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Efficient High-Dimensional Robust Mean

Estimation

2.1 Introduction

In Chapter 1, we analyzed some standard efficient robust estimators for the
one-dimensional setting and discussed the information-theoretic aspects of ba-
sic robust statistics problems in any dimension. Unfortunately, in high dimen-
sions, the methods discussed in that chapter are inherently unsatisfactory. In
particular, these approaches either incur runtime exponential in the dimension
or lead to error that scales polynomially in the dimension. In fact, over sev-
eral decades, this dichotomy persisted in all known algorithms for even the
most basic high-dimensional unsupervised problems in the presence of adver-
sarial outliers. The first algorithmic progress in this direction was made in the
context of high-dimensional robust mean estimation for Gaussians and other
well-behaved distributions. These developments form the basis for essentially
all algorithms in this book. Thus, it is natural for our discussion on algorithmic
high-dimensional robust statistics to begin there.

Recall that in order for robust mean estimation to be at all possible, one
needs to make some assumptions on the behavior of the inlier distribution X.
As we will see, these assumptions usually amount to certain concentration
properties. While many of the algorithms we present work for distributions
with only weak assumptions of this form (e.g., bounded covariance), the ba-
sic case of Gaussians with identity covariance (i.e., distributions of the form
X ∼ N(µ, I), for some unknown mean µ) is particularly illuminating. As such,
many of our motivating examples will be specific to this case.

2.1.1 Key Difficulties and High-Level Intuition

Arguably, the most natural attempt at robustly estimating the mean of a dis-
tribution would be to identify the outliers and output the empirical mean of
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30 Robust Mean Estimation

the remaining points. The key difficulty in high dimensions is the fact that the
outliers cannot be identified at an individual level, even when they move the
mean significantly. In a number of cases, we can easily identify the “extreme
outliers” via a pruning procedure exploiting the concentration properties of the
inliers. Alas, such naive approaches typically do not suffice to obtain nontrivial
error guarantees.

The simplest example illustrating this difficulty is that of a high-dimensional
spherical Gaussian. Typical samples will be at `2-distance approximately Θ(

√
d)

from the true mean, where d is the dimension. Given this, we can apply a kind
of basic, “naive filtering” by removing all points at Euclidean distance more
than 10

√
d from the coordinate-wise median. It is not hard to see that only a

tiny fraction of inliers will be removed by this procedure, while all of the suf-
ficiently extreme outliers will be. Unfortunately, it is difficult to remove much
else by this kind of procedure. In particular, since any point at distance approx-
imately

√
d from the mean is just as likely to appear as any other, none of them

can safely be eliminated without risking the removal of inliers as well. How-
ever, if an ε-fraction of outliers are placed at distance

√
d in roughly the same

direction from the unknown mean (see Figure 2.1), an adversary can corrupt
the sample mean by as much as Ω(ε

√
d).

Figure 2.1 A hard instance for naive filtering. Note that the inlier samples (white)
for a high-dimensional spherical Gaussian are concentrated in a spherical shell
of distance approximately

√
d from the mean. If the outliers (black) are placed

within this shell, they will be difficult to detect. Moreover, if the outliers are all
placed in roughly the same location in the shell, they can corrupt the mean by as
much as ε

√
d.

https://doi.org/10.1017/9781108943161.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108943161.002
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This leaves the algorithm designer with a dilemma of sorts. On the one hand,
potential outliers at distance Θ(

√
d) from the unknown mean could lead to

large `2-error, scaling polynomially with d. On the other hand, if the adversary
places outliers at distance approximately Θ(

√
d) from the true mean in ran-

dom directions, it may be information-theoretically impossible to distinguish
them from the inliers. The way out is the realization that, in order to obtain a
robust estimate of the mean, it is in fact not necessary to detect and remove
all outliers. It is only required that the algorithm can detect the “consequen-
tial outliers,” that is, the ones that can significantly impact our estimates of the
mean.

So how can we make progress? To begin with, let us assume that there are no
extreme outliers (as these can be removed via naive filtering). Then we claim
that the only way that the empirical mean can be far from the true mean is
if there is a “conspiracy” of many outliers, all producing errors in approxi-
mately the same direction. Intuitively, if our corrupted points are at distance
O(
√

d) from the true mean in random directions, their contributions will on
average cancel out, leading to a small error in the sample mean. In conclusion,
it suffices to be able to detect these kinds of conspiracies of outliers.

The next key insight is simple and powerful. Let T be an ε-corrupted set of
points drawn fromN(µ, I). If such a conspiracy of outliers substantially moves
the empirical mean µT of T , it must move µT in some direction. That is, there
is a unit vector v such that these outliers cause v · (µT − µ) to be large. For
this to happen, it must be the case that these outliers are on average far from µ

in the v-direction. In particular, if an ε-fraction of corrupted points in T move
the sample average of v · (UT − µ), where UT is the uniform distribution on
T , by more than δ (δ should be thought of as small, but substantially larger
than ε), then on average these corrupted points x must have v · (x − µ) at least
δ/ε, as shown in Figure 2.2. This in turn means that these corrupted points
will have a contribution of at least ε · (δ/ε)2 = δ2/ε to the variance of v ·
UT . Fortunately, this condition can actually be algorithmically detected! In
particular, by computing the top eigenvector of the sample covariance matrix,
we can efficiently determine whether or not there is any direction v for which
the variance of v · UT is abnormally large.

The aforementioned discussion leads us to the overall structure of the al-
gorithms we will describe in this chapter. Starting with an ε-corrupted set of
points T (perhaps weighted in some way), we compute the sample covariance
matrix and find the eigenvector v∗ with largest eigenvalue λ∗. If λ∗ is not much
larger than it should be (in the absence of outliers), by the above discussion,
the empirical mean is close to the true mean, and we can return that as an an-
swer. Otherwise, we have obtained a particular direction v∗ for which we know
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32 Robust Mean Estimation

Figure 2.2 An example of an ε-fraction of outliers changing the empirical mean
of T by δ in the v-direction. The graph represents the projections of the samples
onto the v-direction. Notice that the errors must on average have v · x at least δ/ε-
far from v · µ. This means that they must contribute at least δ2/ε to the variance of
v · T .

that the outliers play an unusual role, that is, the outliers behave significantly
differently than the inliers. The distribution of the points projected in the v∗-
direction can then be used to perform some sort of outlier removal. As to how
exactly to perform this outlier removal step, there are several different tech-
niques that we will discuss, some of which depend on particular features of the
inliers.

2.2 Stability and Robust Mean Estimation

In the strong contamination model, we begin by drawing a set S of n independ-
ent samples from the true distribution. We will typically call these uncorrupted
sample points inliers. The adversary can then select up to an ε-fraction of these
points, changing them arbitrarily and giving our algorithm a new dataset T to
work with.

For our algorithm to succeed, we want it to satisfy the fairly strong require-
ment that with high probability over the set S of inliers, no matter what corrup-
tions the adversary decides to make, our algorithm when run on T will output
a good approximation to the target parameter. To prove such a statement, we
typically want to define a deterministic condition on S under which our algo-
rithm is guaranteed to succeed. In particular, we will require a condition on the
set of uncorrupted samples such that:
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2.2 Stability and Robust Mean Estimation 33

1. A sufficiently large collection S of independent samples from our inlier
distribution satisfies this condition with high probability.

2. If the set S of inliers satisfies this condition, our algorithm will succeed
when run on T no matter what corruptions the adversary chooses to apply.

Toward this goal, we introduce a condition called stability (Definition 2.1),
which will form the core of our conditions on the uncorrupted samples. In par-
ticular, we will show that if the uncorrupted samples are assumed to be stable,
then there is an efficiently checkable condition on the ε-corrupted dataset that
will imply that the true mean is close to the sample mean of the corrupted (i.e.,
including the outliers) dataset (see Lemma 2.6). Although some algorithms
presented later in this chapter (and in this book) may require stronger con-
ditions on their inliers in order to be effective, some version of this stability
condition will almost always be involved.

The robust mean estimation algorithms in this chapter will depend heavily
on computing means and covariances of various sets of samples. Although
additive corruptions will always have the power to induce large changes in the
sample mean and covariance, we will at least want to know that any large set
of inliers has close to the right value. It is this requirement that makes up the
core of the stability condition.

Definition 2.1 (Stability Condition) Fix 0 < ε < 1/2 and δ ≥ ε. A finite
set S ⊂ Rd is (ε, δ)-stable (with respect to a vector µ or a distribution X with
µX := E[X] = µ) if for every unit vector v ∈ Rd and every S ′ ⊆ S with
|S ′| ≥ (1 − ε)|S |, the following conditions hold:

1.
∣∣∣∣ 1
|S ′ |

∑
x∈S ′ v · (x − µ)

∣∣∣∣ ≤ δ, and

2.
∣∣∣∣ 1
|S ′ |

∑
x∈S ′ (v · (x − µ))2 − 1

∣∣∣∣ ≤ δ2/ε.

Similarly, we say that a distribution X on Rd is (ε, δ)-stable with respect to a
vector µ if for every unit vector v ∈ Rd and distribution X′ obtained from X by
ε-subtractive contamination, the following conditions hold:

1. |E[v · (X′ − µ)]| ≤ δ, and

2.
∣∣∣E[(v · (X′ − µ))2] − 1

∣∣∣ ≤ δ2/ε.

Some comments are in order. The first condition (for the finite set stability
condition) is equivalent to ‖µS ′ − µ‖2 ≤ δ, where µS ′ is the empirical mean
of S ′. The second condition is equivalent to ‖Σ̄S ′ − I‖2 ≤ δ2/ε, where Σ̄S ′ =

(1/|S ′|)
∑

x∈S ′ (x−µ)(x−µ)> is the empirical second moment matrix of S ′ with
respect to µ. Since µ is close to µS ′ by the first condition, this is equivalent (up
to changing δ by a constant factor) to saying that ‖Cov[S ′] − I‖2 = O(δ2/ε).
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34 Robust Mean Estimation

In other words, removing any ε-fraction of the points will not change the mean
by more than δ nor the variance in any direction by more than δ2/ε.

It is also worth nothing that Definition 2.1 is intended for distributions X
with covariance ΣX � I. If one wants to perform robust mean estimation for
distributions X with other covariance matrices, one can usually reduce to this
case by applying the linear transformation x→ Σ

−1/2
X x to the data.

Finally, it is worth comparing the notions of stability for finite sets and distri-
butions. While these definitions are fairly similar, we believe it is important to
include both, as it is sometimes more convenient to work with one or the other.
The close relationship between these two definitions will also be important to
us, and can be made rigorous via the following simple lemma.

Lemma 2.2 If S is a set of points in Rd and δ > ε > 0 with ε |S | an integer,
then S is (ε, δ)-stable with respect to some vector µ if and only if the uniform
distribution over S is (ε, δ)-stable with respect to µ.

Proof The “only if” part here is immediate, since if S ′ is a subset S ′ ⊆ S
with |S ′| ≥ (1 − ε)|S |, then the uniform distribution over S ′ can be obtained
from the uniform distribution over S by ε-subtractive contamination. To show
the reverse, we note that for a specific choice of unit vector v, if one wants to
find a distribution X′ for which one of conditions 1 or 2 above does not hold,
one will want to remove the ε-fraction of the distribution on which v · (X −
µ) or (v · (X′ − µ))2 − 1 takes its most extreme values. This is equivalent to
throwing away some ε|S | points from the support, but if S is stable, this will
be insufficient to change the mean or variance by enough. �

Although Lemma 2.2 only applies when ε |S | is an integer, by combining
it with the results of Exercise 2.1, we find that, so long as |S | ≥ 1/ε, S is
(ε, δ)-stable if and only if the uniform distribution over S is (ε,Θ(δ))-stable.

The fact that the conditions of Definition 2.1 must hold for every large subset
S ′ of S might make it unclear if they can hold with high probability. It can in
fact be shown that these conditions are satisfied for various distribution classes
with appropriate concentration properties. Morally speaking, if a distribution
X is stable, then we would expect a large enough set S of i.i.d. samples from
X to be stable (with comparable parameters) with high probability.

2.2.1 Sample Complexity Bounds for the Stability Condition

Before we explain how to leverage stability for the design of computationally
efficient algorithms, we show that for some natural distributions the stability
of the set of inliers can be achieved with high probability given a reasonable
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2.2 Stability and Robust Mean Estimation 35

number of i.i.d. samples. The sample complexity bounds presented in this sec-
tion are intentionally rough; the reader interested in more precise bounds is
referred to Section 3.2.

We start with the class of sub-Gaussian distributions. Recall that a distribu-
tion on Rd is sub-Gaussian if any univariate projection has sub-Gaussian tails.
For this distribution class, we can show:

Proposition 2.3 If N is at least a sufficiently large degree polynomial in d/ε,
then a set of N i.i.d. samples from an identity covariance sub-Gaussian distri-
bution in Rd is (ε,O(ε

√
log(1/ε))-stable with high probability.

In order to see why this is the correct value of δ, we note that the Gaussian
distribution, X = N(µ, I), is (ε,O(ε

√
log(1/ε)))-stable with respect to µ. This

is because removing an ε-fraction of the mass will have the greatest impact on
E[v·X] or Var[v·X] if we remove the ε-tails of v·X. A simple calculation shows
that this affects the mean by O(ε

√
log(1/ε)) and the variance by O(ε log(1/ε)).

This is because the ε-tails of the distribution are O(
√

log(1/ε)) far from the
mean.

To help formalize this intuition, we provide a proof sketch of Proposition 2.3
here. It turns out that the optimal sample complexity in Proposition 2.3 is
Θ̃(d/ε2). The reader is referred to Section 3.2 for the proof of this optimal
bound.

Proof Sketch. An easy way to prove this result is by noting that it suffices for
our dataset S to have the empirical distribution of v · S := {v · x, x ∈ S } mimic
the real distribution v · X for all unit vectors v. To formalize this, we consider
thresholds. In particular, we would like it to hold for every vector v and every
threshold t ∈ R that

|Prx∼uS [v · x > t] − Prx∼X[v · x > t]| (2.1)

should be small. By the VC Inequality (Theorem A.12), the error in Equation
(2.1) is never more than η with high probability, as long as N is at least a
sufficiently large constant multiple of d/η2.

Note that the average value of v · (x − µ) or (v · (x − µ))2 can be computed
from these tail probabilities as

1
|S |

∑
x∈S

v · (x − µ) =

∫ ∞

v·µ
Prx∼uS [v · x > t]dt −

∫ v·µ

−∞

Prx∼uS [v · x < t]dt,

and
1
|S |

∑
x∈S

(v · (x − µ))2 =

∫ ∞

0
2 t Prx∼uS [|v · x − v · µ| < t]dt.

https://doi.org/10.1017/9781108943161.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108943161.002


36 Robust Mean Estimation

Knowing that each probability above is within O(η) of the corresponding prob-
ability for x ∼ X is almost sufficient to show that the mean and covariance of
S are close to µ and Cov[X] = I, respectively. A slight technical difficulty,
however, comes from the fact that these integrals have infinite range of t, and
thus an O(η) error for each given t produces an infinite error overall. We can
fix this slight glitch by noting that with high probability each x ∈ S satisfies
‖x − µ‖2 < O(

√
d log(dN)) (for example, because each coordinate of x − µ

is at most O(
√

log(dN))). This observation allows us to truncate these inte-
grals to ones of finite length and show that ‖µS − µ‖2 = O(η

√
d log(dN)) and

‖Cov[S ] − I‖2 = O(ηd log(dN)).
Having established good bounds on the mean and covariance of the full set

S , we next need to prove a stronger statement. We actually need to bound these
quantities for S ′, where S ′ is any (1 − ε)-dense subset of S . To that end, we
note that∣∣∣Prx∼uS [v · x > t] − Prx∼uS ′ [v · x > t]

∣∣∣ ≤ min{Prx∼uS [v · x > t],O(ε)}.

This inequality holds because removing elements can decrease a tail proba-
bility by ε, but cannot decrease it to less than 0. This allows us to bound the
differences between the averages over S and S ′. For example, we have that∣∣∣∣∣∣∣ 1
|S |

∑
x∈S

v · (x − µ) −
1
|S ′|

∑
x∈S ′

v · (x − µ)

∣∣∣∣∣∣∣
≤

∫ O(
√

d log(dN))

0
min{Prx∼uS [v · (x − µ) > t], O(ε)}dt

+

∫ 0

−O(
√

d log(dN))
min{Prx∼uS [v · (x − µ) < t], O(ε)}dt

≤

∫ O(
√

d log(dN))

−O(
√

d log(dN))
min{exp(−Ω(t2)) + O(η), O(ε)}dt

≤ O(η
√

d log(dN)) +

∫ O(
√

log(1/ε))

−O(
√

log(1/ε))
O(ε)dt +

∫
|t|�
√

log(1/ε)
exp(−Ω(t2))dt

≤ O(η
√

d log(dN)) + O(ε
√

log(1/ε)).

This is O(ε
√

log(1/ε)), assuming that η is sufficiently small. A similar ar-
gument can be used to bound the covariance term, and this completes our
proof. �

Note that the proof of Proposition 2.3 essentially boiled down to an argu-
ment about the tail bounds of the distribution X. Morally speaking, if X is an
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2.2 Stability and Robust Mean Estimation 37

identity covariance distribution where the ε-tails in any direction contribute no
more than δ to the mean and δ2/ε to the variance in that direction, sufficiently
many samples from X will be (ε, δ)-stable with high probability (see Exercise
2.4).

A more general setting considers inlier distributions with bounded and un-
known covariance matrix. For this more general class of bounded covariance
distributions, one can show the following.

Proposition 2.4 Let S be a multiset of N i.i.d. samples from a distribution
with covariance Σ � I, where N is at least a sufficiently large degree polyno-
mial in d/ε. With high probability, there exists a subset S ′ ⊆ S of cardinality
|S ′| ≥ (1 − ε)|S | such that S ′ is (ε,O(

√
ε))-stable.

It is worth pointing out a qualitative difference between Proposition 2.4 and
its analogue Proposition 2.3 (for identity covariance sub-Gaussian distribu-
tions). For the bounded covariance case, a sufficiently large set of i.i.d. sam-
ples S from the inlier distribution is not guaranteed to be stable. On the other
hand, Proposition 2.4 shows that there exists a (1 − ε) density, stable subset
S ′ (this still suffices for our purposes, as T , the set of corrupted samples, will
be an O(ε)-corruption of S ′). This relaxation is necessary as there are simple
examples where the proposition fails if we do not consider such subsets (see
Exercise 2.3).

To see why Proposition 2.4 holds, we note that in order for a set S to be
(ε,O(

√
ε))-stable with respect to µ, it suffices to check that ‖µS −µ‖2 = O(

√
ε)

and Cov[S ] = O(I). We note that all but an ε-fraction of the mass of a bounded
covariance distribution is within distance O(

√
d/ε) of its mean µ. Moreover, if

we throw away the points further away, this does not affect the mean by much.
Letting S ′ be the set of samples not too far from the mean µ will have roughly
the correct mean and covariance matrix with high probability.

The reader is referred to Section 3.2 for a proof of this result with the optimal
sample complexity, which turns out to be Θ̃(d/ε).

Remark 2.5 Analogous bounds can be shown for identity covariance distri-
butions with bounded higher central moments. For example, if our distribution
has identity covariance and its kth central moment, where k ≥ 4, is bounded
from above by a constant, it can be shown that a set of Ω(d log(d)/ε2−2/k) sam-
ples contains a large subset that is (ε,O(ε1−1/k))-stable with high probability.

2.2.2 Stability and Algorithm Design

We now return to the use of the stability condition in algorithm design. In
particular, we show how one can certify – under certain conditions – that the
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38 Robust Mean Estimation

sample mean of an ε-corrupted version of a stable set is a good approximation
to the true mean. This is perhaps the most important property of stability for
us and can be quantified in the following lemma.

Lemma 2.6 (Certificate for Empirical Mean) Let S be an (ε, δ)-stable set
with respect to a vector µ, for some δ ≥ ε > 0 and ε ≤ 1/3. Let T be an ε-
corrupted version of S . Let µT and ΣT be the empirical mean and covariance
of T . If the largest eigenvalue of ΣT is at most 1 + λ, for some λ ≥ 0, then
‖µT − µ‖2 ≤ O(δ +

√
ελ).

This lemma states that if our set of inliers S is stable and our set of corrupted
samples T has bounded covariance, then the empirical mean of T is certifiably
close to the true mean.

Lemma 2.6 follows by applying the following slightly more general state-
ment to the uniform distribution over S .

Lemma 2.7 (Certificate for Empirical Mean, Strong Version) Let X be an
(ε, δ)-stable distribution with respect to a vector µ, for some δ ≥ ε > 0 and
ε ≤ 1/3. Let Y be a distribution with dTV(X,Y) ≤ ε (i.e., Y is an ε-corrupted
version of X). Denote by µY and ΣY the mean and covariance of Y. If the largest
eigenvalue of ΣY is at most 1+λ, for some λ ≥ 0, then ‖µY −µ‖2 ≤ O(δ+

√
ελ).

Proof of Lemma 2.7 Let Y = (1− ε)X′+ εE for some distribution X′ obtained
from X by ε-subtractive contamination. Let µX , µX′ , µE and ΣX ,ΣX′ ,ΣE denote
the means and covariances of X, X′, and E, respectively. A simple calculation
gives

ΣY = (1 − ε)ΣX′ + εΣE + ε(1 − ε)(µX′ − µE)(µX′ − µE)>.

Let v be the unit vector in the direction of µX′ − µE . We have

1 + λ ≥ v>ΣYv = (1 − ε)v>ΣX′v + εv>ΣEv + ε(1 − ε)v>(µX′ − µE)(µX′ − µE)>v

≥ (1 − ε)(1 − δ2/ε) + ε(1 − ε)‖µX′ − µE‖
2
2

≥ 1 − O(δ2/ε) + (ε/2)‖µX′ − µE‖
2
2,

where we used the variational characterization of eigenvalues, the fact that ΣE

is positive semidefinite, and the second stability condition for X. By rearrang-
ing, we obtain ‖µX′ − µE‖2 = O(δ/ε +

√
λ/ε). Therefore, we can write

‖µY − µ‖2 = ‖(1 − ε)µX′ + εµE − µ‖2 = ‖µX′ − µ + ε(µE − µX′ )‖2

≤ ‖µX′ − µ‖2 + ε‖µX′ − µE‖2 = O(δ) + ε · O(δ/ε +
√
λ/ε)

= O(δ +
√
λε),
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2.2 Stability and Robust Mean Estimation 39

where we used the first stability condition for X and our obtained upper bound
on ‖µX′ − µE‖2. �

Remark 2.8 It is worth noting that the proof of Lemma 2.7 only used the
lower bound part in the second condition of Definition 2.1, namely, that the
variance of X′ in each direction is at least 1 − δ2/ε. Although this is sufficient
for certifying that our mean is close, the corresponding upper bound will be
crucially used in the design and analysis of our robust mean estimation algo-
rithms in the following sections.

Lemma 2.6 says that if our input set of points T is an ε-corrupted version of
any stable set S and has bounded covariance, the sample mean of T closely ap-
proximates the true mean of the original distribution. This lemma, or a variant
thereof, is a key result in all known robust mean estimation algorithms.

Unfortunately, we are not always guaranteed that the set T we are given has
this property. In particular, if the corrupted set T includes some large outliers,
or many outliers in the same direction, there may well be directions of large
variance. In order to deal with this, we will want to compute a subset, T ′, of
T such that T ′ has bounded covariance and large intersection with S . If we
can achieve this, then since T ′ will be a corrupted version of S with bounded
covariance, we can apply Lemma 2.6 to show that ‖µT ′ − µ‖2 is small.

For some of the algorithms presented, it will be convenient to find a prob-
ability distribution over T rather than a subset. For these cases, we can use
Lemma 2.7 applied to the appropriate distribution on T .

For the more general outlier removal procedure, we are given our initial ε-
corrupted set T , and we will attempt to find a distribution W supported on T
such that the “weighted” covariance matrix ΣW has no large eigenvalues. For
such a solution, the weight W(x) of an x ∈ T can be thought of as quantifying
our belief about whether point x is an inlier or an outlier. It will also be im-
portant for us to ensure that W is close to the uniform distribution over S in
total variation distance. This is complicated by the fact that we must be able to
guarantee this closeness without knowing exactly what the set S is. Intuitively,
we can do this by ensuring that W is obtained by removing at most ε mass from
the uniform distribution over T .

More concretely, the following general framework can be used for robust
mean estimation.

Definition 2.9 For a finite set T and ε ∈ (0, 1), we will denote by ∆T the
set of all probability distributions W supported on T , whose probability mass
function W(x) satisfies W(x) ≤ 1

|T |(1−ε) , for all x ∈ T .
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Lemma 2.10 Let S be a (3ε, δ)-stable set with respect to µ and let T be an
ε-corrupted version of S for some ε < 1/6. Given any W ∈ ∆T such that
‖ΣW‖2 ≤ 1 + λ, for some λ ≥ 0, we have ‖µ − µW‖2 = O(δ +

√
ελ).

Proof We note that any distribution in ∆T differs from US , the uniform dis-
tribution on S , by at most 3ε. Indeed, for ε ≤ 1/3, we have

dTV(US ,W) =
∑
x∈T

max{W(x) − US (x), 0}

=
∑

x∈S∩T

max{W(x) − 1/|T |, 0} +
∑

x∈T\S

W(x)

≤
∑

x∈S∩T

ε

|T |(1 − ε)
+

∑
x∈T\S

1
|T |(1 − ε)

≤ |T |
(

ε

|T |(1 − ε)

)
+ ε|T |

(
1

|T |(1 − ε)

)
=

2ε
1 − ε

≤ 3ε.

Therefore, by Lemma 2.7 we have ‖µ − µW‖2 = O(δ +
√
ελ). �

Lemma 2.10 provides us with a clear plan for how to perform robust mean
estimation. Given a set T (promised to be an ε-corruption of a (3ε, δ)-stable
set), we merely need to find a W ∈ ∆T with bounded covariance matrix.

A natural first question is whether such a distribution W exists. Fortunately,
this can be easily guaranteed. In particular, if we take W to be W∗, the uniform
distribution over S ∩T , the largest eigenvalue is at most 1+δ2/ε by the stability
of S . Thus, for this choice of W, we can take λ = δ2/ε, and we have ‖µ −
µW∗‖2 = O(δ).

At this point, we have an inefficient algorithm for approximating µ: Find
any W ∈ ∆T with ΣW bounded above by (1 + δ2/ε)I and return its mean. The
remaining question is how we can efficiently find such a W. There are two basic
algorithmic techniques to achieve this, which we present in the subsequent
sections.

The first algorithmic technique we will describe is based on convex pro-
gramming. We will call this the unknown convex programming method. Note
that ∆T is a convex set and that finding a point in ∆T that has bounded covari-
ance is almost a convex program. It is not quite a convex program because the
variance of v ·W, for fixed v, is not a convex function of W. However, one can
show that given a W with variance in some direction significantly larger than
1 + δ2/ε, we can efficiently construct a hyperplane separating W from W∗ (the
uniform distribution over S ∩ T ). This method works naturally under only the
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stability condition. On the other hand, as it relies on the ellipsoid algorithm, it
is quite slow (although polynomial time). See Section 2.3 for more details.

Our second technique, which we will call (iterative) filtering, is an iterative
outlier removal method that is typically faster, as it relies only on spectral tech-
niques. The main idea of the method is the following: If ΣW does not have large
eigenvalues, then the empirical mean is close to the true mean. Otherwise, there
is some unit vector v such that Var[v ·W] is substantially larger than it should
be. This can only be the case if W assigns substantial mass to elements of T \S
that have values of v · x very far from the true mean of v · µ. This observation
allows us to perform some kind of outlier removal, in particular by removing
(or down-weighting) the points x that have v · x inappropriately large.

An important conceptual point here is that one cannot afford to remove only
outliers. However, it is possible to ensure that more outliers are removed than
inliers. Given a W where ΣW has a large eigenvalue, one filtering step gives
a new distribution W ′ ∈ ∆T that is closer to W∗ than W was. Repeating the
process eventually gives a W with no large eigenvalues. The filtering method
and its variations are discussed in Section 2.4.

2.3 The Unknown Convex Programming Method

Given an ε-corruption T of a stable set S , we would like to estimate the mean
of the corresponding distribution X. To achieve this, by Lemma 2.10, it suffices
to find a distribution W ∈ ∆T such that ΣW has no large eigenvalues. We note
that this condition almost defines a convex program. This is because ∆T is a
convex set of probability distributions and the bounded covariance condition
says that Var[v ·W] ≤ 1 + λ for all unit vectors v. Unfortunately, the variance
Var[v · W] = E[|v · (W − µW )|2] is not quite linear in W. (If we instead had
E[|v ·(W−µ0)|2], for some fixed vector µ0, this would be linear in W.) However,
we will show that a unit vector v for which Var[v · W] is too large can still
be used to obtain a separation oracle, that is, a linear function L for which
L(W) > L(W∗), where W∗ is the uniform distribution over S ∩ T .

In particular, suppose that we identify a unit vector v such that Var[v ·W] =

1 + λ, where λ > C (δ2/ε) for a sufficiently large universal constant C > 0.
Applying Lemma 2.10 to the one-dimensional projection v ·W gives

|v · (µW − µX)| ≤ O(δ +
√
ελ) = O(

√
ελ).

For a probability distribution Y , let L(Y) := E[|v · (Y − µW )|2]. Note that L is
a linear function of the probability distribution Y with L(W) = 1 + λ. We can
write
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L(W∗) = EW∗ [|v · (W∗ − µW )|2] = Var[v ·W∗] + |v · (µW − µW∗ )|2

≤ 1 + δ2/ε + 2|v · (µW − µX)|2 + 2|v · (µW∗ − µX)|2

≤ 1 + O(δ2/ε + ελ) < 1 + λ = L(W).

In summary, we have an explicit convex set ∆T of probability distributions
from which we want to find one with eigenvalues bounded by 1 + O(δ2/ε).
Given any W ∈ ∆T which does not satisfy this condition, we can produce a
linear function L that separates W from W∗. In fact, it is not hard to see that L
also separates W from some small neighborhood R of W∗. Using the ellipsoid
algorithm, we obtain the following general theorem.

Theorem 2.11 Let S be a (3ε, δ)-stable set with respect to a distribution X
for some ε > 0 sufficiently small. Let T be an ε-corrupted version of S . There
exists a polynomial time algorithm which given ε, δ, and T returns µ̂ such that
‖̂µ − µX‖2 = O(δ).

Proof Sketch. Simply run the ellipsoid algorithm with the above separation
oracle. At each stage one of two things happens. On the one hand, we may
have found a W ∈ ∆T with Cov[W] � (1 + O(δ2/ε)) I. In this case, E[W] is an
appropriate approximation of µX by Lemma 2.10. Otherwise, we find a sepa-
ration oracle L, separating W from R. This lets us find a smaller ellipsoid con-
taining R. As the volume of this ellipsoid decreases by a (1− poly(1/d))-factor
at every iteration, after at most a polynomial number of rounds the ellipsoid
will be smaller than R. This shows that we must reach the first case after at
most a polynomial number of iterations, and thus our algorithm will run in
polynomial time. �

Implications for Concrete Distribution Families Combining Theorem 2.11
with corresponding stability bounds, we obtain concrete applications for vari-
ous distribution families of interest. Using Proposition 2.3, we obtain:

Corollary 2.12 (Identity Covariance Sub-Gaussian Distributions) Let T be
a set of N ε-corrupted samples from an identity covariance sub-Gaussian dis-
tribution X on Rd, where N is at least a sufficiently large polynomial in d/ε.
There exists a polynomial time algorithm which given ε and T returns µ̂ such
that with high probability ‖̂µ − µX‖2 = O(ε

√
log(1/ε)).

We note that Corollary 2.12 can be immediately adapted for identity covar-
iance distributions satisfying weaker concentration assumptions. For example,
if X satisfies subexponential concentration in each direction, we obtain an ef-
ficient robust mean estimation algorithm with `2-error of O(ε log(1/ε)). If X
has identity covariance and bounded kth central moments, k ≥ 2, we obtain
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error O(ε1−1/k). As shown in Chapter 1, these error bounds are information-
theoretically optimal up to constant factors.

For distributions with unknown and bounded covariance, using Proposi-
tion 2.4 we obtain:

Corollary 2.13 (Unknown Bounded Covariance Distributions) Let T be a set
of N ε-corrupted samples from a distribution X on Rd with unknown covari-
ance ΣX � σ

2I, for some known σ > 0, where N is at least a sufficiently large
polynomial in d/ε. There exists a polynomial time algorithm which given ε, σ,
and T returns µ̂ such that with high probability ‖̂µ − µX‖2 = O(σ

√
ε).

Similarly, as shown in Chapter 1, this error bound is information-theoretically
optimal up to constant factors.

2.4 The Filtering Method

As in the unknown convex programming method, the goal of the filtering
method is to find a distribution W ∈∆T such that ΣW has bounded eigenval-
ues. Given a W ∈∆T , ΣW either has bounded eigenvalues (in which case the
weighted empirical mean works) or there is a direction v in which Var[v ·W] is
too large. In the latter case, the projections v ·W must behave very differently
from the projections v · S or v · X. In particular, since an ε-fraction of outliers
are causing a much larger increase in the standard deviation, this means that
the distribution of v · W will have many “extreme points” – more than one
would expect to find in v · S . This fact allows us to identify a nonempty subset
of extreme points, the majority of which are outliers. These points can then
be removed (or down-weighted) in order to “clean up” our sample. Formally,
given a W ∈∆T without bounded eigenvalues, we can efficiently find a W ′ ∈∆T

such that W ′ is closer to W∗ than W was. Iterating this procedure eventually
terminates giving a W with bounded eigenvalues.

While it may be conceptually useful to consider the above scheme for gen-
eral distributions W over points, in most cases it suffices to consider only W
given as the uniform distribution over some set of points. The filtering step
in this case consists of replacing the set T by some subset T ′ = T \ R, where
R ⊂ T . To guarantee progress toward W∗ (the uniform distribution over S ∩T ),
it suffices to ensure that at most a third of the elements of R are also in S , or
equivalently that at least two-thirds of the removed points are outliers (perhaps
in expectation). The algorithm will terminate when the current set of points T ′

has bounded empirical covariance, and the output will be the empirical mean
of T ′.
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Before we proceed with a more detailed technical discussion, we note that
there are several possible ways to implement the filtering step, and that the
method used has a significant impact on the analysis. In general, a filtering
step removes all points that are “far” from the sample mean in a large variance
direction. However, the precise way that this is quantified can vary in important
ways.

2.4.1 Tail-Bound-Based Filtering

In this section, we present a filtering method that yields efficient robust mean
estimators with optimal error bounds for identity covariance (or, more gener-
ally, known covariance) distributions whose univariate projections satisfy ap-
propriate tail bounds. For the purposes of this section, we will restrict ourselves
to the Gaussian setting. We note however that this method immediately extends
to distributions with weaker concentration properties, for example, subexpo-
nential or even inverse polynomial concentration, with appropriate modifica-
tions.

We note that the filtering method presented here requires an additional con-
dition on our set of inlier samples, on top of the stability condition. This is
quantified in the following definition.

Definition 2.14 A set S ⊂Rd is tail-bound-good (with respect to X =N(µX , I))
if for every unit vector v and every t > 0, we have

Prx∼uS
[
|v · (x − µX)| > 2t + 2

]
≤ e−t2/2. (2.2)

Since any univariate projection of X is distributed like a standard Gaussian,
Condition (2.2) should hold if the uniform distribution over S were replaced by
X. It can be shown that this condition holds with high probability if S is a set
of i.i.d. samples from X of a sufficiently large size. Unfortunately, the sample
size required for this condition to hold can be exponential in the dimension.
In the rest of this section, to avoid cluttering in the relevant expressions, we
develop and analyze our filtering algorithm under this condition. We will then
explain (see Remark 2.16) how a simple modification to Definition 2.14 suf-
fices for our algorithm to work and will be satisfied with a polynomial sample
size.

Intuitively, the additional tail condition of Definition 2.14 means that the
univariate projections of our inlier set satisfy strong tail bounds. If we can find
a direction in which one of these tails bounds are substantially violated, we
will know that most of the extreme points in this direction must be outliers.
Formally, we have the following:
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Lemma 2.15 Let ε > 0 be a sufficiently small constant. Let S ⊂ Rd be
both (2ε, δ)-stable and tail-bound-good with respect to X = N(µX , I), with
δ = C ε

√
log(1/ε), for C > 0 a sufficiently large constant. Let T ⊂ Rd be

such that |T ∩ S | ≥ (1 − 2ε) max(|T |, |S |) and assume we are given a unit
vector v ∈ Rd for which Var[v ·T ] > 1+2δ2/ε and Var[v ·T ] > ‖Cov[T ]‖2− ε.
There exists a polynomial-time algorithm that returns a subset R ⊂ T satisfying
|R ∩ S | < |R|/3.

To see why Lemma 2.15 suffices for our purposes, note that by replacing T
by T ′ = T \ R, we obtain a less noisy version of S than T was. In particular,
it is easy to see that the size of the symmetric difference between S and T ′

is strictly smaller than the size of the symmetric difference between S and T .
From this it follows that the hypothesis |T ∩ S | ≥ (1 − 2ε) max(|T |, |S |) still
holds when T is replaced by T ′, allowing us to iterate this process until we are
left with a set with small variance.

Proof Let Var[v · T ] = 1 + λ. Our goal will be to compute some threshold L
such that the substantial majority of the samples x with |v ·(x−µT )| > L are out-
liers, as is shown in Figure 2.3. This ought to be possible since by assumption

Figure 2.3 Illustration of tail-bound-based filtering. The figure shows the graph of
v · x for samples x, with the bump on the right representing the error distribution.
The grayed out portions represent the points with |v·(x−µT )| > L that are removed
by the filtering algorithm. Notice that the majority of these points are outliers.
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the inliers are well-concentrated about the mean. On the other hand, we must
have many faraway outliers in order to cause Var[v · T ] so large.

We know that since the set S is tail-bound-good, the univariate projection
v ·S is well-concentrated about v ·µX . Unfortunately, the algorithm only knows
µT . However, applying Lemma 2.6 to the set T (and noting that ‖Cov[T ]‖2 ≤
1 + O(λ)), we get that |v · µX − v · µT | ≤ C

√
λε. Thus, by Condition (2.2),

Prx∼uS

[
|v · (x − µT )| > 2t + 2 + C

√
λε

]
≤ e−t2/2.

We claim that there exists a threshold t0 such that

Prx∼uT

[
|v · (x − µT )| > 2t0 + 2 + C

√
λε

]
> 4e−t2

0/2. (2.3)

Given this claim, the set R = {x ∈ T : |v · (x − µT )| > 2t0 + 2 + C
√
λε} will

satisfy the conditions of the lemma.
To prove our claim, we analyze the variance of v · T and note that much of

the excess must be due to points in T \ S . In particular, by our assumption on
the variance in the v-direction, we have that∑

x∈T

|v · (x − µT )|2 = |T |Var[v · T ] = |T |(1 + λ),

where λ > 2δ2/ε. The contribution from the points x ∈ S ∩ T is at most∑
x∈S

|v · (x − µT )|2 = |S |
(
Var[v · S ] + |v · (µT − µS )|2

)
≤ |S |(1 + δ2/ε + 2C2λε)

≤ |T |(1 + 2C2λε + 3λ/5),

where the first inequality uses the stability of S , and the last inequality uses
that |T | ≥ (1 − 2ε)|S |. If ε is sufficiently small relative to C, it follows that∑

x∈T\S |v · (x − µT )|2 ≥ |T |λ/3. On the other hand, by definition we have
that

∑
x∈T\S

|v · (x − µT )|2 = |T |
∫ ∞

0
2tPrx∼uT

[
|v · (x − µT )| > t, x < S

]
dt. (2.4)

Assume for the sake of contradiction that there is no t0 for which Condition
(2.3) is satisfied. Then the RHS of (2.4) is at most
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|T |
( ∫ 2+C

√
λε+10

√
log(1/ε)

0
2tPrx∼uT [x < S ]dt

+

∫ ∞

2+C
√
λε+10

√
log(1/ε)

2tPrx∼uT
[
|v · (x − µT )| > t

]
dt

)
≤ |T |

ε(2 + C
√
λε + 10

√
log(1/ε))2 +

∫ ∞

5
√

log(1/ε)
16(2t + 2 + C

√
λε)e−t2/2dt


≤ |T |

(
O(C2λε2 + ε log(1/ε)) + O(ε2(

√
log(1/ε) + C

√
λε))

)
≤ |T |O(C2λε2 + (δ2/ε)/C) < |T |λ/3,

which is a contradiction. Therefore, the tail bounds and the concentration vio-
lation together imply the existence of such a t0 (which can be efficiently com-
puted by simple enumeration). �

Remark 2.16 We note that although exponentially many samples are re-
quired to ensure that Condition (2.2) holds with high probability, one can care-
fully weaken this condition so that it can be achieved with polynomially many
samples without breaking the aforementioned analysis. Specifically, it suffices
to add an inverse polynomially small slack term in the right-hand side to ac-
count for the difference between the empirical and population values of the
corresponding probability. Using the VC Inequality (Theorem A.12), one can
show that this weaker condition holds for the uniform distribution over S with
high probability, where S is a set of i.i.d. samples from X of a sufficiently large
polynomial size. This slightly alters the analysis, as one needs to add this slack
term to all of the relevant probability integrals. However, these integrals can
still be truncated to cover only a polynomial range (using the fact that likely
no inliers will be too far from the true mean), and thus the total integral of this
additional error will remain small.

2.4.2 Randomized and Weighted Filtering

The filtering method described in Section 2.4.1 works by guaranteeing that
(assuming the set of inliers is stable and tail-bound-good) each filtering step
removes more outliers than inliers. For some of the more general settings one
instead requires a randomized filtering method that merely removes more out-
liers in expectation. In this section, we will develop the general theory of such
randomized filters. This will then be applied in Section 2.4.3, where we pro-
duce a specific randomized filter that works assuming only the stability of the
set of inliers.
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Randomized Filtering The tail-bound-based filtering method of the previous
section is deterministic, relying on the violation of a concentration inequality
satisfied by the inliers. In some settings (such as robust estimation of the mean
of a bounded covariance distribution), deterministic filtering seems to fail to
give optimal results, and we require the filtering procedure to be randomized.

The main idea of randomized filtering is simple: Suppose we can identify
a nonnegative function f (x), defined on the samples x, for which (under some
high probability condition on the inliers) it holds that

∑
T f (x) ≥ 2

∑
S f (x),

where T is an ε-corrupted set of samples and S is the corresponding set of
inliers. Then we can create a randomized filter by removing each sample point
x ∈ T with probability proportional to f (x). This ensures that the expected
number of outliers removed is at least the expected number of inliers removed.
The analysis of such a randomized filter is slightly more subtle, so we will
discuss it in the following paragraphs.

The key property the above randomized filter ensures is that the sequence of
random variables

(# Inliers removed) − (# Outliers removed)

(where “inliers” are points in S and “outliers” points in T \S ) across iterations
is a supermartingale. Since the total number of outliers removed across all
iterations accounts for at most an ε-fraction of the total samples, this means
that with probability at least 2/3, at no point does the algorithm remove more
than a 2ε-fraction of the inliers. A formal statement follows.

Theorem 2.17 (Randomized Filtering) Let S ⊂ Rd be a (4ε, δ)-stable set
with respect to some distribution X, for ε < 1/12, and let T be an ε-corrupted
version of S . Suppose that given any T ′ ⊆ T with |T ′ ∩ S | ≥ (1 − 4ε)|S | for
which Cov[T ′] has an eigenvalue bigger than 1 + λ, for some λ ≥ 0, there is
a polynomial-time algorithm that computes a nonzero function f : T ′ → R+

such that
∑

x∈T ′ f (x) ≥ 2
∑

x∈T ′∩S f (x). Then there exists a polynomial-time
randomized algorithm that given T computes a vector µ̂ that with probability
at least 2/3 satisfies ‖̂µ − µX‖2 = O(δ +

√
ελ).

The algorithm is described in pseudocode below:

Algorithm Randomized-Filtering

1. Compute Cov[T ] and its largest eigenvalue ν.
2. If ν ≤ 1 + λ, return µT = (1/|T |)

∑
x∈T x.

3. Else

• Compute f as guaranteed in the theorem statement.
• Remove each x ∈ T with probability f (x)/maxx∈T f (x) and return

to Step 1 with the new set T .
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Proof of Theorem 2.17 First, it is easy to see that this algorithm runs in pol-
ynomial time. Indeed, as the point x ∈ T attaining the maximum value of f (x)
is definitely removed in each filtering iteration, each iteration reduces |T | by at
least one. To establish correctness, we will show that, with probability at least
2/3, it holds throughout the algorithm that |S ∩T | ≥ (1−4ε)|S |. Assuming this
claim, Lemma 2.6 implies that our final error will be as desired.

To prove the desired claim, we consider the sequence of random variables

d(Ti) := |(S ∩ T ) \ Ti| + |Ti \ S | ,

where Ti denotes the version of T after the ith iteration of our algorithm. Note
that d(Ti) is essentially the number of remaining outliers plus the number of
inliers that our algorithm has removed so far. We note that, initially, d(T0) ≤
ε|S | and that d(Ti) cannot drop below 0. Finally, we note that at each stage
of the algorithm d(Ti) increases by (# Inliers removed)− (# Outliers removed),
and that the expectation of this quantity is∑

x∈S∩Ti

f (x) −
∑

x∈Ti\S

f (x) = 2
∑

x∈S∩Ti

f (x) −
∑
x∈Ti

f (x) ≤ 0.

This means that the sequence of random variables d(Ti) is a supermartingale
(at least until we reach a point where |S ∩ T | ≤ (1− 4ε)|S |). However, if we set
a stopping time at the first occasion where this condition fails, we note that the
expectation of d(Ti) is at most ε|S |. Since it is always at least 0, Proposition A.5
implies that with probability at least 2/3 it is never more than 3ε|S |, which in
turn implies that |S ∩ T | ≥ (1 − 4ε)|S | throughout the algorithm. If this is the
case, the inequality |T ′ ∩ S | ≥ (1 − 4ε)|S | will continue to hold throughout our
algorithm, thus eventually yielding such a set with the variance of T ′ bounded.
By Lemma 2.6, the mean of this subset T ′ will be a suitable estimate for the
true mean, completing the proof of Theorem 2.17. �

Methods of Point Removal The randomized filtering method described above
only requires that each point x is removed with probability f (x)/maxx∈T f (x),
without any assumption of independence. Therefore, given an f , there are sev-
eral ways to implement this scheme. A few natural ones are given here:

• Randomized Thresholding: Perhaps the easiest method for implementing
our randomized filter is generating a uniform random number y in the in-
terval [0,maxx∈T f (x)] and removing all points x ∈ T for which f (x) ≥ y.
This method is practically useful in many applications. Finding the set of
such points is often fairly easy, as this condition may well correspond to a
simple threshold.
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• Independent Removal: Each x ∈ T is removed independently with proba-
bility f (x)/maxx∈T f (x). This scheme has the advantage of leading to less
variance in d(T ). A careful analysis of the random walk involved allows one
to reduce the failure probability to exp(−Ω(ε|S |)) (see Exercise 2.11).

• Deterministic Reweighting: Instead of removing points, this scheme allows
for weighted sets of points. In particular, each point will be assigned a
weight in [0, 1], and we will consider weighted means and covariances.
Instead of removing a point x with probability proportional to f (x), we
can multiplicatively reduce the weight assigned to x by a quantity pro-
portional to f (x). This ensures that the appropriate weighted version of
d(T ) is definitely nonincreasing, implying deterministic correctness of the
algorithm.

Weighted Filtering The last of the aforementioned methods being determin-
istic is useful in some settings, and so the algorithm is worth explicitly stating.
To begin, for a weight function w : T → R+, we define the weighted mean and
covariance of T by

µw[T ] :=
1
‖w‖1

∑
x∈T

wxx,

Covw[T ] :=
1
‖w‖1

∑
x∈T

wx(x − µw)(x − µw)>.

One can observe that these quantities are simply the mean and covariance of
the probability distribution on T that assigns each point x ∈ T probability of
wx/‖w‖1.

With this setup, we have the following theorem, a direct analogue of Theo-
rem 2.17.

Theorem 2.18 (Weighted Filtering) Let S ⊂ Rd be a (4ε, δ)-stable set with
respect to some distribution X, for ε < 1/12, and let T be an ε-corrupted ver-
sion of S . Suppose that for any weight vector w : T → R+ for which the cor-
responding probability distribution is (3ε)-close to the uniform distribution on
S in total variation distance and for which Covw[T ] has an eigenvalue larger
than 1 +λ, for some λ ≥ 0, there is a polynomial-time algorithm that computes
a nonzero function f : T → R+ such that

∑
x∈S∩T wx f (x) ≤ (1/2)

∑
x∈T wx f (x).

Then there exists a polynomial-time algorithm that outputs a vector µ̂ which
with probability at least 2/3 satisfies ‖̂µ − µX‖2 = O(δ +

√
ελ).

Proof The algorithm is described in pseudocode below.
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Algorithm Weighted-Filtering

1. Set t = 1 and w(1)
x = 1/|T | for all x ∈ T .

2. While Covw(t) [T ] has an eigenvalue larger than 1 + λ:
1. Compute a weight function f (x) as described above.
2. Let fmax be the maximum value of f (x) over x ∈ T with w(t)

x , 0.
3. Let w(t+1)

x = w(t)
x (1 − f (x)/ fmax). Set t to t + 1.

3. Return µw(t) .

To analyze this algorithm we make the following observations. First, at each
iteration, the support of w decreases by at least 1, as w(t+1)

x = 0 for x with
f (x) = fmax. This implies that the algorithm will terminate after polynomially
many iterations.

To prove correctness, as long as the distribution defined by w(t) is close to
the uniform distribution on S , we have that∑
x∈S∩T

w(t+1)
x =

∑
x∈S∩T

[w(t)
x − w(t)

x f (x)/ fmax] =
∑

x∈S∩T

w(t)
x − (1/ fmax)

∑
x∈S∩T

w(t)
x f (x)

≥
∑

x∈S∩T

w(t)
x −

1
2

(1/ fmax)
∑
x∈T

w(t)
x f (x),

where the first equality follows from the definition of w(t+1)
x and the inequality

follows from the definition of f . On the other hand, we can write∑
x∈T

w(t+1)
x =

∑
x∈T

[w(t)
x − w(t)

x f (x)/ fmax] =
∑
x∈T

w(t)
x − (1/ fmax)

∑
x∈T

w(t)
x f (x).

This means that in each iteration the weight function w(t)
x decreases half as

much over S as it does over T as a whole. Thus, the amount that w(t)
x decreases

on S ∩T is at most the amount it decreases on T \S . Since initially we have that∑
x∈T\S w(1)

x = |T \ S |/|T | ≤ ε, this means that at every stage t of the algorithm
the following holds ∑

x∈S∩T

w(t)
x ≥ 1 − 2ε.

This implies that the distribution defined by w(t) remains (3ε)-close to the uni-
form distribution on S , even at the end of the algorithm when Covw(t) [T ] �
(1 + λ) I. Thus, by Lemma 2.7, we have that ‖µw(t) − µS ‖2 = O(δ +

√
ελ),

completing our proof. �

Practical Considerations While the aforementioned point removal methods
have similar theoretical guarantees, recent implementations suggest that they
have different practical performance on real datasets. The deterministic
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reweighting method is somewhat slower in practice as its worst-case runtime
and its typical runtime are comparable. In more detail, one can guarantee ter-
mination by setting the constant of proportionality so that at each step at least
one of the nonzero weights is set to zero. However, in practical circumstances,
we will not be able to do better. That is, the algorithm may well be forced
to undergo ε|S | iterations. On the other hand, the randomized versions of the
algorithm are likely to remove several points of T at each filtering step.

Another reason why the randomized versions may be preferable has to do
with the quality of the results. The randomized algorithms only produce bad
results when there is a chance that d(Ti) ends up being very large. However,
since d(Ti) is a supermartingale, this will only ever be the case if there is a
corresponding possibility that d(Ti) will be exceptionally small. Thus, although
the randomized algorithms may have a probability of giving worse results some
of the time, this will only happen if a corresponding fraction of the time they
also give better results than the theory guarantees. This consideration suggests
that the randomized thresholding procedure might have advantages over the
independent removal procedure, precisely because it has a higher probability of
failure. This has been observed experimentally: In real datasets poisoned with a
constant fraction of adversarial outliers, the number of iterations of randomized
filtering is typically bounded by a small constant.

2.4.3 Universal Filtering

In this section, we show how to use randomized filtering to construct a uni-
versal filter that works under only the stability condition (Definition 2.1) – not
requiring the tail-bound condition of the tail-bound filter (Lemma 2.15). To
do this, we construct an appropriate score function f , as in the statement of
Theorem 2.17. Formally, we show the following.

Proposition 2.19 Let S ⊂ Rd be a (2ε, δ)-stable set for ε, δ > 0 suffi-
ciently small constants with δ at least a sufficiently large multiple of ε. Let
T be an ε-corrupted version of S . Suppose that Cov[T ] has largest eigen-
value 1 + λ > 1 + 8δ2/ε. Then there exists a polynomial time algorithm
that, on input ε, δ,T, computes a nonzero function f : T → R+ satisfying∑

x∈T f (x) ≥ 2
∑

x∈T∩S f (x).

By combining Theorem 2.17 and Proposition 2.19, we obtain a randomized
filtering algorithm establishing Theorem 2.11.

Proof of Proposition 2.19. The algorithm to construct f is the following. We
start by computing the sample mean of T , µT , and the top (unit) eigenvector v
of Cov[T ]. For x ∈ T , we define the function
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g(x) = (v · (x − µT ))2.

Let L be the set of ε · |T | elements of T on which g(x) is largest. We define f
to be

f (x) =

0 x < L,

g(x) x ∈ L.
(2.5)

Our basic plan of attack is as follows: First, we note that the sum of g(x) over
x ∈ T is the variance of v · T, which is substantially larger than the sum of g(x)
over x ∈ S , which is approximately the variance of v · S . Therefore, the sum
of g(x) over the ε|S | elements of T \ S must be quite large. In fact, using the
stability condition, we can show that the latter quantity must be larger than the
sum of the largest ε|S | values of g(x) over x ∈ S . However, since |T \ S | ≤ |L|,
we have that

∑
x∈T f (x) =

∑
x∈L g(x) ≥

∑
x∈T\S g(x) ≥ 2

∑
x∈S f (x).

We now proceed with the detailed analysis. First, note that∑
x∈T

g(x) = |T |Var[v · T ] = |T |(1 + λ).

Moreover, for any S ′ ⊆ S with |S ′| ≥ (1 − 2ε)|S |, we have that∑
x∈S ′

g(x) = |S ′|(Var[v · S ′] + (v · (µT − µS ′ ))2). (2.6)

By the second stability condition, we have that |Var[v · S ′] − 1| ≤ δ2/ε. Fur-
thermore, the stability condition and Lemma 2.6 give

‖µT − µS ′‖2 ≤ ‖µT − µX‖2 + ‖µX − µS ′‖2 = O(δ +
√
ελ).

Since λ ≥ 8δ2/ε, combining the above gives∑
x∈T\S

g(x) ≥
∑
x∈T

g(x) −
∑
x∈S

g(x) ≥ (2/3)|S |λ.

Moreover, since |L| ≥ |T \ S | and g takes its largest values on points x ∈ L, we
have ∑

x∈T

f (x) =
∑
x∈L

g(x) ≥
∑

x∈T\S

g(x) ≥ (16/3)|S |δ2/ε.

Comparing the results of Equation (2.6) for S ′ = S and S ′ = S \ L, we find
that ∑

x∈S∩T

f (x) =
∑

x∈S∩L

g(x) =
∑
x∈S

g(x) −
∑

x∈S \L

g(x)

= |S |(1 ± δ2/ε + O(δ2 + ελ)) − |S \ L|(1 ± δ2/ε + O(δ2 + ελ))

≤ 2|S |δ2/ε + |S |O(δ2 + ελ).
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The latter quantity is at most (1/2)
∑

x∈T f (x) when δ and ε/δ are at most suffi-
ciently small constants. This completes the proof of Proposition 2.19. �

Remark 2.20 One can straightforwardly obtain a weighted version of Prop-
osition 2.19 (essentially by replacing subsets by “weighted subsets”), which
provides the function f required in the statement of Theorem 2.18. By doing
so, we obtain a weighted filtering algorithm establishing Theorem 2.11.

2.5 Exercises

2.1 (Scaling Stability) Show that if the set S ⊂ Rd is (ε, δ)-stable with respect
to µ, and if ε′ > ε is less than a sufficiently small constant, then S is
(ε′,O(δε′/ε))-stable with respect to µ.

2.2 (Resilience) Suppose that S is a set of points in Rd such that for every
S ′ ⊆ S with |S ′| ≥ (1− 2ε)|S | we have ‖µS ′ − µS ‖2 ≤ δ. (Note that this is
the first condition in the definition of (2ε, δ)-stability, but not the second.)
Show that if one is given a set T obtained by adversarially corrupting an
ε-fraction of the points in S , it is information-theoretically possible to
find a 2δ-approximation of the mean of S .

Remark 2.21 This condition was referred to as resilience by [136].
That work showed that it is information-theoretically sufficient to ro-
bustly learn to error O(δ), and computationally sufficient to learn to error
O(δ/

√
ε). Although robust learning is possible with this weaker condi-

tion information-theoretically, it is believed that obtaining error O(δ) is
computationally intractable without additional assumptions.

2.3 (Stability for Bounded Covariance) Recall that in Proposition 2.4 we
needed to restrict to a subset of the sample points to ensure that the result-
ing subset is stable with high probability. Show that this assumption is
necessary. In particular, show that for any positive integers N, d and real
ε > 0 sufficiently small, there is a distribution X on Rd with Cov[X] � Id

such that, with probability at least 1/2, the empirical distribution of N
samples from X is not (ε,

√
dε/2)-stable with respect to X.

(Hint: Produce a distribution that has a 1/N probability of returning a
very large vector.)

2.4 (Generic Stability Bound) Suppose that X is a probability distribution in
Rd with mean µ with ‖X − µ‖2 ≤ R almost surely, and such that no ε-
fraction of the mass of X contributes more than δ2/ε to the expectation of
(v · (X − µ))2 for any unit vector v. Prove that, for some N = poly(Rd/ε),
a set of N i.i.d. samples from X is (ε,O(δ))-stable with respect to µ with
high probability.
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(Hint: Use the VC Inequality, Theorem A.12, to show that with high
probability the empirical distribution satisfies tail bounds similar to those
that X does.)

2.5 (Other Tail-Bound-Based Filters) Devise filtering algorithms along the
lines of the tail-bound-based filter for Gaussians that work for the fol-
lowing inlier distributions X:

(a) X is isotropic and logconcave. [Here you should be able to achieve
error O(ε log(1/ε)).]

(b) X is isotropic and has E[|v · (X − µX)|k] ≤ M (for some constants M
and k > 2). [Here you should be able to achieve error Ok(M1/kε1−1/k).]

(c) X is an arbitrary distribution with Cov[X] ≤ I. [Although one can get
sample sets that are (ε,O(

√
ε))-stable here, it seems impossible to

achieve error O(
√
ε) with a filter of this type. Show that it is possible

to get error O(
√
ε log(d/ε)).]

2.6 (Dimension Halving) Another approach for robust mean estimation of
spherical Gaussians uses a dimension-halving technique. This method
proceeds as follows:

(a) Use a naive filter to remove all points at distance more than roughly
√

d from the mean.
(b) Compute the sample covariance matrix. Let V be the subspace spanned

by eigenvalues larger than 1 + Ω(ε).
(c) Use the sample mean as an estimate for the projection of the true

mean onto V⊥, and recursively approximate the projection of the
mean onto V .

Show that an algorithm along these lines can be used to obtain error
O(ε

√
log(d)) with polynomial time and sample complexity.

(Hint: Show that dim(V) ≤ d/2.)

Remark 2.22 The dimension-halving technique was developed in [114].

2.7 (Robust Estimation in Other `p-Norms) Let 1 ≤ p < 2 and let 1/p+1/q =

1. Suppose that S is a set of points such that Var[v · S ] ≤ 1 for all v with
‖v‖q ≤ 1. Show that there is an algorithm that given p, ε, and T , an ε-
corrupted version of S , computes in polynomial time an estimate µ̂ such
that with high probability ‖̂µ − µS ‖p = O(

√
ε).

(Hint: Show that it suffices to find a large (weighted) subset T ′ of T for
which the variance of v · T ′ is O(1) for any v with ‖v‖q ≤ 1. In order to
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find such a subset, you may need the following result of [123]:
For any positive-definite matrix A, the following holds

sup
‖v‖q=1

v>Av = Θ

 sup
Y�0,‖Diag(Y)‖q/2≤1

tr(AY)

.
This is particularly convenient, as the right-hand side can be efficiently
computed using convex programming.)

2.8 (Learning from Untrusted Batches) In the learning from untrusted batches
problem, one is attempting to learn a distribution p over a finite domain
[n] := {1, 2, . . . , n}, in a distributed setting where many samples are parti-
tioned across a few servers, but a constant fraction of the servers may be
corrupted. More precisely, we are given m i.i.d. samples from p divided
into batches of k samples each. However, an ε-fraction of these batches
are allowed to be adversarially corrupted (usually in the Huber sense).
The goal is to learn a distribution p̂ that is close to p in total variation
distance.

(a) Show that for k = 1 one cannot learn p to error better than ε, no
matter how large m is.

(b) Show that for any subset S ⊆ [n], there is a polynomial-time algo-
rithm to estimate the probability p(S ) that p assigns to S within error
of O(ε/

√
k). Use this to devise an inefficient algorithm to estimate p

to error O(ε/
√

k) in total variation distance.
(c) Show that the learning from untrusted batches problem is equivalent

to estimating the mean of a multinomial distribution to small `1 error,
given access to ε-corrupted samples. Show that the algorithm from
Exercise 2.7 can be used to efficiently learn p to `1-error O(

√
ε/k).

(d) One can actually do somewhat better than the above. The idea is
to find sets S ⊂ [n] such that the empirical variance of the number
of samples in a batch from S is substantially larger than the vari-
ance over just the good batches, and using this set to filter. This can
be done by comparing the sample covariance matrix to an approx-
imation of the true covariance, and using a known result that gives
a polynomial-time algorithm for the following task: Given a matrix
M, compute a vector v with ‖v‖∞ ≤ 1 and v>Mv � sup‖w‖∞≤1 w>Mw.
Give a polynomial-time algorithm that estimates p to error
O(ε

√
log(1/ε)/k) in total variation distance.

Remark 2.23 The learning from untrusted batches problem was intro-
duced by [128] and subsequently studied in a sequence of works [27, 28,
99, 100, 101].
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2.9 (Robust Mean Estimation for Balanced Product Distributions) Let X be a
balanced product distribution on {0, 1}d. Namely, Xi is 1 with probability
pi and 0 otherwise, for some 1/3 ≤ pi ≤ 2/3, and the coordinates Xi are
independent of one another. Note that Σ := Cov[X] is a diagonal matrix
with entries pi(1−pi). Give an efficient algorithm to estimate the mean of
X to `2-error O(ε

√
log(1/ε)) from a polynomial number of ε-corrupted

samples.

(Hint: Compute an approximation to Σ and find a way to adjust for the
fact that Σ is not close to I.)

2.10 (Achieving Breakdown Point of 1/2) The algorithms presented in this
chapter all require that the fraction of corruptions ε is at most a suffi-
ciently small positive constant. Adaptations of these algorithms can be
made to work for ε approaching 1/2. (For the more challenging setting
when ε > 1/2, see Chapter 5). Show that for all 0 < ε < 1/2 there is an
algorithm that takes poly(d/(1/2 − ε)) samples from X = N(µ, I) in Rd,
runs in polynomial time, and with high probability computes an estimate
µ̂ with ‖̂µ − µ‖2 ≤ f (ε), for some function f .

(Hint: Some version of a filter should work, though you may need to be
more careful either about the ratio of inliers versus outliers removed or
about the properties that you can assume for S ∩ T .)

2.11 (High-Probability Guarantees in Randomized Filtering) Consider the ver-
sion of the randomized filter where each sample is removed independ-
ently with probability f (x)/ fmax. Show that if this algorithm is given a set
T , which is an ε-corruption of a set S , the probability that the algorithm
ever reaches a state where more than 3ε |S | samples have been removed
from S is at most exp(−Ω(ε|S |)).

(Hint: Consider the expectation E
[
exp(η(2|Ti\S | + |(S ∩ T )\Ti|))

]
for η >

0 some sufficiently small constant.)
2.12 (Different Scores for the Universal Filter) Recall that for our universal

filter we let g(x) = |v · (x − µT )|2 and defined our scores to be g(x) if x
was in the top ε-fraction of values and 0 otherwise.

(a) Show that if instead g(x) is used directly as the score function, this
may throw away more good samples than bad ones, unless δ �

√
ε.

(b) Let m be an O(1)-additive approximation to v · µS (for example, the
median of v · T often works). Let g(x) = |v · x − m|2 and

f (x) :=

g(x) if g(x) > C(δ/ε)2,

0 otherwise
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for C > 0 some suitably large constant. Show that this score function
works. Namely, show that if T is an ε-corruption of S , S is (ε, δ)-
stable and if Var[v · T ] > 1 + C′δ2/ε, for some sufficiently large C′,
then

∑
x∈S∩T f (x) < 1

2
∑

x∈T f (x).

2.6 Discussion and Related Work

The first computationally efficient algorithms for high-dimensional robust mean
estimation with dimension-independent error guarantees were obtained in [45].
The same work introduced both the unknown convex programming and filter-
ing techniques described in this chapter. The filtering technique was further
refined in [46], specifically for the class of bounded covariance distributions.
In this chapter, we gave a simplified and unified presentation of these tech-
niques. In more detail, the stability condition of Definition 2.1 first appeared in
[50], although a special case was implicitly used in [45]. Similarly, the univer-
sal filtering method that succeeds under the stability condition first appeared
in [50].

The idea of removing outliers by projecting on the top eigenvector of the
empirical covariance goes back to [110], who used it in the context of learning
linear separators with malicious noise. That work [110] used a “hard” filtering
step which only removes outliers, and consequently leads to errors that scale
logarithmically with the dimension. Subsequently, the work of [5] employed a
soft-outlier removal step in the same supervised setting as [110], to obtain im-
proved bounds for that problem. It should be noted that the soft-outlier method
of [5] is similarly insufficient to obtain dimension-independent error bounds
for the unsupervised setting.

Contemporaneously with [45], [114] developed a recursive dimension-
halving technique for high-dimensional robust mean estimation. Their tech-
nique leads to error O(ε

√
log d) for Gaussian robust mean estimation in Hu-

ber’s contamination model. The algorithm of [114] begins by removing ex-
treme outliers from the input set of ε-corrupted samples. This ensures that,
after this basic outlier removal step, the empirical covariance matrix has trace
d(1 + Õ(ε)), which in turn implies that the d/2 smallest eigenvalues are all at
most 1+ Õ(ε). This allows [114] to show, using techniques akin to Lemma 2.6,
that the projections of the true mean and the empirical mean onto the subspace
spanned by the corresponding (small) eigenvectors are close. The [114] algo-
rithm then uses this approximation for this projection of the mean, projects the
remaining points onto the orthogonal subspace, and recursively finds the mean
of the other projection. See Exercise 2.6 for more details.
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In addition to robust mean estimation, [45, 114] developed efficient robust
learning algorithms for a number of more complex statistical tasks, including
robust covariance estimation, robust density estimation for mixtures of spheri-
cal Gaussians and binary product distributions (see Exercise 2.9), robust inde-
pendent component analysis (ICA), and robust singular value decomposition
(SVD). Building on the techniques of [45], a line of works [34, 35, 66] gave
robust parameter estimation algorithms for Bayesian networks (with known
graph structure) and Ising models. Another extension of these results was given
in [136], who obtained an efficient algorithm for robust mean estimation with
respect to all `p-norms (see Exercise 2.7 for more details).

The algorithmic approaches described in this chapter robustly estimate the
mean of a spherical Gaussian within `2 error O(ε

√
log(1/ε)) in the strong con-

tamination model. A more sophisticated filtering technique that achieves the
optimal error of O(ε) in the additive (adaptive) contamination model was de-
veloped in [47]. This method will be described and analyzed in Chapter 3. Very
roughly, this algorithm proceeds, by using a novel filtering method, to remove
corrupted points if the empirical covariance matrix has many eigenvalues of
size 1+Ω(ε). Otherwise, the algorithm uses the empirical mean to estimate the
mean on the space spanned by small eigenvectors, and then uses brute-force to
estimate the projection onto the few principal eigenvectors. For the total var-
iation contamination model (and, therefore, the strong contamination model),
[63] gave evidence (in the form of Statistical Query lower bounds) that any im-
provement on the O(ε

√
log(1/ε)) error requires super-polynomial time. These

developments will be described in Chapter 8.
The focus of this chapter was on developing efficient robust mean estima-

tion algorithms in high dimensions that succeed if the fraction of outliers is
ε < ε0, where ε0 > 0 is a sufficiently small universal constant. In principle, it
is possible to do better than this, in particular to, obtain efficient robust mean
estimators with breakdown point of 1/2. This goal can be achieved by con-
ceptually simple adaptations of the filtering method. The reader is referred
to [39, 94, 144] and Exercise 2.10.

A related problem is that of high probability mean estimation. If one is
given independent samples from a Gaussian (with no corruptions), the em-
pirical mean gives a good estimate of the true mean, and furthermore one can
show that this estimate is accurate with high probability. However, if the un-
derlying distribution is replaced by a heavy-tailed distribution (such as, one
with merely bounded covariance), these high probability bounds may no longer
hold without a more sophisticated estimator. A sequence of works in the math-
ematical statistics community determined the optimal sample complexity of
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heavy-tailed mean estimation both without outliers [120] and in the strong con-
tamination model [121]. (See also [119] for a related survey.)

Interestingly, there is a connection between high probability mean estima-
tion and robust mean estimation, obtained by treating the extreme points from
the heavy-tailed distribution (which make the high-probability estimation task
challenging) as outliers; see, for example, [126]. In particular, [59] showed that
robust mean estimation techniques could be used to obtain essentially optimal
high probability mean estimation algorithms.

The first sample-optimal and polynomial-time algorithm for heavy-tail mean
estimation (without outliers) was developed in [90]. Subsequent works [37, 42]
developed simpler algorithms with significantly improved asymptotic runtime
that also succeed with additive contamination. More recently, the work of [59]
showed that any robust mean estimation algorithm that succeeds under the
stability condition when combined with a simple preprocessing step achieves
optimal rates for finite covariance distributions and works even in the strong
contamination model. The latter work also establishes the sample complexity
bounds stated in Remark 2.5 for identity covariance distributions with bounded
kth central moments.
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