CHARACTERS WITH PREASSIGNED VALUES

W. H. MILLS

Let k and t be positive integers; let q_1, q_2, \ldots, q_t be distinct prime numbers; and let $\zeta_1, \zeta_2, \ldots, \zeta_t$ be kth roots of unity, not necessarily primitive. Recent investigations on consecutive kth power residues have led to the following question: Under what conditions do there exist primes p that have a kth power character χ such that

(1)
$$\chi(q_i) = \zeta_i, 1 \leqslant i \leqslant t?$$

It has been known for a long time that if k is a prime, then for any $q_1, \ldots, q_i, \zeta_1, \ldots, \zeta_i$ there exist an infinite number of such primes p (4; 3, p. 426; or 5). However, for most even values of k there are certain restrictions. If p is a prime, $p \equiv 1 \pmod{k}$, then it follows from the quadratic reciprocity law that:

(i) If $m|k, m \equiv 1 \pmod{4}$, then m is a square modulo p.

(ii) If 4m|k, then m is a square modulo p.

Now (i) and (ii) impose certain restrictions on the ζ_i in order that χ satisfy (1). The object of this paper is to show that if these conditions are satisfied, then there exist primes p that have a *k*th power character χ that satisfies (1). In particular this is always the case if *k* is odd, if k = 2, if k = 4, or if k = 2Q where *Q* is a prime of the form 4N + 3. Moreover, if there is one such prime p, then there are an infinite number of them.

1. Let k be a positive integer, let R be the field of rational numbers, let ζ be a primitive kth root of unity, and let $F = R(\zeta)$. Let $\alpha_1, \alpha_2, \ldots, \alpha_t$ be non-zero elements of F, and let $\zeta_1, \zeta_2, \ldots, \zeta_t$ be kth roots of unity, not necessarily primitive. Let β_i be a root of $x^k = \alpha_i, 1 \leq i \leq t$, and let $E = F(\beta_1, \beta_2, \ldots, \beta_t)$. Then E is normal over F. Let G be the Galois group of E over F. Our starting point is the following special case of the Tschebotareff density theorem (2, p. 133):

THEOREM 1. If there is a σ in G such that

(2)
$$\sigma\beta_i = \zeta_i\beta_i, \ 1 \leqslant i \leqslant t,$$

then there exist an infinite number of prime ideals \mathfrak{p} of the first degree in F such that

(3)
$$\left(\frac{\alpha_i}{\mathfrak{p}}\right) = \zeta_i, \quad 1 \leqslant i \leqslant t,$$

Received January 19, 1962.

169

where (α/\mathfrak{p}) is the *k*th power residue symbol. If there are no σ in G satisfying (2), then there are no prime ideals \mathfrak{p} in *F* satisfying (3).

Let F^k denote the set of all elements of the form $\alpha^k, \alpha \in F$. It follows from the theory of Kummer extensions (see, for example, (1)) that the existence of a σ in G satisfying (2) is equivalent to the following condition:

(I) If m_1, m_2, \ldots, m_t are rational integers such that $\prod \alpha_i^{m_i} \in F^k$, then $\prod \zeta_i^{m_i} = 1$.

If $\alpha_1, \alpha_2, \ldots, \alpha_t$ are rational then (I) is equivalent to the following:

(II) If m_1, m_2, \ldots, m_t are non-negative rational integers such that $\prod_{\alpha_i} m_i \in R \cap F^k$, then $\prod_{\zeta_i} m_i = 1$.

By a *k*th power character modulo a prime p we mean a homomorphism of the multiplicative group of integers modulo p onto the group of *k*th roots of unity. This implies that p is of the form kN + 1. For such a prime p the *k*th power characters modulo p are the mappings χ of the form

$$\chi(n) = \left(\frac{n}{\mathfrak{p}}\right),$$

where \mathfrak{p} is a prime ideal in F that divides p. Now every prime ideal \mathfrak{p} of the first degree in F either divides k or divides a prime p of the form kN + 1. Therefore we have the following result:

THEOREM 2. Let $\alpha_1, \alpha_2, \ldots, \alpha_i$ be non-zero rational integers, and let $\zeta_1, \zeta_2, \ldots, \zeta_i$ be kth roots of unity. If (II) holds, then there exist an infinite number of rational primes, p, for each of which there is a kth power character χ modulo p, such that $\chi(\alpha_i) = \zeta_i$, $1 \leq i \leq t$. If (II) does not hold, then there are no such primes p.

2. If k is odd let S be the set of all elements of the form a^k , $a \in R$. If k is even let S be the set of all elements of the form $\epsilon a^k d^{k/2}$, where $a \in R$, d is a positive square free integer, $d|\frac{1}{2}k$, and

(4)
$$\epsilon = \begin{cases} -1 \text{ if } k \equiv 4 \pmod{8} \text{ and } 2|d, \\ -1 \text{ if } k \equiv 2 \pmod{4} \text{ and } d \equiv -1 \pmod{4} \\ 1 \text{ otherwise.} \end{cases}$$

LEMMA. $R \cap F^k = S$.

Proof. The field of the *q*th roots of unity contains \sqrt{q} if $q \equiv 1 \pmod{4}$, and it contains $\sqrt{-q}$ if $q \equiv -1 \pmod{4}$. Moreover the field of the fourth roots of unity contains $(-4)^{\frac{1}{4}}$. It follows from these facts that $S \subseteq R \cap F^k$.

Suppose $m \in R \cap F^k$ and that k is odd. Then there is a real number α in F such that $m = \alpha^k$. Since F is an abelian extension of R, it follows that $R(\alpha)$ is a normal extension of R. Hence every conjugate of α is real. Since $x^k = m$ has only one real root, it follows that α is rational, and hence $m \in S$.

Finally, suppose that $m \in R \cap F^k$ and that k is even. Without loss of

generality we suppose that m is a kth power-free integer. Furthermore $m = \alpha^k$ for some $\alpha \in F$. Since α^k is real, it follows that there exists a 2kth root of unity ω such that $\omega \alpha$ is a positive real number. Then $(\omega \alpha)^k = |m|$. Put $K = F(\omega)$. Then K is an abelian extension of R and $\omega \alpha \in K$. Hence $R(\omega \alpha)$ is a normal extension of R. Therefore every conjugate of $\omega \alpha$ is real. Since the only real roots of $x^k = |m|$ are $\pm \omega \alpha$ it follows that $(\omega \alpha)^2$ is rational. Put $d = (\omega \alpha)^2$. Then d is a positive rational integer and $|m| = d^{k/2}$. Therefore $m = \epsilon_0 d^{k/2}$, where $\epsilon_0 = \pm 1$. Since m is kth power free, it follows that d is square free. If q is a prime number and if q|d, then q is ramified in the extension $R(\alpha)$ and hence in F. This implies $q|\frac{1}{2}k$. Hence $d|\frac{1}{2}k$. Therefore $\epsilon d^{k/2} \in S \subseteq R \cap F^k$, where ϵ is given by (4). Thus $\epsilon \epsilon_0 m \in R \cap F^k$. Now m and -m cannot both belong to F^k since -1 does not. Hence $\epsilon \epsilon_0 = 1$, $\epsilon_0 = \epsilon$, and $m = \epsilon d^{k/2} \in S$.

We have proved that $R \cap F^k \subseteq S$ in all cases. Hence $R \cap F^k = S$, and the proof of the lemma is complete.

3. Using the lemma we now apply Theorem 2 to the case where the α_i are distinct primes. This gives us our final result:

THEOREM 3. Let q_1, q_2, \ldots, q_t be distinct positive rational prime numbers. Let $\zeta_1, \zeta_2, \ldots, \zeta_t$ be kth roots of unity. Let P be the set of all rational prime numbers p such that there exists a kth power character χ modulo p satisfying

$$\chi(q_i) = \zeta_i, 1 \leqslant i \leqslant t.$$

If k is odd, then P is infinite, If $k \equiv 2 \pmod{4}$; if $\zeta_i^{k/2} = 1$ for all i such that $q_i|k, q_i \equiv 1 \pmod{4}$; and if $\zeta_j^{k/2} = \zeta_j^{k/2}$ for all pairs i, j such that $q_iq_j|k, q_i \equiv q_j \pmod{4}$; then P is infinite. If 4|k, and if $\zeta_i^{k/2} = 1$ for all i such that $4q_i|k$, then P is infinite. In all other cases P is empty.

In particular P is always infinite if k is odd, if k = 2 or 4, or if k = 2Qwhere Q is a prime of the form 4N + 3.

The primes p in P are all of the form kN + 1.

References

- 1. E. Artin, Galois theory, Notre Dame (1946).
- 2. H. Hasse, Jber. Deutsch. Math. Verein. Ergänzungsbände, VI (1930).
- 3. D. Hilbert, Jber. Deutsch. Math. Verein., 4 (1897), 175-546.
- 4. E. Kummer, Abh. der K. Akad. der Wiss. zu Berlin (1859).
- 5. N. Tschebotareff, Math. Ann., 95 (1926), 191-228.

Yale University