EXISTENCE AND NONEXISTENCE OF REGULAR GENERATORS

J. ADÁMEK

> ABSTRACT. A total category is constructed which has no regular generator although it has an object C such that every object is a regular quotient of a copower of C.

Introduction. Given a class \mathcal{E} of epimorphisms in a category \mathbf{K}, by a (weak) \mathfrak{E} generator is meant a small collection \mathbf{G} of objects such that every object X is an \mathcal{E} quotient of its canonical coproduct w.r.t. \mathbf{G} (or any coproduct of \mathbf{G}-objects, respectively). The former means that the canonical coproduct $\amalg_{G \in \mathbf{G}} \amalg_{f \in \operatorname{hom}_{(G . X)}} G_{f}, G_{f}=G$, exists and the canonical morphism into X is in \mathcal{E}. Whereas the two concepts of \mathcal{E}-generator and weak \mathcal{E}-generator coincide for $\mathcal{E}=$ epis, strong epis, extremal epis, we will prove that they do not coincide for $\mathcal{E}=$ regular epis. The example we present is very "wellbehaved": it is a total category \mathbf{K}, i.e., the Yoneda embedding $\mathbf{K} \rightarrow \mathrm{Set}^{{ }^{\mathbf{K p}}}$ is a right adjoint; thus, \mathbf{K} is complete, cocomplete, compact, etc.

Let us remark that, on the other hand, the existence of a weak regular generator does imply the existence of a regular generator provided that \mathbf{K} has regular factorizations or, more generally, has the cancellation property for regular epimorphisms.

The counterexample. We define a category Γ as follows: Γ-objects are quadruples (X, X_{0}, X_{1}, α) where $X \supseteq X_{0} \supseteq X_{1}$ are sets and $\alpha: \exp X_{1} \rightarrow X_{0}$ is a function such that

$$
\alpha(\emptyset)=\alpha(\{x\}) \in X_{1}
$$

for all $x \in X_{1}$.
Elements of X_{0} are called internal, those of $X-X_{0}$ are called external; an element $x \in X_{0}$ is called special in case $x=\alpha(\emptyset)$ or $x=\alpha(M)$ for some infinite set $M \subseteq X_{1}$ with $\alpha\left(\left\{m_{1}, m_{2}\right\}\right)=\alpha(M)$ for all $m_{1} \neq m_{2}$ in M.
Γ-morphisms from $\left(X, X_{0}, X_{1}, \alpha\right)$ to $\left(Y, Y_{1}, Y_{0}, \beta\right)$ are functions $f: X \rightarrow Y$ such that
(1) $f\left[X_{0}\right] \subseteq Y_{0}$
(2) $f\left[X_{1}\right] \subseteq Y_{1}$
(3) $f(\alpha(M))=\beta(f[M])$ for each $M \subseteq X_{1}$
(4) for each $x \in X-X_{0}$ either $f(x) \in Y-Y_{0}$ or $f(x)$ is special.

Composition and identities are defined on the level of Set. We have to verify that morphisms are indeed closed under set-theoretical composition. This follows easily from:

[^0]Lemma 1. Γ-morphisms preserve special points.
Proof. Lef $f:\left(X, X_{0}, X_{1}, \alpha\right) \rightarrow\left(Y, Y_{0}, Y_{1}, \beta\right)$ be a morphism, and let $x \in X_{0}$ be special. If $f(x)=\beta(\emptyset)$, then $f(x)$ is special. Suppose $f(x) \neq \beta(\emptyset)$. Since x is special, there is $M \subseteq X_{1}$ infinite with $x=\alpha(M)=\alpha\left(\left\{x_{1}, x_{2}\right\}\right)$ for all $x_{1} \neq x_{2}$ in M. Then for $x_{1} \neq x_{2}$ in M

$$
\beta\left(\left\{f\left(x_{1}\right), f\left(x_{2}\right)\right\}\right)=\beta\left(f\left[\left\{x_{1}, x_{2}\right\}\right]\right)=f(x) \neq \beta(\emptyset)
$$

implies $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. Thus, $f[M]$ is an infinite set with $f(x)=\beta(f[M])=\beta\left(\left\{y_{1}, y_{2}\right\}\right)$ for all $y_{1} \neq y_{2}$ in $f[M]$.

LEMMA 2 (DESCRIPTION OF COLIMITS IN Γ). Let $D: \mathbf{D} \rightarrow \Gamma$ be a small diagram with objects $D d=\left(X_{d}, X_{d 0}, X_{d 1}, \alpha_{d}\right)$, and let \approx be the smallest equivalence on $\amalg_{d} X_{d}$ with the following properties:
(I) $x \approx D \delta(x)$ for each $x \in X_{d}$ and each \mathbf{D}-morphism $\delta: d \rightarrow d^{\prime}$;
(2) $\alpha_{d}(M) \approx \alpha_{d^{\prime}}\left(M^{\prime}\right)$ for any $M \subseteq D_{d 1}, M^{\prime} \subseteq X_{d^{\prime} 1}$ with $c[M]=c\left[M^{\prime}\right]$ where $c: \amalg_{d} X_{d} \rightarrow \bar{X}=\amalg_{d} X_{d} / \approx$ is the canonical map.
Then a colimit of D is formed by the sink of canonical maps from Dd to

$$
\operatorname{colim} D=\left(\bar{X}+Z, \bar{X}_{0}+Z, \bar{X}_{1}, \bar{\alpha}\right)
$$

where $\bar{X}_{1}=c\left(\mathrm{I}_{d} X_{d 1}\right), \bar{X}_{0}=c\left(\mathrm{I}_{d} X_{d 0}\right), Z=\left\{M \subseteq \bar{X}_{0} ; M \nsubseteq c\left[X_{d 0}\right]\right.$ for any $\left.d\right\}$, and for each $M \subseteq \bar{X}_{1}$

$$
\bar{\alpha}(M)= \begin{cases}c\left(\alpha_{d}\left[M^{\prime}\right]\right) & \text { whenever } M=c\left[M^{\prime}\right] \text { for some } M^{\prime} \subseteq X_{d 0} \\ M & \text { whenever } M \in Z .\end{cases}
$$

Proof. Let us first verify that for each d the restriction c_{d} of the canonical map c is a morphism $c_{d}: D d \rightarrow \operatorname{colim} D$. It is obvious that $c_{d}\left[X_{d 1}\right] \subseteq \bar{X}_{1}$ and $c_{d}\left[X_{d 0}\right] \subseteq \bar{X}_{0}$, furthermore, $c\left(\alpha_{d}\left(M^{\prime}\right)\right)=\bar{\alpha}\left(c\left[M^{\prime}\right]\right)$ for each $M^{\prime} \subseteq X_{d 1}$. Let us verify that, for each $x \in X_{d}-X_{d 0}$, whenever $c_{d}(x)$ is not special in colim D, then $c_{d}(x) \in \bar{X}-\bar{X}_{0}$. If there would exist $y \approx x, y \in X_{d^{\prime}}-X_{d^{\prime} 0}$ with $D \delta(y) \in X_{d^{\prime \prime} 0}$ for some $\delta: d^{\prime} \rightarrow d^{\prime \prime}$ in \mathbf{D}, then the point $D \delta(y) \approx x$ would be special in $D d^{\prime \prime}$, and arguing as in Lemma 1 , we would conclude that $c_{d}(D \delta(y))=c_{d}(x)$ is special in colim D. Consequently, all external points in the equivalence class of x are mapped to external points by all morphisms of the diagram D. Since the condition (2) above concerns non-external points only (recall that $\alpha(M)$ is never external), it follows that the whole equivalence class of x contains external points only. Thus, $c(x)=c_{d}(x) \in \bar{X}-\bar{X}_{0}$.

The sink of all $c_{d}: D d \rightarrow \operatorname{colim} D$ is, obviously, compatible with D. Let $f_{d}: D d \rightarrow B=$ (Y, Y_{0}, Y_{1}, β) be another compatible sink. Then the equivalence \approx is clearly contained in the equivalence merging $x \in X_{d}$ with $x^{\prime} \in X_{d^{\prime}}$ iff $f_{d}(x)=f_{d^{\prime}}\left(x^{\prime}\right)$. Thus, we have a unique mapping $\bar{f}: \bar{X} \rightarrow Y$ with $\bar{f}\left(c_{d}(x)\right)=f_{d}(x)$ for all d, x. Define $f: \bar{X}+Z \rightarrow Y$ to be the extension of \bar{f} with $f(M)=\beta(\bar{f}[M])$ for each $M \in Z$. Then $f_{d}=f \cdot c_{d}$ and $f(\alpha(M))=\beta(f[M])$ for all $M \subseteq \bar{X}_{1}$, and f is the unique function with these properties. Moreover, for each $x \in \bar{X}-\bar{X}_{0}$ we have $x^{\prime} \in X_{d}-X_{d 0}$ with $x=c\left(x^{\prime}\right)$; thus $f(x)=f_{d}\left(x^{\prime}\right)$ is either external or special. Thus, $f: \operatorname{colim} D \rightarrow B$ is a morphism.

Corollary. Γ is cocomplete, and for each coproduct in Γ the only special points are the special points of the individual summands.

In fact, if the diagram in Lemma 2 is discrete and a set $M \subseteq \bar{X}_{0}$ fulfils $\bar{\alpha}(M)=$ $\bar{\alpha}\left(\left\{m_{1}, m_{2}\right\}\right)$ for all $m_{1} \neq m_{2}$ in M, then, obviously, $M \in Z$ (else there exist $m_{1} \neq m_{2}$ in M with $\left\{m_{1}, m_{2}\right\} \in Z$). Thus, $M=c\left(M^{\prime}\right)$ for some $M^{\prime} \subseteq X_{d 0}$, and $\alpha_{d}\left(M^{\prime}\right)$ is a special point of $D d$.

THEOREM. The category Γ has no regular generator, although each object is a regular quotient of a copower of the object

$$
C=\left(\left\{a, b, b^{\prime}, c, c^{\prime}\right\},\left\{b, b^{\prime}, c, c^{\prime}\right\},\left\{c, c^{\prime}\right\}, \alpha\right)
$$

where

$$
\alpha(\emptyset)=c \text { and } \alpha\left(\left\{c, c^{\prime}\right\}\right)=b .
$$

REMARK. Since the category Γ is cocomplete (by Lemma 2), the existence of a weak regular generator $\{C\}$ implies that Γ is total-this has been proved in $\left[\mathrm{BT}_{2}\right]$.

Proof. Denote by Γ_{0} the full subcategory of Γ consisting of all objects without external points, and define a functor

$$
U: \Gamma \rightarrow \Gamma_{0}
$$

by

$$
U\left(X, X_{0}, X_{1}, \alpha\right)=\left(X_{0}, X_{0}, X_{1}, \alpha\right) ; \quad U f=f / X_{0} .
$$

I. Let us prove that each object $K=\left(X, X_{0}, X_{1}, \alpha\right)$ is a regular quotient of a copower of C. It is obvious that

$$
K=K_{0}+K_{1}
$$

where

$$
K_{0}=U K
$$

and

$$
K_{1}=(X,\{\alpha(\emptyset)\},\{\alpha(\emptyset)\}, \emptyset \longmapsto \alpha(\emptyset)) .
$$

Thus, it is obviously sufficient to prove that both K_{0} and K_{1} are regular quotients of copowers of C.
(a) Let us first verify that a morphism $f: A \rightarrow A^{\prime}$ in Γ with $A^{\prime} \in \Gamma_{0}$ is a regular epimorphism whenever both f and the domain-codomain restriction of f to " X_{1}-type" points are onto. More precisely, put $A=\left(X, X_{0}, X_{1}, \alpha\right)$ and $A^{\prime}=\left(X^{\prime}, X_{0}^{\prime}, X_{1}^{\prime}, \alpha^{\prime}\right)$. Suppose $X^{\prime}=X_{0}^{\prime}$ and $f(X)=X^{\prime}, f\left(X_{1}\right)=X_{1}^{\prime}$. Then f is a regular epimorphism in Γ. In fact, the kernel set $\operatorname{ker} f \subseteq X \times X$ of f defines a subobject of $A \times A$:

$$
E=\left(\operatorname{ker} f,\left(X_{0} \times X_{0}\right) \cap \operatorname{ker} f,\left(X_{1} \times X_{1}\right) \cap \operatorname{ker} f, \alpha^{*}\right)
$$

where for the projections π_{1}, π_{2} of $X \times X$ we have

$$
\alpha^{*}(M)=\left(\alpha \cdot \pi_{1}[M], \alpha \cdot \pi_{2}[M]\right) \quad \text { for all } M
$$

It is easy to see that $\pi_{1}, \pi_{2}: E \rightarrow A$ are morphisms of Γ, and of course $f \cdot \pi_{1}=f \cdot \pi_{2}$. Now for each morphism

$$
\bar{f}: A \rightarrow \bar{A}=\left(\bar{X}, \bar{X}_{0}, \bar{X}_{1}, \bar{\alpha}\right)
$$

with $\bar{f} \cdot \pi_{1}=\bar{f} \cdot \pi_{2}$ we have (since f is onto) a unique map $g: \operatorname{ker} f \rightarrow \bar{X}$ with $\bar{f}=g \cdot f$. This is a morphism $g: A^{\prime} \rightarrow \bar{A}$ of Γ because

$$
g\left[X_{i}^{\prime}\right]=g \cdot f\left[X_{i}\right]=\bar{f}\left[X_{i}\right] \subseteq \bar{X}_{i} \quad \text { for } i=0,1
$$

and given $M^{\prime} \subseteq X_{0}^{\prime}=f\left[X_{0}\right]$ there exists $M \subseteq X_{0}$ with $M^{\prime}=f[M]$ and then

$$
\begin{aligned}
g\left(\alpha^{\prime}\left(M^{\prime}\right)\right) & =g\left(\alpha^{\prime}(f[M])\right) \\
& =g(f(\alpha[M])) \\
& =\bar{f}(\alpha(M)) \\
& =\bar{\alpha}(\bar{f}[M]) \\
& =\bar{\alpha}\left(g\left[M^{\prime}\right]\right) .
\end{aligned}
$$

Consequently, f is a regular epimorphism in Γ.
We now prove that K_{0} is a regular quotient of a copower of C. In fact, the canonical morphism

$$
f: \underset{h \in \operatorname{hom}\left(C, K_{0}\right)}{\coprod} C \rightarrow K_{0}
$$

is onto, since for each $x \in X_{0}$ we have a morphism

$$
h: C \rightarrow K_{0}, \quad h\left(b^{\prime}\right)=x, \quad h(-)=\alpha(\emptyset) \text { otherwise. }
$$

Its restriction to X_{1}-type points is also onto, since for each $x \in X_{1}$ we have a morphism $h: C \rightarrow K_{0}$ defined by

$$
\begin{gathered}
h\left(c^{\prime}\right)=x \\
h(b)=\alpha(\{x, \alpha(\emptyset)\}) \\
h(-)=\alpha(\emptyset) \text { otherwise. }
\end{gathered}
$$

Consequently, f is a regular epimorphism.
II. Γ does not have a regular generator. Suppose that, to the contrary, \mathbf{G} is a regular generator of Γ. We derive a contradiction by exhibiting, for each cardinal n, an object in \mathbf{G} of cardinality at least n. If all \mathbf{G}-objects would lie in Γ_{0}, then their coproducts would also lie in Γ_{0}, and this is impossible. Thus, some $G_{0} \in \mathbf{G}$ has external points.

For each infinite cardinal n define an object

$$
\begin{aligned}
& D_{n}=\left(n, n, n, \delta_{n}\right) \\
& \delta_{n}(M)= \begin{cases}0 & \text { if } \operatorname{card} M \neq n, \operatorname{card} M \neq 2 \\
1 & \text { if } \operatorname{card} M=n \operatorname{or} \operatorname{card} M=2 .\end{cases}
\end{aligned}
$$

Then 1 is a special point of D_{n}. Thus, we have the following morphism $f: G_{0} \rightarrow D_{n}: f$ maps all external points to 1 and all internal ones to 0 . Consider the canonical morphism c of the canonical coproduct of D_{n} w.r.t. \mathbf{G} which, by assumption, is a coequalizer of some pair g, g^{\prime} :

$$
B \stackrel{g}{g^{\prime}} \prod_{i \in I} G_{i} \xrightarrow{c} D_{n}, \quad G_{i}=\left(X_{i}, X_{i 0}, X_{i 1}, \alpha_{i}\right) .
$$

Since $f: G_{0} \rightarrow D_{n}$ is one of the components of c, there exists $j \in J$ with $c(x)=1$ for some external point x of G_{j}. Since 1 is internal in D_{n}, we claim that there exists y in B such that $c(x)=c(g(y))=c\left(g\left(y^{\prime}\right)\right)$ and one of the points $g(y), g^{\prime}(y)$ is external whereas the other one is internal. (In fact, suppose that no such y exists. By the description of colimits in Lemma 2 it then follows that the \approx-class of x contains only external points; thus, $c(x)$ is an external point of the colimit, i.e., of $D_{n}-$ a contradiction.) It follows that y is an external point of B. Consequently, one of the points $g(y), g^{\prime}(y)$ is special in $\amalg_{i \in I} G_{i}$. By the above Corollary, we thus have a special point $z \in G_{i_{0}}$ for some $i_{0} \in I$ with $c(z)=1$. Since $1 \neq \alpha(\emptyset)$, it follows that there exists an infinite set $M \subseteq X_{i_{0} 1}$ with $\alpha(M)=\alpha\left(\left\{m_{1}, m_{2}\right\}\right)=z$ for all $m_{1}, m_{2} \in M, m_{1} \neq m_{2}$. Consequently, in D_{n} we have

$$
1=\delta_{n}(c[M])=\delta_{n}\left(\left\{c\left(m_{1}\right), c\left(m_{2}\right)\right\}\right) .
$$

Since $\delta(\{x\})=0$, we conclude $c\left(m_{1}\right) \neq c\left(m_{2}\right)$, i.e., c is one-to-one when restricted to M. Thus, $c[M]$ is an infinite set which is mapped by δ_{n} to 1 -consequently, $\operatorname{card} c[M]=n$. This proves that $G_{i_{0}}$ has at least n points, which concludes the proof.

References

[AHR] J. Adámek, H. Herrlich and J. Reiterman, Completeness almost implies cocompleteness, Proc. of Categorical Topology, Prague, 1988, World Scient. Publ., Singapore, 1989.
[AHS] J. Adámek, H. Herrlich and G. E. Strecker, Abstract and concrete categories, Wiley-Interscience Publ., New York, 1990.
$\left[\mathbf{B T}_{1}\right]$ R. Börger and W. Tholen, Strong, regular and dense generators, Cahiers Topol. Géom. Differentielle, to appear.
[BT_{2}] \qquad Total categories and solid functors, Canad. J. Math. 42(1990), 213-229.
$\left[\mathrm{BT}_{3}\right] \ldots$ _ Totality of colimit closures, Comment. Math. Univ. Carolinae 32(1991), 749-759.
[D] B. J. Day, Further criteria for totality, Cahiers Topol. Géom. Differentielle 28(1987), 77-78.
[GU] P. Gabriel and P. Ulmer, Lokal präsentierbare Kategorien, Springer Lecture Notes In Math. 221, SpringerVerlag, 1971.
[K] G. M. Kelly, A survey of totality for enriched and ordinary categories, Cahiers Topol. Géom. Differentielle 27(1986), 109-131.
[T] W. Tholen, Note on total categories, Bull. Austral. Math. Soc. 21(1980), 169-173.
[TRA] V. Trnková, J. Rosický and J. Adámek, Unexpected properties of locally presentable categories, Algebra Universalis 27(1990), 153-170.

Czech Technical University

Technická 2
Praha 6
Czechoslovakia

[^0]: Received by the editors August 29, 1991; revised June 2, 1992.
 AMS subject classification: 18A20, 18A99.
 (c) Canadian Mathematical Society 1994.

