EXISTENCE AND NONEXISTENCE OF REGULAR GENERATORS

J. ADÁMEK

ABSTRACT. A total category is constructed which has no regular generator although it has an object C such that every object is a regular quotient of a copower of C.

Introduction. Given a class \mathcal{E} of epimorphisms in a category **K**, by a (*weak*) \mathcal{E} generator is meant a small collection **G** of objects such that every object X is an \mathcal{E} quotient of its canonical coproduct w.r.t. **G** (or any coproduct of **G**-objects, respectively). The former means that the canonical coproduct $\coprod_{G \in \mathbf{G}} \coprod_{f \in \text{hom}(G,X)} G_f$, $G_f = G$, exists and the canonical morphism into X is in \mathcal{E} . Whereas the two concepts of \mathcal{E} -generator and weak \mathcal{E} -generator coincide for $\mathcal{E} =$ epis, strong epis, extremal epis, we will prove that they do not coincide for $\mathcal{E} =$ regular epis. The example we present is very "wellbehaved": it is a total category **K**, *i.e.*, the Yoneda embedding $\mathbf{K} \to \text{Set}^{\mathbf{K}^{\circ p}}$ is a right adjoint; thus, **K** is complete, cocomplete, compact, *etc*.

Let us remark that, on the other hand, the existence of a weak regular generator does imply the existence of a regular generator provided that **K** has regular factorizations or, more generally, has the cancellation property for regular epimorphisms.

The counterexample. We define a category Γ as follows: Γ -*objects* are quadruples (X, X_0, X_1, α) where $X \supseteq X_0 \supseteq X_1$ are sets and α : exp $X_1 \rightarrow X_0$ is a function such that

$$\alpha(\emptyset) = \alpha(\{x\}) \in X_1$$

for all $x \in X_1$.

Elements of X_0 are called *internal*, those of $X - X_0$ are called *external*; an element $x \in X_0$ is called *special* in case $x = \alpha(\emptyset)$ or $x = \alpha(M)$ for some infinite set $M \subseteq X_1$ with $\alpha(\{m_1, m_2\}) = \alpha(M)$ for all $m_1 \neq m_2$ in M.

 Γ -morphisms from (X, X_0, X_1, α) to (Y, Y_1, Y_0, β) are functions $f: X \to Y$ such that

(1) $f[X_0] \subseteq Y_0$

(2) $f[X_1] \subseteq Y_1$

(3) $f(\alpha(M)) = \beta(f[M])$ for each $M \subseteq X_1$

(4) for each $x \in X - X_0$ either $f(x) \in Y - Y_0$ or f(x) is special.

Composition and identities are defined on the level of Set. We have to verify that morphisms are indeed closed under set-theoretical composition. This follows easily from:

Received by the editors August 29, 1991; revised June 2, 1992.

AMS subject classification: 18A20, 18A99.

[©] Canadian Mathematical Society 1994.

LEMMA 1. Γ-morphisms preserve special points.

PROOF. Lef $f: (X, X_0, X_1, \alpha) \to (Y, Y_0, Y_1, \beta)$ be a morphism, and let $x \in X_0$ be special. If $f(x) = \beta(\emptyset)$, then f(x) is special. Suppose $f(x) \neq \beta(\emptyset)$. Since x is special, there is $M \subseteq X_1$ infinite with $x = \alpha(M) = \alpha(\{x_1, x_2\})$ for all $x_1 \neq x_2$ in M. Then for $x_1 \neq x_2$ in M

$$\beta(\lbrace f(x_1), f(x_2) \rbrace) = \beta(f[\lbrace x_1, x_2 \rbrace]) = f(x) \neq \beta(\emptyset)$$

implies $f(x_1) \neq f(x_2)$. Thus, f[M] is an infinite set with $f(x) = \beta(f[M]) = \beta(\{y_1, y_2\})$ for all $y_1 \neq y_2$ in f[M].

LEMMA 2 (DESCRIPTION OF COLIMITS IN Γ). Let $D: \mathbf{D} \to \Gamma$ be a small diagram with objects $Dd = (X_d, X_{d0}, X_{d1}, \alpha_d)$, and let \approx be the smallest equivalence on $\coprod_d X_d$ with the following properties:

(1) $x \approx D\delta(x)$ for each $x \in X_d$ and each **D**-morphism $\delta: d \to d'$;

(2) $\alpha_d(M) \approx \alpha_{d'}(M')$ for any $M \subseteq D_{d_1}, M' \subseteq X_{d'_1}$ with c[M] = c[M'] where $c: \coprod_d X_d \to \bar{X} = \coprod_d X_d / \approx$ is the canonical map.

Then a colimit of D is formed by the sink of canonical maps from Dd to

$$\operatorname{colim} D = (\bar{X} + Z, \bar{X}_0 + Z, \bar{X}_1, \bar{\alpha})$$

where $\bar{X}_1 = c(\coprod_d X_{d1})$, $\bar{X}_0 = c(\coprod_d X_{d0})$, $Z = \{M \subseteq \bar{X}_0; M \not\subseteq c[X_{d0}] \text{ for any } d\}$, and for each $M \subseteq \bar{X}_1$

 $\bar{\alpha}(M) = \begin{cases} c(\alpha_d[M']) & \text{whenever } M = c[M'] \text{ for some } M' \subseteq X_{d0} \\ M & \text{whenever } M \in Z. \end{cases}$

PROOF. Let us first verify that for each *d* the restriction c_d of the canonical map *c* is a morphism $c_d: Dd \rightarrow \operatorname{colim} D$. It is obvious that $c_d[X_{d1}] \subseteq \bar{X}_1$ and $c_d[X_{d0}] \subseteq \bar{X}_0$, furthermore, $c(\alpha_d(M')) = \bar{\alpha}(c[M'])$ for each $M' \subseteq X_{d1}$. Let us verify that, for each $x \in X_d - X_{d0}$, whenever $c_d(x)$ is not special in $\operatorname{colim} D$, then $c_d(x) \in \bar{X} - \bar{X}_0$. If there would exist $y \approx x$, $y \in X_{d'} - X_{d'0}$ with $D\delta(y) \in X_{d''0}$ for some $\delta: d' \rightarrow d''$ in **D**, then the point $D\delta(y) \approx x$ would be special in Dd'', and arguing as in Lemma 1, we would conclude that $c_d(D\delta(y)) = c_d(x)$ is special in $\operatorname{colim} D$. Consequently, all external points in the equivalence class of *x* are mapped to external points by all morphisms of the diagram *D*. Since the condition (2) above concerns non-external points only (recall that $\alpha(M)$ is never external), it follows that the whole equivalence class of *x* contains external points only. Thus, $c(x) = c_d(x) \in \bar{X} - \bar{X}_0$.

The sink of all $c_d: Dd \to \operatorname{colim} D$ is, obviously, compatible with D. Let $f_d: Dd \to B = (Y, Y_0, Y_1, \beta)$ be another compatible sink. Then the equivalence \approx is clearly contained in the equivalence merging $x \in X_d$ with $x' \in X_{d'}$ iff $f_d(x) = f_{d'}(x')$. Thus, we have a unique mapping $\overline{f}: \overline{X} \to Y$ with $\overline{f}(c_d(x)) = f_d(x)$ for all d, x. Define $f: \overline{X} + Z \to Y$ to be the extension of \overline{f} with $f(M) = \beta(\overline{f}[M])$ for each $M \in Z$. Then $f_d = f \cdot c_d$ and $f(\alpha(M)) = \beta(f[M])$ for all $M \subseteq \overline{X}_1$, and f is the unique function with these properties. Moreover, for each $x \in \overline{X} - \overline{X}_0$ we have $x' \in X_d - X_{d0}$ with x = c(x'); thus $f(x) = f_d(x')$ is either external or special. Thus, f: colim $D \to B$ is a morphism. COROLLARY. Γ is cocomplete, and for each coproduct in Γ the only special points are the special points of the individual summands.

In fact, if the diagram in Lemma 2 is discrete and a set $M \subseteq \bar{X}_0$ fulfils $\bar{\alpha}(M) = \bar{\alpha}(\{m_1, m_2\})$ for all $m_1 \neq m_2$ in M, then, obviously, $M \in Z$ (else there exist $m_1 \neq m_2$ in M with $\{m_1, m_2\} \in Z$). Thus, M = c(M') for some $M' \subseteq X_{d0}$, and $\alpha_d(M')$ is a special point of Dd.

THEOREM. The category Γ has no regular generator, although each object is a regular quotient of a copower of the object

$$C = (\{a, b, b', c, c'\}, \{b, b', c, c'\}, \{c, c'\}, \alpha)$$

where

$$\alpha(\emptyset) = c \text{ and } \alpha(\{c, c'\}) = b.$$

REMARK. Since the category Γ is cocomplete (by Lemma 2), the existence of a weak regular generator $\{C\}$ implies that Γ is total—this has been proved in [BT₂].

PROOF. Denote by Γ_0 the full subcategory of Γ consisting of all objects without external points, and define a functor

$$U: \Gamma \longrightarrow \Gamma_0$$

by

$$U(X, X_0, X_1, \alpha) = (X_0, X_0, X_1, \alpha);$$
 $Uf = f / X_0$

I. Let us prove that each object $K = (X, X_0, X_1, \alpha)$ is a regular quotient of a copower of *C*. It is obvious that

$$K = K_0 + K_1$$

where

$$K_0 = UK$$

and

$$K_1 = (X, \{\alpha(\emptyset)\}, \{\alpha(\emptyset)\}, \emptyset \mapsto \alpha(\emptyset)).$$

Thus, it is obviously sufficient to prove that both K_0 and K_1 are regular quotients of copowers of *C*.

(a) Let us first verify that a morphism $f: A \to A'$ in Γ with $A' \in \Gamma_0$ is a regular epimorphism whenever both f and the domain-codomain restriction of f to " X_1 -type" points are onto. More precisely, put $A = (X, X_0, X_1, \alpha)$ and $A' = (X', X'_0, X'_1, \alpha')$. Suppose $X' = X'_0$ and $f(X) = X', f(X_1) = X'_1$. Then f is a regular epimorphism in Γ . In fact, the kernel set ker $f \subseteq X \times X$ of f defines a subobject of $A \times A$:

$$E = \left(\ker f, (X_0 \times X_0) \cap \ker f, (X_1 \times X_1) \cap \ker f, \alpha^*\right)$$

where for the projections π_1 , π_2 of $X \times X$ we have

$$\alpha^*(M) = (\alpha \cdot \pi_1[M], \alpha \cdot \pi_2[M])$$
 for all M .

It is easy to see that $\pi_1, \pi_2: E \to A$ are morphisms of Γ , and of course $f \cdot \pi_1 = f \cdot \pi_2$. Now for each morphism

$$\bar{f}: A \longrightarrow \bar{A} = (\bar{X}, \bar{X}_0, \bar{X}_1, \bar{\alpha})$$

with $\bar{f} \cdot \pi_1 = \bar{f} \cdot \pi_2$ we have (since *f* is onto) a unique map $g: \ker f \to \bar{X}$ with $\bar{f} = g \cdot f$. This is a morphism $g: A' \to \bar{A}$ of Γ because

$$g[X'_i] = g \cdot f[X_i] = \overline{f}[X_i] \subseteq \overline{X}_i \quad \text{for } i = 0, 1$$

and given $M' \subseteq X'_0 = f[X_0]$ there exists $M \subseteq X_0$ with M' = f[M] and then

$$g(\alpha'(M')) = g(\alpha'(f[M]))$$
$$= g(f(\alpha[M]))$$
$$= \bar{f}(\alpha(M))$$
$$= \bar{\alpha}(\bar{f}[M])$$
$$= \bar{\alpha}(g[M']).$$

Consequently, f is a regular epimorphism in Γ .

We now prove that K_0 is a regular quotient of a copower of *C*. In fact, the canonical morphism

$$f: \coprod_{h \in \hom(C, K_0)} C \longrightarrow K_0$$

is onto, since for each $x \in X_0$ we have a morphism

$$h: C \to K_0, \quad h(b') = x, \quad h(-) = \alpha(\emptyset)$$
 otherwise.

Its restriction to X_1 -type points is also onto, since for each $x \in X_1$ we have a morphism $h: C \to K_0$ defined by

$$h(c') = x$$
$$h(b) = \alpha (\{x, \alpha(\emptyset)\})$$
$$h(-) = \alpha(\emptyset) \text{ otherwise.}$$

Consequently, f is a regular epimorphism.

II. Γ DOES NOT HAVE A REGULAR GENERATOR. Suppose that, to the contrary, **G** is a regular generator of Γ . We derive a contradiction by exhibiting, for each cardinal *n*, an object in **G** of cardinality at least *n*. If all **G**-objects would lie in Γ_0 , then their coproducts would also lie in Γ_0 , and this is impossible. Thus, some $G_0 \in \mathbf{G}$ has external points.

For each infinite cardinal n define an object

$$D_n = (n, n, n, \delta_n)$$

$$\delta_n(M) = \begin{cases} 0 & \text{if card } M \neq n, \text{ card } M \neq 2\\ 1 & \text{if card } M = n \text{ or card } M = 2. \end{cases}$$

Then 1 is a special point of D_n . Thus, we have the following morphism $f: G_0 \to D_n$: f maps all external points to 1 and all internal ones to 0. Consider the canonical morphism c of the canonical coproduct of D_n w.r.t. **G** which, by assumption, is a coequalizer of some pair g, g':

$$B \xrightarrow{g}_{g'} \coprod_{i \in I} G_i \xrightarrow{c} D_n, \quad G_i = (X_i, X_{i0}, X_{i1}, \alpha_i).$$

Since $f: G_0 \to D_n$ is one of the components of c, there exists $j \in J$ with c(x) = 1 for some external point x of G_j . Since 1 is internal in D_n , we claim that there exists y in Bsuch that c(x) = c(g(y)) = c(g(y')) and one of the points g(y), g'(y) is external whereas the other one is internal. (In fact, suppose that no such y exists. By the description of colimits in Lemma 2 it then follows that the \approx -class of x contains only external points; thus, c(x) is an external point of the colimit, *i.e.*, of D_n —a contradiction.) It follows that y is an external point of B. Consequently, one of the points g(y), g'(y) is special in $\coprod_{i \in I} G_i$. By the above Corollary, we thus have a special point $z \in G_{i_0}$ for some $i_0 \in I$ with c(z) = 1. Since $1 \neq \alpha(\emptyset)$, it follows that there exists an infinite set $M \subseteq X_{i_01}$ with $\alpha(M) = \alpha(\{m_1, m_2\}) = z$ for all $m_1, m_2 \in M, m_1 \neq m_2$. Consequently, in D_n we have

$$1 = \delta_n(c[M]) = \delta_n(\{c(m_1), c(m_2)\}).$$

Since $\delta(\{x\}) = 0$, we conclude $c(m_1) \neq c(m_2)$, *i.e.*, *c* is one-to-one when restricted to *M*. Thus, c[M] is an infinite set which is mapped by δ_n to 1—consequently, card c[M] = n. This proves that G_{i_0} has at least *n* points, which concludes the proof.

REFERENCES

- [AHR] J. Adámek, H. Herrlich and J. Reiterman, *Completeness almost implies cocompleteness*, Proc. of Categorical Topology, Prague, 1988, World Scient. Publ., Singapore, 1989.
- [AHS] J. Adámek, H. Herrlich and G. E. Strecker, Abstract and concrete categories, Wiley-Interscience Publ., New York, 1990.
- [**BT**₁] R. Börger and W. Tholen, *Strong, regular and dense generators*, Cahiers Topol. Géom. Differentielle, to appear.
- [BT₂] _____, Total categories and solid functors, Canad. J. Math. 42(1990), 213–229.
- [BT₃] _____, Totality of colimit closures, Comment. Math. Univ. Carolinae 32(1991), 749–759.
- [D] B. J. Day, Further criteria for totality, Cahiers Topol. Géom. Differentielle 28(1987), 77-78.
- [GU] P. Gabriel and P. Ulmer, Lokal präsentierbare Kategorien, Springer Lecture Notes In Math. 221, Springer-Verlag, 1971.
- [K] G. M. Kelly, A survey of totality for enriched and ordinary categories, Cahiers Topol. Géom. Differentielle 27(1986), 109–131.
- [T] W. Tholen, Note on total categories, Bull. Austral. Math. Soc. 21(1980), 169–173.
- [TRA] V. Trnková, J. Rosický and J. Adámek, Unexpected properties of locally presentable categories, Algebra Universalis 27(1990), 153–170.

Czech Technical University Technická 2 Praha 6 Czechoslovakia