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ON THE SCHWARZIAN COEFFICIENTS OF
UNIVALENT FUNCTIONS
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Dedicated to Glenn E. Schober

For / 6 5 , we study the Schwarzian coefficients sn defined by {/, z} = ^snz
n.

Sharp bounds on so,si and aj are given, together with an order of growth esti-
mate as n —» oo. We use the Grunsky Inequalities to estimate combinations of
coefficients.

1. DEFINITIONS AND EXAMPLES

Let 5 denote the class of functions f(z) = z + a^z1 + ... which are analytic and
univalent in the unit disk U — {z : \z\ < 1}.

The Schwarzian derivative of a function f(z) in 5 is defined by the relation

and the Schwarzian coefficients of the function f(z) are the Taylor coefficients in the
series expansion

(2) {/,*} = f > n z " .
n=0

By way of example, we consider the Koebe function

(3) * « - T T ^
(l-z)

and its mth root transform

(4)
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392 S.M. Zemyan [2]

Both of these functions belong to 5 and their geometric and analytic properties have
been described in detail in numerous references [2, 8, 10]. Elementary computations
show that

(5) {*, *} = " 2 = E ~6(n+1)*2 n

\ l Z I n=0

and that

( 6 ) — / 2(71 -|- 1)[( — 1) T71 — l j z \7Yl ^ 2}

n=0

clearly displaying the Schwarzian coefficients of k and km.

Each Schwarzian coefficient may be written in terms of the coefficients of / ( z ) .

Indeed, using MACSYMA, one quickly obtains:

so = 6^o3 — o2j

Si = 24^a4 — 2a2a3 -4- a2j

(7) 82 = 12(5a5 - 10a2a4 - 602 + 17a2a3 - 60^)

83 — 24^5ag — 10a2a5 — 13a3a4 -f- 18a2a4 "I" 21o2a3 — 29a2a3 + 8a2J

and s4 = 6 (35o7 — 70a2ae — 95a3as + ISOajas — 52a\ + 328a2a3a4

- 224a^a4 + 63aij - 387a^a^ + 352a^o3 - 80a^)

Since it is well known [8, p.20] that |o3 — o | | ^ 1, we easily have \so\ ^ 6. However,
obtaining precise bounds on succeeding coefficients, order of growth estimates, et cetera,
in terms of the above representations is unnecessarily difficult, if not impossible. For
this reason, we introduce alternate representations for the Schwarzian coefficients.

Many of the results of this paper will depend upon the close relationship between
the Schwarzian coefficients sn and the Grunsky coefficients cnk of a function / (z)
belonging to 5 , which axe generated from / (z ) by setting

(8) *(,, 0 = log m^1) =+E E cn
n=OJb=O

Note that $ is analytic in U x U since /(z) is univalent in U.
A tedious computation shows that
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[3] Schwarzian coefficients 393

and, indeed, (9) may be taken as an alternate definition of the Schwarzian derivative.

Substituting (8) into (9), and then comparing the result with (2), we see that

n+l
(10) an = 6^ fc (n + 2-fc)c*,n+2_Jb.

Thus, each Schwarzian coefficient is a "slanted" linear combination of Grunsky coeffi-
cients. Using the explicit formulas developed by Hummel [5, p.147] or Todorov [12,
p.437] for the Grunsky coefficients cnj. of f(z) in terms of the coefficients an of f(z),

it is possible to express all Schwarzian coefficients sn in terms of the coefficients an, as
we had begun to do in (7).

It will be very useful to define Schwarzian coefficients for another related class of
functions. Let JT, denote the class of functions g(z) of the form

oo

(11) S(*) = z + &o
n = l

which are meromorphic and univalent in A = {z : \z\ > 1} . Analogously, the coefficients
*fnk generated by the relation

n=l*=l

are called the Grunsky coefficients of g(z). The Schwarzian derivative of a function

g £ ^Z m a v be defined [10, p.117] alternately as either

or

Also, the Schwarzian coefficients ern of g(z) are defined to be the coefficients in the
Laurent expansion

(15) {g,z} = z~*
n=0

By substituting (12) into (14), we obtain the relation

n+l

(16) an = 6 ^ Kn + 2 -
fc=i
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Since Schur [11, p.41], Todorov [12, p.435] and Harmelin [3, p.355] have given explicit
formulas for the Grunsky coefficients fnk in terms of the coefficients bn of g(z) , one may
express all Schwarzian coefficients an in terms of the coefficients bn as well. Indeed,
we have

(To = —661

o-i = -2462

(17) 0-2 =-12(56 3 +6?)

a3 - -24(564+3&162)

and o-4 = - 6 ( 3 5 i s + 2 5 6 ^ 3 + 176^+36?)

and so forth. These formulas will be useful in obtaining coefficient bounds.

We close this section by pointing out a relationship between the coefficients sn and
<rn. If f{z) E S, then g(z) = l/f(l/z) € £ . Conversely, if g(z) E £ and g(z) + c ^ 0
for all z 6 A and some complex number c, then there exists fc(z) 6 5 such that
g(z) + c = l/fc(l/z). Consequently, we have the following

PROPOSITION 1 . Let f e S and g e X)- M g{z) = l/f(l/z) or i£ g(z) + c -
l/fc(l/z) ^ 0 for some complex number c, then

(a) cnk(f) = -ynk(g) = 7^(51 + c) = cnk{fc) (n, k > 1)

and

(b) an{f) = <rn(g) = vn(g + c) - sn(fc) (n ^ 0)

PROOF: Since

the coefficients ynk(g) = Cnk(f) for all n,fc ^ 1, whenever g(z) — l / / ( l / z ) . Part (b)
follows from (10) and (16). D

2. BOUNDS ON COEFFICIENTS, ORDER OF GROWTH

By using well-known results, it is easy to prove

THEOREM 1 . Let an and crn denote the Schwarzian coefficients of f 6 5 and
g 6 53, respectively. Then we have the following coefficient bounds:

(a) max \<ro(g)\ = max|so(/) | = 6
6 ^ /es
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Equality holds in 52 if and oniy if g(z) = gc<v — z + c + r/2fz, where \T}\ = 1 and c
is an arbitrary complex number. Equality holds in S if and only if f(z) — fa,i)(z) =

+ T)2z2), where |TJ| = 1 and a 6 [-1.+1].

(b) | i ( 5 ) |

2 /€

Equality holds in £ if and only if g(z) = gc>v(z) — z{\ — r)3z s ) + c, where \r)\ = 1
and c is an arbitrary complex number. Equality holds in S if and only if f(z) —
fc,v(

z) - l/5c,7/(l/z) where c is chosen so that gc,v(
z) 7̂  0- (If c = 0, then fo,v{z) =

Tjk3(Tfz).)

PROOF: (a) If g(z) = z + b0 + b^z'1 + ... £ £ , then a well-known [4, p.348]
consequence of Gronwall's Outer Area Theorem is that |&i| ^ 1, and that equality
holds if and only if g(z) = gc,vi,

z) — z + c + TJ2/Z, where |»;| = 1. Consequently,
|cro(^)| = 6 |6i(s)| ^ 6, and |o"o(5c,7j)| = 6, for arbitrary choice of c. The function
gCiV maps A onto the whole plane slit along the segment [—2T; + c, -\-2TJ + c]. If we
choose c = 2a?7,a £ [—1,+1], then g2aVlT,(z) ^ 0 for all z £ A. Thus, by Proposition

1, \*o{fa,v)\ = ko(</2a,,,)l = 6, where fa<v{z) = l/g2av,v(^/z) = z/0- + 2aVz + *?*) •
Also, if / £ 5 and / ^ /„,„, then |so(/)| < 6, since g(z) = l/f(l/z) £ E and
g ^ gcv for any choice of c and 77. (b) Schiffer [9] established the result that if
g(z) — z + &1Z"1 + . . . £ E , then |62| < 2/3. Equality holds here if and only if
g{z) = gv(z) = z(l-77s*-3)2/S,|»7| = 1. Consequently, 1^(^)1 = 24|62(fl)| ^ 16,
and \ai(gCiV)\ = 16, where gc,v(

z) = gv{z) + c. The function gv(z) — •qlks{r]lz)
maps A onto the complement of three equally spaced line segments each of length 22's

emanating from the origin. If —c lies on any of these line segments, then gCtV(z) ^ 0,
and by Proposition 1, |«i(/C|,)| = |O-I(^C]T,)| = 16, where fc,v{z) = l/gc,v(l/z). Finally,
if / £ S and / ^ fCtV, then |si(/) | < 16, since g{z) = l / / ( l / z ) ^ gc,r,{z) for any
choice of c and t\. U

On the basis of this theorem and the series {fcn+2)z} = 2(n + l)(n + 3)zn + ... ,
we are tempted to formulate the conjecture that, for each n ^ 0,

(18) max \an{g)\ = max \sn{f)\ = 2(n + l)(n + 3) .

However, it is possible to show that this conjecture is false for every even n ^ 2 . The
odd case will be dealt with in a later paper.
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THEOREM 2 . For every n ^ 1, there exists Jn 6 5 and gn G £ suci thai

(19) k2n(?»)| - | s2n(/n) | = 2(2n + l)(2n

. . 26 8
wiere /3n = — +3 n(n + 2) '
Furth erzn ore,

(20) max|<r2(^)| = max|«2(/)| = 30( l+2c" f t ) =30.00071804... .

PROOF: Let f(z) = z + a2z
2 + a3z

3 + ... e S, and let m ^ 2. Then, the mth
root transform /m(z) = ^(l + a2jB

m + O3«2m + . . . ) also belongs to S, and in series
form, we have

= z + ±z^ (

Consequently,

!,*} = n(n + 2)a2zn-1 + 2(2n + l)(2n + 3)(o, - aB

13n2 + 26n + 12

4(2n + l)(2n + 3) "

We now invoke the Fekete-Szego Theorem [8, p.165] to conclude that

|«3 — otnal I < 1 + 2e~2Qn'(1~°'n) = 1 -f 2e~^"

for all / G 5 , and that there exists a function /„ G S for which equality holds. This
establishes (19), where we choose 1)n(z) — l / / n ( l / z ) .

To prove (20), we use a known result of Jenkins [6] which states that for any
function g{z) = z + b0 + b^z'1 + ... G X) >tne inequality |263 + ab\ | < 1 + 2e~& is valid,
where a G [0,1) and /3 = (6 + 2a)/(l — a) , and that there exists a function ga G X)
for which equality holds. If a = 2/5, then /3 = 34/3 = /3i. Hence,

\a2{g)\ = 30 263(5) + g6?0

If c is chosen so that g2/5(z) + c ̂  0, then | «2 (/c,2/s) | = fafa/s + c)\ = 1̂ 2 (52/5) |,
where g2/s(z) +c — 1/fCi2/s(l/z), by Proposition 1. 0

The next result is concerned with the order of growth of the Schwarzian coefficients.
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PROPOSITION 2. Let

™n = max{|an(/)|/n2}

Tien,

(21) 2.000688... = 2 + Ae~2ils ^ En" mn < 3TT/4 = 2.356194...
fl—>oo

PROOF: We consider first the inequality on the left. For the function / „ , defined
within the proof of Theorem 2, we conclude from (19) that

m 2 n

which justifies the conclusion, since /?„ —> —26/3 as n —> oo.
To obtain an upper estimate on |an|, we use a well-known [10, p.119] estimate for

the Grunsky coefficients. Since |cjtm| ^ 1/y/km for all k,m ^ 1, we have

n + l
(22) |,

Since the points Ik, y/k(n + 2 — fc)J he on a circle, a careful geometric estimate (using

trapezoids) allows us to conclude that

(23) K(/)l < —(n + 2)2

for every / £ S, and every n ^ 0. Hence, mn < (37r/4)((n + 2)/n)2 for every n, and
the right side of inequality (21) has been verified. U

For small n, it is convenient to use (18), (19) and (22) to provide estimates. For
example,

and

48^max|s 3 ( / ) | ^ 12(2 + v/6~) =53.393876...

. . . = 70 + 140e~29/3 <max|s4(/) | < 6 (3 + 4\/2 + 2VE) =78.773941...70.008870

For large n, it is more convenient to use (23).

The functions with which we are concerned here, /„ and kn, are unbounded. For
an example of a bounded function, see [2, p.83].
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3. LINEAR COMBINATIONS

Several techniques are useful in deriving inequalities involving linear combinations
of Schwarzian coefficients. One method involves the use of classical inequalities. We
first prove

THEOREM 3 . Let f e S and let an(n = 0,1,2,...) denote the Schwarzian coef-
ficients of f. Then,

(24)
N

n = 0

i 2 n

n = 0

for every integer N ̂  0 and every complex z. In particular, for z — 1, we get

N
(25)

71=0

{N 2){N + 3).

PROOF: Using (10), we rearrange coefficients to obtain

N N /n+1

J2 W + 1 - n)snzn+i = 6 X) (N + 1 - n) I £ i(n + 2 - k)cktTl+2.kz
kz

n=0 n=0 \t=l

N+1 /jV+2-r r

r=l \ A=l

n+2-k

/

Applying the Generalized Weak Grunsky Inequalities [1, p.124], and the Cauchy-
Schwarz Inequality, we obtain

N

(N + 1 - n)snz
n+2

n=0

n+1 N+2-T r

r = l

/N+2-r

E *
r=l \ Jfc=l

(N + l N + 2 - r£ £
r=l *=1

(

\i=l
1/2/AT+l r

r=l j=l

n = 0
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The inequalities (24) and (25) are sharp only if N = 0. The reasons are two
fold: The Grunsky Inequalities are used here in [(N + 2)/2] different ways; also, the
conditions required for equality to hold when using the Cauchy—Schwarz inequality are
not fulfilled. Nevertheless, inequality (25) is still worthwhile, since it is an order of
magnitude better than that which could have been obtained by using (23).

We now consider the partial sums of the Schwarzian series.

COROLLARY 3 . 1 . Let f e S and let «„ (n = 0,1,2,...) denote the Schwarzian
coefficients of f. Then,
(26)

N N N

n=0 n=0 V. n=0 n=0

for every integer N ^ 0 and every complex z. In particular, if z = 1, tien

N
•Sr

n = 0

Also, if \z\ < 1, then as N —> oo, we obtain the classical inequality of Kraus [7]

i r . •> i ^ 6(27) 2 -

PROOF: TO obtain (26), divide (24) by N + 1, and use (23) to estimate sn. Since
the remainder term is 0(l/iV), (27) follows immediately. U

This next corollary may be used to estimate efficiently moment integrals of the
form jzk-1{f,z}dz.

COROLLARY 3 . 2 . Let f e S and let an (n = 0,1,2,...) denote tie Sciwarzian
coefficients of f. For every N ^ 0 and k ^ 1,

(28)
N

n = 0 n + k

N

n = 0
2n

8B + iMI*|)

where Rw(\z\) is a finite sum depending on \z\ and N alone, and
as N —> oo. If \z\ < 1, tien, for every positive integer k ^ 1,

(29)
n = 0 n + k n = 0

2n

PROOF: Multiply (24) by zk~l, and integrate the result. Divide by N + 1, rear-
range terms and use (26) to obtain (28). Let N -> oo to obtain (29). D
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We note finaUy that the series in (29) may be evaluated in closed form. If we write

n = 0

and, for k ^ 3, we give the estimate

7 JY
(i - N2)

3 kit2 3 ,
T ~ -T + o log

K O Z
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