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SAMPLE PROPERTIES OF WEAKLY

STATIONARY PROCESSES

T. KAWATA AND I. KUBO

1. Introduction, Let X(t) = X{t,ω), — °o < t < oo, be a stationary

stochastic process with

(1. 1) EX{t) = 0, E\X{t)\2 < oo, - oo < t < oo

and the continuous covariance function

(1.2) P(u) =

where F(x) is the spectral distribution function. X(t) then admits the har-

monic representation

(1.3) X(t) = Γ euιdξ(λ),

where ξ(λ) is a stochastic process with orthogonal increments and the pro-

perty that

(1. 4) Edί(λ) = 0, E\dξ(λ)\2 = dl<(λ).

Two stochastic processes X(t) and Xx{t) are said to be equivalent to

each other, if

P(X{t) = X1{t)) = 1, for each t.

When X{t) is equivalent to a process continuous almost surely or dif-

ferentiable almost surley, X(t) is called sample continuous or sample differ-

entiable respectively.

One of the authors has shown the following theorem [3].

THEOREM A. Suppose that for a given weakly stationary process X{t) there is

a function g(x) which is even, non-negative and non-decreasing for x>0 and is such that

1 <1 5) 1 w
Received May 28, 1969. This work partly supported by NSF Grant 9396.

7

https://doi.org/10.1017/S0027763000013660 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000013660


T. KAWATA AND I. KUBO

(1.6) ^j(x)dF(x) <oo.

Then X(t) is sample continuous.

The condition (1. 6) with g[x) = ]x](\og*\x\y, β>l, implies the condi-

tion

(1.7) ?>(*) = O(*/llogI*lΓ) for r > 2 ,

as *-*0, where φ{h) = 2ρ{6) - p{h) - p{-h) ([3] (3. 8) and (3. 9)). This

generalizes the Cramer-Leadbetter's result on sample continuity of a weakly

stationary process ([1], p. 125).

In 2, we shall give the conditions which assure the sample differentia-

bility of a process. We can adopt the method for the proof similar to what

we did proving Theorem A, namely we make use of the approximate

Fourier series [3] [6] associated with a given weakly stationary process. In

3, we shall show that the same reasoning still applies to get the "sample

Holder property".

In the paper of one of the authors [2], Theorem A was motivated by

a theorem on the absolute convergence of the Fourier series of a given

process truncated at — T and T. But it involved some erroneous argument

although the theorem itself is right, and the different method using the

approximate Fourier series was employed to prove Theorem A in [3]. In

4, it is shown that the original way of proving is effective if some modifi-

cations are made with a slight additional condition on g(x).

Finally we mention that the conditions on the existence of g(x) in

Theorem A are also necessary for all the weakly stationary processes with

a given spectral distribution F(x) to be sample continuous. This has been

shown by I. Kubo [4] and will be given in a separate forthcoming paper.

2. Sample differentiability of a weakly stationary process.

M. Loeve [5] studied the sample differentiability of a weakly stationary

process and proved among others the following theorem.

THEOREM B. If the covariance function ρ(u) of a weakly stationary process

X(t) with (1. 1) and (1. 2), is {2n + 2)-times differentiable, then X(t) is sample n-

times differ entiable.

Cramer and Leadbetter [1] generalized this result to obtain Theorem

C below.
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Write

(2. 1) Δl*p{-ku) = Σ (-iy(f)p((k - j)u)9

where A; is a non-negative integer.

THEOREM C. If the covariance function ρ{u) of a weakly stationary process

X{t) with (1. 1) and (1. 2) satisfies

(2.2) Jln+1P(-ku) = O(\u\2n+1l\\og\u\\q), as u-+0 for q>3,

then X(t) is sample n-times differentiable.

This is a slight completion of the Cramdr-Leadbetter's result. They

actually have shown Theorem C for the case n = 0, 1.

The aim of this section is to generalize Theorem C further.

In association with a given weakly stationary process X{t) with (1. 1),

(1. 2) and the representation (1. 3), we define a sequence of uncorrelated

random variables

(2. 3) ξn = ξn(T) = ^^dζiλ), n = 0, ±

where T is any positive number. We also define

(2.4)

Actually ζn's are uncorrelated because of the orthogonality of the incre-

ments of ζ{λ) and (2. 4) is well-defined, the series being interpreted to con-

verge in ZΛnorm.

However, we have shown in [3] and [4] that under the conditions either

in Theorem A or in Lemma 3 below, the series in (2. 4) is absolutely con-

vergent almost surely and hence X(t) may be identified to be the sum of

the series. Also it was shown that in this case Jtk(t) = 3£(t,2k) converges uni-

formly for every finite interval \ t \ ̂  A as k-*oo almost surely to a weakly

stationary process X0{t), which is sample continuous, and is equivalent to X{t).

LEMMA 1. If

(2.5) Σ InΓie.t<«>

https://doi.org/10.1017/S0027763000013660 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000013660


10 T. KAWATA AND I. KUBO

almost surely, where r is a positive integer, then X{t) is equivalent to a weakly

stationary process with the almost sure continuous r-th derivative.

Proof. Since the series on the right of (2. 4) is absolutely and uniformly

convergent almost surely, because of (2. 5), we may suppose that X(t) itself

is represented by the series in (2. 4) for every t almost surely, and has the

continuous r-th derivative almost surely. We shall, however, prove Lemma

1 when r = 1. r repetitions of the same argument give us the required.

(2
h

The series on the right is dominated in absolute value by (27r/T)ΣW \ξn\

almost surely and since each term converges as h -> 0, the limit of (2. 6) as

h-±0 should exist and Xf{t) is given by —ψ— Σ e2n7ΐit/τnξn, which is con-

—ψ—) Σ e2nπit/τnrξn.

J- ' n=—oon=—oo

LEMMA 2. Let h{x) be non-negative and non-decreasing over [0, oo) and let

F{x) be a spectral distribution. Then the inequalities

(2. 7) -jr Σ *( ^rΓ1) {F{n + 1) - F(n)Y" + ±- A(0)(F(l) - F{U))m

+ 1)) - F{an)Y'*^

) f ) 1) _ F{n))m

hold for 0 < a < 1.

Proof. Since /# + y < Jx +.τ/y for cc,2/^0, we have

= Σ A( I»1) (F(a(n + 1)) -

.(JiLti.) ( i
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The last inequality is obtained by Schwarz inequality. Since 2jx + y ^

i/x +i/y for x, 2/2^0, we have similarly

\l/2

Ifcl—1

(F(k + 1) -

with the agreement that h(u) = Λ(0) for ^ ^ 0 .

LEMMA 3. If the spectral distribution function F of a given stationary process

X(t) satisfies

(2. 8) Σ\n}r(F(n + 1) - F(n))1/2 < oo
n

for a non-negative integer r, then (2. 5) holds almost surely.

Proof In order to show (2. 5) it is sufficient to prove

oo

(2.9) E Σ |nΓ|e.l<°°.
n= —oo

By Lemma 2, we have that, for 0 < T ^ 2π,

(2.10) IΓΣMΊIJ ^

- + l ) ' / 2 Σ[ Γ ( l ^ + 1 ) ]V(n + 1) - f (»,)./. < oo.

If T ^ 2 π , then (2. 9) follows from the first inequality of (2. 7).

It is easy to show that X{r\t) is a weakly stationary process, observing

J]\n\2r(F(2(n + l)π/T) - F(2nπlT)) < oo.

Now we shall prove

THEOREM 1. If a weakly stationary process X(t) with (1. 1) and (1. 2) satisfies

(2. 8), £/ί£ft X(ί) w equivalent to a weakly stationary process which has the continuous

r-th derivative almost surely.

Proof First we prove the theorem for r = 1. Denote the differential

quotients of X(t) and X(t) by
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(2. 11)

(2. 12)

D(t,h)=

D(t,h)=

respectively. From Lemma 1, the series in (2. 4) is absolutely convergent

and X(t) may be supposed to be defined by this series. By Lemma 1 and

Lemma 3, 3£{t) has the continuous derivative almost surely.

Write ξUtk for ξn with T = 2*, Xk{t) for the corresponding X{t), Jc being

a positive integer. Then

- Xk(t) = Σ exp( 9k+1 )ξn,k+ί - 2 expf
n=—oo \ ^ / w=— oo \

2mπit
Km,* =

~ Γ
= Σ exp

m = — ooL

2πi{2m)t^ π —

ΊJ

Since ζm%k = ξ2m>k+ί + f2»+i.*+i» we m a y wri te

(2. 13) Xk+1(t) - £k{t) =

— exp
2πi{2m)t

— \

Write Dk{t,h) for the differential quotient of &(*)-

Together with the relation for Xfc(ί + h) similar to (2. 13) and noting

that, for \t\ ̂ LA,A being a positive number,

(2. 14)

+ 2 in V 7 z hsm \h\\y-z\'{l

we obtain

(2.15)

+ 1) (̂  + fe) Λ _ »t(2m) (f + A) \
)

— exp
πi(2tn

= 2_ι v
* n = — o o v
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Therefore we can see by Lemma 2 that for any εk>0

(2. 16) Q*^P(sup I£*+!(*,*)- Dk(t9h)\ > ε f c ) <

l/2

1))

where Ci and C2 are constants independent of k. In what follows CJf

j = 3,4, , mean some constants independent of k. From (2. 8), it follows

that

(2.17) Q °

If εk is chosen to be 2~k/4, then Σε*<oo and Σl-^m—< °°> s o t n a t

: < oo. Then Borel-Cantelli lemma gives us that, with probability one

(2. 18) sup \Dk+1(t,h) - Dk{t,h)[<εk

except for a finite number of k. Hence almost surely Dk(t,h) converges as

o uniformly for \t\^=A and h.

Now from (2. 18) we have, for k larger than some k0,

sup \Dk(t9h) — Dm(t,h)\ ^τ]k (unifomly in h)
t\£A

oo

almost surely, where ηk- Σ ê  From the italicized statement before Lemma

1, we have, letting m->oo

(2. 19) ~-\\X*{t + A) (uniformly in h)

almost surely. Let A->0. Then from Lemma 1 and 2 with r = 1, Dk(t,h)

converges almost surely and hence X0(f) is differentiable almost surely, and

is equivalent to X{t).
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Finally (2. 19) implies that the derivative Xk{t) of Xk(t) converges uni-

formly to the derivative X'0(t) of X0(t). Since Lemmas 1 and 2 give us that

Xr

k{t) is continuous almost surely, Xf

0{t) is also sample continuous for every

If I ̂  A This proves the theorem for the case r = 1.

Repeating similar arguments, the general case is shown.

T H E O R E M 2. If for a given weakly stationary process X(t) with (1. 1) and

(1. 2), there is a function g{x), — oo < % < oo, which is non-negative, even and non-

decreasing for x ^ 0 and satisfies

(2 20) Mk
(2. 21) \ 9(x) dF(x) < oo,

then X(t) is equivalent to a weakly stationary process which has the continuous r-th

derivative almost surely.

Proof By Schwarz inequality,

Γf] \n\r(F(n + 1) - F M H 2 < Σ ~ £ y ~ Ίl9(n)(F{n + 1) - F(n))
\-n=Q J »=0 y\n) »=0

Similarly, we have Σ" \n\r{F{n + 1) — F{n))1/2 < oo. By Theorem 1, the
n= —1

proof is completed.

EXAMPLE 1. If, for some ε > 0 and B > 0

(2.22) )B<]χ]\%\2r+1log\x\-\og{2)\x\- . log ( Λ ) I&I {log{n+1)\x\)1+edF{x) < oo

holds, then X(t) is sample r-times differentiable, where log(1)# = logo; and

log(Λ+1)tf = log(log(w)#) for n ^ 1.

EXAMPLE 2. Suppose that F(x) is absolutely continuous with the den-

sity f(x). If

(2.23) l/(^)I^[ | ί»i r + 1 log|x | log(2)IajI . log(Λ)|a;I (log(n+1)la?l)1+t]"2.

holds for sufficiently large \x\ with some ε > 0 , then X(t) is sample r-times

differentiable.
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EXAMPLE 3. Besides the same assumption in Example 2, further suppose

that f(x) is non-decreasing as #->+oo. If

(2. 24) \\x\r fι'*{x)dx<<*>

holds, then X{t) is sample r-times differentiable.

3. Sample Holder continuity.

Let Ψ(h) be a non-decreasing function defined over an interval (0,1]

such that Ψ(h) decreases to zero as h does. If a function f(x) on (a,b)

satisfies

(3.1) \f(t + h)-f(t)\^MΨ(h)

for t, t + h e (a,b), \h\ < 1 with some M, then it is said to be Ψ-Hδlder

continuous.

We are going to give sufficient conditions which assure the sample Ψ-

Hόlder continuity of a weakly stationary process. The method similar to

the one applied to the proofs of Theorems 1 and 2 is also applicable.

LEMMA 4. Let Ψ(h) be a non-decreasing function over (0,1] such that Ψ{h)jh

is non-increasing. Then for 0 < h

(3. 2) I sin xh I < Ψ(h)lΨ(χ-1), for x^tl,

(3.3) \ sin xh\^Ψ(h)/ψ(—L—), for a ^O.
\ X -f- 1 '

Proof If 0 < xh < 1, then

If xh ̂  1, then since $"(/*) is non-decreasing

I sin xh ] ^ 1 ̂  ΨWIΨix'1).

Similarly, we can prove (3.3) observing xh ̂ h(x -f 1).

LEMMA 5. If Ψ(h) is non-decreasing and Ψ(h)/h is non-increasing over (0,1],

and

(3.4) Σ ^
o
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almost surely, then X{t) = X{t,T), T>π, is sample Ψ-Hδlder continuous where ζn

is defined by (2. 3) and J({t) is defined by (2. 4).*

Proof. Using Lemma 4, we have

(3.5)

LEMMA 6. If the spectral distribution function F(x) satisfies

(3. 6)

Then (3. 4) holds almost surely, where Ψ(h) is the function in Lemma 4. Hence

X{t) is Ψ-Hδlder continuous almost surely.

The proof is carried out as in that of Lemma 3.

THEOREM 3. If a given weakly stationary process X(t) satisfies (3. 6), then

X(t) is equivalent to a weakly stationary process which is Ψ-Holder continuous almost

surely, where 'ψ(h) is the function in Lemma 4.

The proof is very similar to that for Theorem 1. Write

β {t h) _ Xk(t + *) - Xk(t)L>Ψk{tn)-

where Xk{t) is, as before, defined by (2. 4) with T = 2k. Using the same

notations as in the proof of Theorem 1, we have, analogously to (2. 15), by

Lemma 4 and (2. 14),

\DΨtk+1(t,h)-DΨtk(t,h)\^

sin 2k*
sin

2mπh
+ 2 sm

πh

for 111 < A. Therefore we obtain by Lemma 2

Q'k = P( sup \Dφ,k+1(t,h)-Dτ,k(t,h)\>εk)ί
\ίl\t\£A

ek 2 f e 2«
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^ »£±oλΨ W-Γ"1* V π | w | + 2 * « JJV \ ψ ) * V 2 *

I (F(n + 1) - F(n))

Since ψ\-j^)^^W^ψΛ-^v)and <iέr)^'ω for

we get

(3. 7)

1 C5

Choosing s* as in the proof of Theorem 1, we see from (3. 7) that %t(t)

converges uniformly to a weakly stationary process X0(t) and

for

By Lemma 5, sup \DΨ k{t,h)\ < oo almost surely, we conclude that
0<|Λ|£l,|*|^A

X0{t) is F-Hδlder continuous for \t\^A for any A>0, which completes

the proof.

THEOREM 4. If for a given weakly stationary process X(t)9 there is an

even, non-negative, non-decreasing function g{x) such that

(3.8)

(3. 9) J g{x)dF(x) < oo.

Then X{t) is equivalent to a weakly stationary process which is Ψ-Hδlder continuous

almost surely, where Ψ{h) is the function in Lemma 4.

Proof By (3. 8) and (3. 9), we have

Γ Σ Ψ'1 ( i r ) (F(n + 1) - F(n)Y'*Ί ̂  Σ Ψ^f^jg'Kn) Σ 9(n)(F(n + 1)-F(n))
Ln=i \n / J Λ = i \n / n=i

-'(n) Γg{x)dF(x) < oo.
Ji
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Similarly, we can see that i f ^(-r^y-) (F(n + *) -F(n))1/2 < oo. Hence the

assertion follows from Theorem 3.

EXAMPLE 4. Suppose that F(x) is absolutely continuous with the density

f(x) and that f{x) is non-increasing as #->±oo. If

then X(t) is sample F-Holder continuous.

EXAMPLE 5. If a separable stationary process X(t) satisfies

(3. 11) j w ^ / " 2 ( - | ^ p ) l * I logI*! log(2)|a5|. log(n)l*I (\ogin+1)\x\Y+edF(x)<™,

for sufficiently large B > 0 with ε > 0, then

lim sup !*(* + *) Γ * ( f ) l . = o a.s..
Λ->0 \t\<,A

Especially if, F(x) is absolutely continuous with the density f(x) which

satisfies

( j J Γ ) log|a?| -\og(n)\x\

then (3. 11) holds.

4. Absolute convergence of the Fourier series of a weakly

stationary process.

Let X(t) be a weakly stationary process described in 1. Let T be any

positive number. Define

(4.1) Y(t) = X(t),

We consider the Fourier series of Y(t) over {—T,T),

(4. 2) An = -±- \lτ Y(t)cos -ψ- dt,

(4.3)

As in [2],
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sin *τ + πn

 s i n

(4. 4) EAJL = β ^ c — ^ ^

(4. 5)
{λ*T*_n*Jγ

T H E O R E M 5. Let g(x) be even, non-negative and non-decreasing for x>0, suck

that g{x)lx2 is non-increasing for large x and

<4 6)

if

(4. 7) Γ g(x)dF(x) < oo,

J—oo

OO

then Σ I ^ Λ ! converges almost surely.
o

Proof We may suppose that g{x)lx2 is non-decreasing over (0, oo). In

fact, if g{x)lx2 is non-increasing for x^B, then we may define g(x) as it is

for (x^B), and g(B)(x/B)z for (x^B). By (4.5),

Σ

say.
Noting that

(4.8)

for A > 1 a; ̂  1 which, follows from the assumption that g{x)lx2 is non-

increasing for x ̂  1, we see that

https://doi.org/10.1017/S0027763000013660 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000013660


20 T. KAWATA AND I. KUBO

°{n)λZ

- 8 C l

where Cx and C2 are constants. Here we have used that

g{n)λ*Tη{\λ\T + τtn

h < c3 j [s-(-^ +1) + ί (-^-)] </F(λ) < c4τ
2 J

Ml>/T π μ|>π/Γ

C3,C4 being constants.

m^ m U\>'/τ V π J U>π/τ

where C5 and C6 are constants.

Since λ2T*(\λ\T-πn)2^(n-I)'2 for

Since g(n) ̂  n2g(ΐ) from (4. 8),

/4<oo.

Hence we have obtained that

(4. 9) ]

n=2

From this, our conclusion follows immediately, for

CO OO "j

I Λ I _ τp \p ± n1/z(fi) 14 I <
2 n=2 9 \n)

[ oo 1 ηi

i/2
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which is finite by (4. 6) and (4. 8), and E Σ | i 4 n | < °° implies the almost

sure convergence of Σ I A J

As an implication of the conclusion of Theorem 5 is that X(t) is sample

continuous in (0,T) for every T>0 which, of course, implies that X{t) is

sample continuous in (0, oo). However, for this statement we need the un-

necessary condition that g{x)x2 is non-decreasing.
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