
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Asymptomatic cases: dark matter

Using the accepted values for the parameters that
enter the Ross–Macdonald model for dengue, we al-
ways obtain a number of infections that is much
greater than what has been reported in any endemic
area [4]. In this paper, we assume that a proportion
of those cases is either not identified or not notified,
or both, as dengue cases (these unidentified cases cor-
respond to asymptomatic or undiagnosed acute febrile
cases). This proportion varies in the literature from 1:3
to 1:13 [4, 13]. We call these unreported/unidentified
cases ‘dark matter’, to use the jargon of cosmologists.
In the examples that follow, we calculate this propor-
tion in some locations. Unfortunately, we have only
one place in Brazil where both seroprevalence data
and reported cases of dengue exist [14].

More than one strain of dengue virus or different viruses
(Chikungunya, Zika, Yellow fever, etc.)

If there is a super-infection by other dengue strains of
viruses in eitherhumansormosquitoes, there are twodis-
tinct possibilities: (1) no competition exists between
strains or viruses or (2) competition between strains or
viruses does exist. In the former case, each outbreak
can be treated separately. For example, if Zika virus
does not compete with dengue or other viruses, then we
can predict that the outbreak of Zikawill be very similar
to the outbreak of dengue in the same region. In the se-
cond case, an entirely new calculation has to be per-
formed. A possible mechanism for competition can be
found in [15] and [16] and will be used in a future paper.

RESULTS: UNDERSTANDING THE
DENGUE OSCILLATOR

The main qualitative results of this paper are the
following.

An outbreak in a limited district

If the number of mosquitoes in an area of a certain
district is such that the R0 of this area is >1, the dis-
ease may invade and an outbreak will occur. In this
case, the incidence of the disease will increase until
the proportion of susceptible individuals in the host
population decreases to a certain level, approximately
given by Coutinho et al. [10]:

HSi

NHi
= 1

R0

NMi

MSi

( )
(9)

Then, the outbreak will decrease and disappear from
this district for a number of years. Immediately after
the outbreak, the proportion of remaining susceptible
individuals can be calculated as 1 minus the values
shown in Table 2a.

Conversely, if for some reason after the outbreak
the new R0b is increased by at least a factor of NHi/
HSi, then another outbreak may occur. In this case,
depending on the remaining proportion of susceptible
individuals and the new R0b, the number of indivi-
duals affected by the new outbreak may be larger or
smaller than the first outbreak, and the number of re-
sistant individuals will approach saturation.

The important point is that, when the R0 of this
area is sufficiently >1, the total number of cases in

Fig. 6. The effect of seasonality on the total number of cases for four mosquito:human ratios at time t = 0. The mosquito:
human ratio varied from a minimum of 0·3 to a maximum of 8·0 over the year due to seasonal variation in the mosquito
population size. The continuous lines represent the total number of cases when seasonality is considered. They oscillate
around the averages (dotted lines) depending on the time the infection is ‘introduced’.
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humans turns out to be independent of variations in
the transmission components TH→M and TM→H, pro-
vided their values are not significantly altered. For ex-
ample, if the mosquito density with respect to humans
is lower in one district than in the other, then the out-
break will take more time to disappear, but the num-
ber of cases will be smaller (see Table 2a). Note that
any outbreak occurring afterwards will depend on
the increase of the new R0b after the outbreak.

Using these results, we can attempt to make certain
predictions at a certain point during the epidemic
about what will happen in the near future. To illus-
trate, suppose we have a given district with an inten-
sity of transmission, such that R0b for this district is
>1. Then, we are able to calculate what the number
of cases reported in this district at the end of the out-
break will be. If at some point during the epidemic,
the total number of cases is above a certain threshold,
we can say that the epidemic is over, or, with great
probability, if it will continue over time and how
many more cases will occur.

Examples of the calculation

The calculation reported below follow these steps:

(a) Lookingat thedata,we tentatively identifyepidemics
that presumably were interrupted because they
reached the threshold given by equation (5). These
epidemics are identified by long periods of very low
dengue activity between two successive outbreaks.

(b) The epidemics may consist of outbreaks that last a
few years, but if they recur for more than five con-
secutive years, the calculation described below
breaks down.

(c) The calculation assumes a proportion (1 – η) of
dark matter and that the epidemic is considered
over when the number of susceptible individuals
falls below a certain threshold [equation (5)]. Of
course, η, the proportion of notified cases, should
be confirmed by actual observations. However,
the examples below seem to indicate that for a
given geographical region, the value of η does
not vary very much from place to place.

A single outbreak: the case of the Recife dengue
outbreak, 2001–2002

This outbreak consisted of only one peak of cases fol-
lowed by several years with only marginal dengue
transmission. We can therefore tentatively assume

that the number of susceptible individuals fell to a
level that interrupted the transmission due to herd im-
munity. In Figure 7, we fitted this outbreak, calculated
the total number of cases and discovered that by only
by assuming a value of 1:24 for the proportion of dark
matter, we recovered the notification data.

This enormous number of cases represents more
than 85% of the total Recife population at the time, in-
dicating that the threshold was reached. Incidentally, it
could be predicted that this particular strain of dengue
virus would take some time to return, which in fact is
what happened. On the other hand, this proportion
agrees with the survey carried out by Braga et al. [14]
and had a herd immunity corresponding to R0 > 4.

Multiple outbreaks: the case of the Natal dengue
outbreak, 2000–2007

In contrast to the single Recife outbreak described
above, dengue in Natal during the period between
2000and2007presenteda recurrentpatternwith annual
outbreaks of smaller magnitude. This pattern was
reproduced by the model using nine geographical
regions (neighbourhoods) and by assuming that the in-
fection propagates through the movement of infected
humanhosts in those regions [see equation (1)]. The per-
iod between weeks 200 and 330 was fitted by reducing
the mosquito density (Fig. 8). Of course, there are
other mechanisms that could be used to fit this pattern.
The important point is that the number of asymptomat-
ic cases (dark matter) added to the reported cases is
greater than the total population in Natal. This can be
explained by the fact that there is more than one strain
of dengue virus circulating and that the population
increased 1%per year during the period.We shall return
to this point later in the paper.

Fig. 7. Number of weekly real (crosses) and calculated
(continuous line) reported cases for the 2001–2002
outbreak in Recife, Brazil. The total number of notified
cases was 48 500. The total number of cases given by the
model, considering η= 0·04, is 1 260 000.
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Forecasting outbreaks in a small neighbourhood

Next, we consider a small homogeneous neighbour-
hood. To predict outbreaks and their intensity, we
need basically three quantities: transmission compo-
nents TH→M and TM→H of the neighbourhood and the
value of η, which gives the proportion of dark matter
(asymptomatic cases). The challenge is how to measure
or estimate these three quantities. Assume we have a
neighbourhood where an outbreak occurred and faded
away for a few consecutive years – we can then proceed
in the following way. We can compare the fraction of
reported cases with the fraction predicted by the
model in Table 1. If the outbreak occurred a number
of years ago, it is safe to consider that the value of η
is large. Assuming several η’s, we can calculate the like-
lihood of another outbreak and its magnitude.

Unfortunately, the value of η must be measured, and
that may be expensive. However, we can assume several
values of η and calculate the corresponding R0 that
explains each η. The value of R0 can also be calculated
by another method; then, the value of η can be deduced.

Even when the outbreak saturates a given neigh-
bourhood of a city, new outbreaks of dengue may
be reported in the same city. These outbreaks occur
in other neighbourhoods due to the movement of peo-
ple. In the next section, we examine this problem.

Forecasting outbreaks in large cities

Example 1. São Paulo (Brazil), 2014–2015.
In this case, due tohumanmovement, there are a number
of peaks before the entire outbreak fades out. Of course,
we have to fit the patterns by considering the different
neighbourhoods; however, to make predictions, it is

necessary to know in which neighbourhood a particular
outbreak occurs. If this is known, then the calculation
described in the previous sub-section can be carried out
for each region.However, if the city is very large, the out-
breaksmaybe restricted to certain boroughs. In this case,
we have to consider the population in the neighbour-
hoods that are not affected in order to calculate the
total number of cases that may occur in the future.
Unfortunately, without further information, it is impos-
sible to predict the order of the outbreaks in time and
space. We will illustrate this situation with an extreme
case, namely the 2013, 2014 and 2015 dengue outbreaks
in themegalopolisofSãoPaulo(Brazil),wherewecansee
that the outbreaks ‘travel’ from place to place in subse-
quent years (Fig. 9).

Example 2. Rio de Janeiro (Brazil) 2000, 2008 and
2011–2013.
In this example, we illustrate several features of the
model.

Rio de Janeiro had three outbreaks which occurred
during 2000, 2008 and 2011–2013, respectively. The
two epidemics in 2000 and 2008 consisted essentially
of two large peaks. We assume, based on some data,
that the 2000 outbreak was essentially due to serotype
3, and the 2008 outbreak was mainly due to serotype
2. The three outbreaks in 2011–2013 are assumed to
be serotypes 4 and 1 simultaneously.

The sum of the reported cases can be observed in
Figure 10. It shows that:

(1) The outbreaks show different slopes in several
parts before reaching a plateau. This can be inter-
preted as the epidemic moving through the city.

Fig. 8. Simulation of the outbreaks in Natal, NE Brazil.
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(2) The outbreaks of 2000 and 2008 reached approxi-
mately the same number of cases. From this we
can deduce a value for η.

(3) The outbreaks of 2011–2013 did not reach the en-
tire city. In Figure 11(a,b), shows the accumulated
number of cases for two different districts of Rio,
namely, Ilha do Governador and Centro.

FORECASTING

Forecasting outbreaks in large cities, as we have
shown above, may be very difficult. We recapitulate
the reasons for this:

(a) When an epidemic enters a large city, it will enter
into a small neighbourhood and then propagate to
the rest of the city. This movement can lead to
peaks in the same city for 3–4 years before the epi-
demic fades out, which occurs when the condition
givenbyequation(5) reaches1everywhere in thecity.

(b) Large cities are rarely homogeneous; therefore,
the interruption of epidemics may occur with dif-
ferent proportions of immune people in different
parts of the city.

(c) Even in a given neighbourhood, as explained pre-
viously, the epidemic can be interrupted by climat-
ic factors. If this happens, there will be a number

Fig. 9. Evolution of the dengue outbreak in São Paulo. The situation at the end of (a) 2013, (b) 2014, (c) 2015. The
colours represent the number of cases per 100 000 inhabitants.

Fig. 10. Accumulated reported cases in Rio de Janeiro (Brazil), 2000–2015.
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of peaks until the threshold given by equation (5)
crosses one downwards from above, and then the
infection disappears.

Therefore, to predict epidemics in large cities, pro-
ceed as follows:

(1) Choose a well-described past outbreak and divide
the city into homogeneous regions with respect to
the number of cases observed, or better, with re-
spect to the proportion of remaining susceptible
individuals at the end of the outbreak.

(2) For each region, calculate the remaining number
of susceptible individuals. The difficulty here is

to know the exact number of subclinical infec-
tions. If this is known, then the total number of
cases can be adjusted.

(3) If the number of subclinical infections is not
known, then neighbourhoods free from infection
for a few years must be selected. Therefore:
. assume values of η, and calculate R0 for these
regions. Of course, the value of η cannot be
too large because we would end up with more
people infected than the total population;

. given the population size of this region, the
maximum value of R0 can be calculated for
this particular region;

Fig. 11. (a) Accumulated number of dengue cases in the Ilha do Governador borough. Arrows indicate the epidemic
spreading to other regions of the borough. The outbreaks of 2011–2013 are approximately double that of the previous
outbreaks. This indicates that there were two strains circulating. (b) The number of accumulated dengue cases in the
central region of Rio de Janeiro. Arrows indicate the epidemic spreading to other regions of the borough. Note that in
this case, the outbreaks of 2011–2013 are approximately of the same magnitude as those of previous outbreaks. This
indicates that there was only one strain circulating in this region.
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. for each R0 the likelihood of an outbreak in the
following year and its maximum size can be
estimated.

SUMMARY AND CONCLUSIONS

For several years, the number of dengue cases in a city
(or in a borough of a city) has been reported weekly
for the entire country. The reported data form a
time series and show the annual outbreaks (sometimes
more than one outbreak in a single year) with a very
irregular nature. As mentioned before, we call these
series the dengue oscillator.

The purpose of this paper is to explain these out-
breaks from a semi-quantitative point of view.
Towards that end, we used the classical Ross–
Macdonald model. This model, as usually formulated,
predicts a large outbreak followed by smaller out-
breaks that occur decades later and is clearly unrealis-
tic. The reason why the model is unrealistic when it is
naively applied is that the initial conditions assume
that the infection enters the city or borough uniformly,
as noted by Amaku et al. [6]. The model also predicts
a much larger number of cases than are actually
observed, although it uses measured parameters. In
this paper, we show that by dividing the population
into small areas, introducing the infection in just one
area (or in just a few), and introducing seasonality
we are able to reproduce any pattern observed. The
true vector of dengue is the human host who carries
the infection around the city. The large number of
cases is explained by the asymptomatic cases that
range from factor 4 to factor 13 with respect to the
symptomatic cases. It may appear that we have unfair-
ly criticized the classical Ross–Macdonald model –
this is not the case. In fact we show, in this paper,
that the classical Ross–Macdonald model, if properly
applied, can explain the patterns of outbreaks
observed in real-world settings. The basic trick was
to divide the whole population into sub-populations
and/or to introduce seasonal variations. A price had
to be paid since a number of new parameters had to
be introduced. However, one of the major findings
of this paper was that no matter how complex the pat-
terns of outbreaks are, the final total number of cases
was the same that would be obtained by using the sim-
ple version of the Ross–Macdonald model. The clas-
sical Ross–Macdonald model was modified by
introducing spatial heterogeneities and seasonality.
This is sufficient to explain any patterns observed so

far. Other heterogeneities like age-dependent biting
preferences by the mosquitoes, human differential sus-
ceptibility, etc., might complicate the model so much
that the qualitative insights provided by this simpler
version could be compromised.

Understanding the mechanism of dengue transmis-
sion is the first step to forecasting future outbreaks.

The methods described in this paper allow other
types of inferences. For instance, if in a given year,
the number of cases is far too high to be explained
by the dengue mechanisms explained above, it can
be suspected that another virus was introduced into
the population. This may either be another strain of
dengue or, as we suspected, a new infection such as
Zika virus (see Fig. 10).

Finally, a word of caution related to the values of
the parameters used in this paper. It is true that, on
the one hand, the assignment of values to parameters
borrowed from the literature is a practice that does not
have any statistical ground. On the other hand, how-
ever, the parameters necessary to run the model are
relatively well known from many decades of entomo-
logical studies (about this, we included in the new ver-
sion the phrase which values are accepted from the
literature). Consider, for instance, the biting rate of
mosquitoes. This parameter has physical limits well
established for Ae. aegypti and varies from 0 to 3
bites per day, on average. Although we used the aver-
age value of 1 bite per day, even changing this value
would not alter the qualitative behaviour of the
model too much. The same comment is valid for the
demographic parameters of mosquitoes and hosts,
the probabilities of mosquito infections from infective
hosts, and the probability of host infections from in-
fective mosquitoes, and the parameters related to den-
gue disease (duration of infection and mortality rates).
The new parameters introduced in this paper, the pro-
portion of individuals from neighbourhood i that visit
neighbourhood j, βHij , and the proportion of mosqui-
toes from neighbourhood i that bite humans from
neighborhood j, βMij , are, however, variable from
place to place and are almost impossible to be esti-
mated with any statistical significance. In addition,
the aims of our work can be summarized as follows:
to understand dengue oscillatory and recurrent pat-
terns; to propose a model to explain qualitatively
those patterns; and to identify which variables and
parameters need to be known to help in outbreak pre-
diction. Note that the current paper is not intended to
provide tools for decision making but rather to under-
stand dengue oscillatory behaviour. The part of the
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paper related to forecasting, however, uses reported
numbers of cases and does not depend on fine details
of the components of the model, at least not from the
formal statistical point of view.
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