GHARAGTERS WITH PREASSIGNED VALUES

W. H. MILLS

Let k and t be positive integers; let $q_{1}, q_{2}, \ldots, q_{t}$ be distinct prime numbers; and let $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{t}$ be k th roots of unity, not necessarily primitive. Recent investigations on consecutive k th power residues have led to the following question: Under what conditions do there exist primes p that have a k th power character χ such that

$$
\begin{equation*}
\chi\left(q_{i}\right)=\zeta_{i}, 1 \leqslant i \leqslant t ? \tag{1}
\end{equation*}
$$

It has been known for a long time that if k is a prime, then for any q_{1}, \ldots, $q_{t}, \zeta_{1}, \ldots, \zeta_{t}$ there exist an infinite number of such primes $p(4 ; 3$, p. 426 ; or 5$)$. However, for most even values of k there are certain restrictions. If p is a prime, $p \equiv 1(\bmod k)$, then it follows from the quadratic reciprocity law that:
(i) If $m \mid k, m \equiv 1(\bmod 4)$, then m is a square modulo p.
(ii) If $4 m \mid k$, then m is a square modulo p .

Now (i) and (ii) impose certain restrictions on the ζ_{i} in order that χ satisfy (1). The object of this paper is to show that if these conditions are satisfied, then there exist primes p that have a k th power character χ that satisfies (1). In particular this is always the case if k is odd, if $k=2$, if $k=4$, or if $k=2 Q$ where Q is a prime of the form $4 N+3$. Moreover, if there is one such prime p, then there are an infinite number of them.

1. Let k be a positive integer, let R be the field of rational numbers, let ζ be a primitive k th root of unity, and let $F=R(\zeta)$. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}$ be nonzero elements of F, and let $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{t}$ be k th roots of unity, not necessarily primitive. Let β_{i} be a root of $x^{k}=\alpha_{i}, 1 \leqslant i \leqslant t$, and let $E=F\left(\beta_{1}, \beta_{2}, \ldots\right.$, β_{t}). Then E is normal over F. Let G be the Galois group of E over F. Our starting point is the following special case of the Tschebotareff density theorem (2, p. 133):

Theorem 1. If there is $a \sigma$ in G such that

$$
\begin{equation*}
\sigma \beta_{i}=\zeta_{i} \beta_{i}, 1 \leqslant i \leqslant t \tag{2}
\end{equation*}
$$

then there exist an infinite number of prime ideals \mathfrak{p} of the first degree in F such that

$$
\begin{equation*}
\left(\frac{\alpha_{i}}{p}\right)=\zeta_{i}, \quad 1 \leqslant i \leqslant t \tag{3}
\end{equation*}
$$

Received January 19, 1962.
where (α / \mathfrak{p}) is the k th power residue symbol. If there are no σ in G satisfying (2), then there are no prime ideals \mathfrak{p} in F satisfying (3).

Let F^{k} denote the set of all elements of the form $\alpha^{k}, \alpha \in F$. It follows from the theory of Kummer extensions (see, for example, (1)) that the existence of a σ in G satisfying (2) is equivalent to the following condition:
(I) If $m_{1}, m_{2}, \ldots, m_{t}$ are rational integers such that $\Pi \alpha_{i}{ }^{m_{i}} \in F^{k}$, then $\Pi \zeta_{i}^{m_{i}}=1$.

If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}$ are rational then (I) is equivalent to the following:
(II) If $m_{1}, m_{2}, \ldots, m_{t}$ are non-negative rational integers such that $\prod_{\alpha_{i}}{ }^{m_{i}}$ $\in R \cap F^{k}$, then $\Pi_{\zeta}{ }^{m_{i}}=1$.
By a k th power character modulo a prime p we mean a homomorphism of the multiplicative group of integers modulo p onto the group of k th roots of unity. This implies that p is of the form $k N+1$. For such a prime p the k th power characters modulo p are the mappings χ of the form

$$
\chi(n)=\left(\frac{n}{\mathfrak{p}}\right),
$$

where \mathfrak{p} is a prime ideal in F that divides p. Now every prime ideal \mathfrak{p} of the first degree in F either divides k or divides a prime p of the form $k N+1$. Therefore we have the following result:
Theorem 2. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}$ be non-zero rational integers, and let $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{i}$ be kth roots of unity. If (II) holds, then there exist an infinite number of rational primes, p, for each of which there is a kth power character χ modulo p, such that $\chi\left(\alpha_{i}\right)=\zeta_{i}, 1 \leqslant i \leqslant t$. If (II) does not hold, then there are no such primes p.
2. If k is odd let S be the set of all elements of the form $a^{k}, a \in R$. If k is even let S be the set of all elements of the form $\epsilon a^{k} d^{k / 2}$, where $a \in R, d$ is a positive square free integer, $d \left\lvert\, \frac{1}{2} k\right.$, and

$$
\epsilon=\left\{\begin{array}{l}
-1 \text { if } k \equiv 4(\bmod 8) \text { and } 2 \mid d, \tag{4}\\
-1 \text { if } k \equiv 2(\bmod 4) \text { and } d \equiv-1(\bmod 4), \\
1 \text { otherwise. }
\end{array}\right.
$$

Lemma. $R \cap F^{k}=S$.
Proof. The field of the q th roots of unity contains \sqrt{q} if $q \equiv 1(\bmod 4)$, and it contains $\sqrt{-q}$ if $q \equiv-1(\bmod 4)$. Moreover the field of the fourth roots of unity contains $(-4)^{\frac{1}{4}}$. It follows from these facts that $S \subseteq R \cap F^{k}$.

Suppose $m \in R \cap F^{k}$ and that k is odd. Then there is a real number α in F such that $m=\alpha^{k}$. Since F is an abelian extension of R, it follows that $R(\alpha)$ is a normal extension of R. Hence every conjugate of α is real. Since $x^{k}=m$ has only one real root, it follows that α is rational, and hence $m \in S$.

Finally, suppose that $m \in R \cap F^{k}$ and that k is even. Without loss of
generality we suppose that m is a k th power-free integer. Furthermore m $=\alpha^{k}$ for some $\alpha \in F$. Since α^{k} is real, it follows that there exists a $2 k$ th root of unity ω such that $\omega \alpha$ is a positive real number. Then $(\omega \alpha)^{k}=|m|$. Put $K=F(\omega)$. Then K is an abelian extension of R and $\omega \alpha \in K$. Hence $R(\omega \alpha)$ is a normal extension of R. Therefore every conjugate of $\omega \alpha$ is real. Since the only real roots of $x^{k}=|m|$ are $\pm \omega \alpha$ it follows that $(\omega \alpha)^{2}$ is rational. Put $d=(\omega \alpha)^{2}$. Then d is a positive rational integer and $|m|=d^{k / 2}$. Therefore $m=\epsilon_{0} d^{k / 2}$, where $\epsilon_{0}= \pm 1$. Since m is k th power free, it follows that d is square free. If q is a prime number and if $q \mid d$, then q is ramified in the extension $R(\alpha)$ and hence in F. This implies $q \left\lvert\, \frac{1}{2} k\right.$. Hence $d \left\lvert\, \frac{1}{2} k\right.$. Therefore $\epsilon d^{k / 2} \in S \subseteq R$ $\cap F^{k}$, where ϵ is given by (4). Thus $\epsilon \epsilon_{0} m \in R \cap F^{k}$. Now m and $-m$ cannot both belong to F^{k} since -1 does not. Hence $\epsilon \epsilon_{0}=1, \epsilon_{0}=\epsilon$, and $m=\epsilon d^{k / 2} \in S$.

We have proved that $R \cap F^{k} \subseteq S$ in all cases. Hence $R \cap F^{k}=S$, and the proof of the lemma is complete.
3. Using the lemma we now apply Theorem 2 to the case where the α_{i} are distinct primes. This gives us our final result:

Theorem 3. Let $q_{1}, q_{2}, \ldots, q_{t}$ be distinct positive rational prime numbers. Let $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{t}$ be kth roots of unity. Let P be the set of all rational prime numbers p such that there exists a k th power character χ modulo p satisfying

$$
\chi\left(q_{i}\right)=\zeta_{i}, 1 \leqslant i \leqslant t .
$$

If k is odd, then P is infinite, If $k \equiv 2(\bmod 4) ;$ if $\zeta_{i}{ }^{k / 2}=1$ for all i such that $q_{i} \mid k, q_{i} \equiv 1(\bmod 4) ;$ and if $\zeta_{j}^{k / 2}=\zeta_{j}{ }^{k / 2}$ for all pairs i, j such that $q_{i} q_{j} \mid k, q_{i} \equiv q_{j}$ $(\bmod 4)$; then P is infinite. If $4 \mid k$, and if $\zeta_{i}^{k / 2}=1$ for all i such that $4 q_{i} \mid k$, then P is infinite. In all other cases P is empty.

In particular P is always infinite if k is odd, if $k=2$ or 4 , or if $k=2 Q$ where Q is a prime of the form $4 N+3$.

The primes p in P are all of the form $k N+1$.

References

1. E. Artin, Galois theory, Notre Dame (1946).
2. H. Hasse, Jber. Deutsch. Math. Verein. Ergänzungsbände, VI (1930).
3. D. Hilbert, Jber. Deutsch. Math. Verein., 4 (1897), 175-546.
4. E. Kummer, Abh. der K. Akad. der Wiss. zu Berlin (1859).
5. N. Tschebotareff, Math. Ann., 95 (1926), 191-228.

Yale University

