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Abstract

The modeling of insurance risks has received an increasing amount of attention because of
solvency capital requirements. The ruin probability has become a standard risk measure
to assess regulatory capital. In this paper we focus on discrete-time models for the finite
time horizon. Several results are available in the literature to calibrate the ruin probability
by means of the sum of the tail probabilities of individual claim amounts. The aim of this
work is to obtain asymptotics for such probabilities under multivariate regular variation
and, more precisely, to derive them from extensions of Breiman’s theorem. We thus
present new situations where the ruin probability admits computable equivalents. We
also derive asymptotics for the value at risk.

Keywords: Discrete-time model; ruin probability; value at risk; multivariate regular
variation; dependent risk

2010 Mathematics Subject Classification: Primary 91B30
Secondary 62P05

1. Introduction

Let x be a nonnegative real number, let (ρi)i≥1 and (Xi)i≥1 be two sequences of random
variables (RVs), and define the sequence (Ri)i∈N by the recursive equation

R0 = x, Ri = Ri−1(1 + ρi)−Xi, i ≥ 1. (1)

This model has been used to model insurance risks. In such a context, x denotes the initial
capital, ρi ∈ (−1,∞) denotes the random interest rate for the ith period, and Xi denotes
the total claim amount minus the total premium income, so that Ri represents the discounted
surplus computed from period 0 to i. In this paper we focus on discrete-time models for a fixed
finite time horizon d .

The ruin probability has become a standard risk measure to assess regulatory capital in
insurance. For model (1), the ruin probability within the finite time horizon [0, d] and initial
capital reserve x is defined by

ψ(x, d) = P
(

min
1≤k≤d Rk < 0

∣∣∣ R0 = x
)
.

Introducing the so-called discount factor from period i to 0, denoted by Yi = ∏i
j=1(1+ρj )−1,
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we can re-express the discrete-time risk model as

R0 = x, Ri = Y−1
i

(
x −

i∑
j=1

XjYj

)
, i ≥ 1.

Hence, the ruin probability can be written as

ψ(x, d) = P

(
max

1≤k≤d

k∑
i=1

XiYi > x

)
.

Several results exist on the limiting behavior of ψ(x, d), especially in the case of an initial
reserve x tending to ∞, and when the distribution function of the Xis is subexponential and
sometimes heavy tailed. Most of the existing results are stated under independence between the
components of X = (X1, . . . , Xd). For Y = (Y1, . . . , Yd) deterministic, these asymptotics are
given in Embrechts andVeraverbeke (1982), Sgibnev (1996), Embrechts et al. (1997, Chapter 1),
Ng et al. (2002), and Zhu and Gao (2008), among others. The case where the Yis are bounded
RVs has been studied in Tang and Tsitsiashvili (2003a), (2003b). Models governed by a
specific dependence structure of the random vector Y have been proposed in Nyrhinen (1999),
Cai (2002), and Chen and Su (2006). Recent extensions to any dependence structure of Y can
be found in Goovaerts et al. (2005), Wang et al. (2005), and Wang and Tang (2006), where the
results are proven under a moment condition.

In some situations, the assumption of independence between the claim amountsXi might be
unrealistic. Cossette and Marceau (2000) considered special models of dependency. Allowing
general dependence among theXis but keeping them independent from the nonnegative weights
Yi , Zhang et al. (2009) derived approximations for ψ(x, d) under the assumptions that the Xis
have (extended) regularly varying tail and are asymptotically independent. Roughly speaking,
the latter notion means that the joint upper tail of two claim amounts is negligible compared with
each univariate tail. More precisely, Zhang et al. (2009) established the following equivalences,
as x tends to ∞:

ψ(x, d) ∼ P

( d∑
i=1

XiYi > x

)
∼

d∑
i=1

P(XiYi > x). (2)

In their context, the first equivalence in (2) is a consequence of the assumption that the left
tails of the Xis are lighter than their right tails (see (6) below for a precise definition) and
of the positivity of the weights Yi . The second equivalence in (2), which follows from the
asymptotic independence of the Xis, is also of interest in its own right. Indeed, several papers
are concerned with how the tail of the marginal distribution of an individual summand influences
the asymptotic behavior of the sum. Barbe et al. (2006) extended the equivalence between the
tail of a sum and the sum of the tails, already obtained in Wüthrich (2003) and Alink et al.
(2004), (2005), to a broader class of dependence structures using multivariate extreme value
theory. Recently, Kortschak and Albrecher (2009) treated the case of nonidentically distributed
and not necessarily positive RVs, and Foss and Richards (2010) obtained results for sums of
conditionally independent subexponential RVs.

The aim of this paper is to establish, in various contexts of dependence, asymptotics of the
ruin probability and the value at risk. Our generalizations of (2) are in two directions: we allow
dependence between the claim amounts Xi and the weights Yi ; and we relax the assumption
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of asymptotic independence of the claim amounts. These results are obtained under the key
assumption that X is multivariate regularly varying at infinity; see, for instance, Resnick (2007,
Chapter 6). More precisely, we highlight the fact that our extensions are valid as soon as the
random vector (X1Y1, . . . , XdYd) is also multivariate regularly varying, which is known as a
Breiman-type result.

The rest of the paper is organized as follows. Section 2 contains the notation and some
preliminary results. Several generalizations of Breiman’s theorem are stated in Section 3. In
Section 4 we take advantage of these extensions to derive asymptotics for the ruin probability
and the value at risk. A brief conclusion is given in Section 5. The proofs are postponed until
Section 6.

2. Notation, definitions, and preliminary results

We start this section with some notation. Let x ·y define the componentwise product of two
vectors x = (x1, . . . , xd)

� and y = (y1, . . . , yd)
� ∈ R

d , i.e.

x · y = (x1y1, . . . , xdyd)
�,

and let
z−1 = (z−1

1 , . . . , z−1
d )�

be the componentwise inverse of z ∈ [0,∞]d . We define the inverse image of a set A for
y ∈ [0,∞]d by

y−1 · A = {x ∈ R
d | y · x ∈ A} = {(y−1

1 x1, . . . , y
−1
d xd)

�, x ∈ A}.
Let X be ad-dimensional random vector. We say that X is multivariate regularly varying (MRV)
if there exists a nonnull Radon measure ν on Bd , the Borel σ -field of Ed = [−∞,∞]d \ {0},
such that ν((−∞,∞)d \ {0}) > 0 and a normalizing function a (with a(t) → ∞) such that

t P

(
X

a(t)
∈ ·

)
v−→ ν (3)

as t tends to ∞, where ‘
v−→’ refers to vague convergence on Bd . Recall that a Radon measure

on Bd is a measure that is finite on each compact set of Ed , and that a set A ⊂ Ed is relatively
compact if it is bounded away from 0. Recall also that a sequence of measures νn converges
vaguely to ν on Bd if

∫
Ed
f dνn converges to

∫
Ed
f dν for any continuous function f compactly

supported on Ed , or, equivalently, if νn(K) converges to ν(K) for each relatively compact set
K of Ed such that ν(∂K) = 0.

The limit measure ν is necessarily homogeneous, i.e. ν(tK) = t−αν(K) for some α > 0 and
any relatively compact Borel set K of Ed . The function a is regularly varying with index 1/α.
We will write X ∈ MRV(α, a, ν) if (3) holds or simply MRV when no confusion is possible.

In convergence (3) we may choose the normalizing function a such that

lim
t→∞ t P(‖X‖ > a(t)) = 1, (4)

where ‖ ·‖ denotes some norm on R
d . Given the choice of a norm on R

d , a polar representation
of the measure ν can be obtained. This result is due to De Haan and Resnick (1977); see also,
for instance, Resnick (2007, Theorem 6.1, p. 173 and Section 6.5.5, p. 201). Let S

d−1
‖·‖ denote
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the unit sphere of R
d relatively to the norm ‖ · ‖. Then X is MRV if and only if there exist

a measure H‖·‖(·) on S
d−1
‖·‖ , a positive real α, and a normalizing function a (with a(t) → ∞)

such that

t P

((‖X‖
a(t)

,
X

‖X‖
)

∈ ·
)

v−→ (ηα ×H‖·‖)(·)
as t tends to ∞, where vague convergence holds on (0,∞] × S

d−1
‖·‖ and ηα denotes the Radon

measure on (0,∞] defined by ηα(x,∞] = x−α . The measure H‖·‖ is called the spectral
measure, or angular measure, and the choice of the normalizing function in (4) implies that
H‖·‖ is a probability measure on S

d−1
‖·‖ . The link between the limit measure ν and the spectral

measure H‖·‖ can be made explicit via the following decomposition. For any A ∈ Bd ,

ν(A) =
∫
T (A)

α dr

rα+1H‖·‖(dw), (5)

where T (z) = (‖z‖, z/‖z‖) for any z ∈ Ed and T (A) is the usual image of A by T .
We will use the following property in the sequel, and sketch the proof in Section 5.

Lemma 1. If X is MRV(α, a, ν) on R
d and if the left tail of each componentXi is lighter than

its right tail, i.e.

lim
x→∞

P(Xi < −x)
P(Xi > x)

= 0, 1 ≤ i ≤ d, (6)

then the measure ν is concentrated on [0,∞]d \ {0}, the spectral measure H‖·‖ of X is
concentrated on S

d−1
‖·‖ ∩ [0,∞]d , and

lim
x→∞

P(max1≤j≤d
∑j
i=1Xi > x)

P(
∑d
i=1Xi > x)

= lim
x→∞

P(
∑d
i=1X

+
i > x)

P(
∑d
i=1Xi > x)

= 1.

Remark 1. Following Kortschak and Albrecher (2009, Lemma 3.1), condition (6) may be
replaced by

P(Xi > a, Xj > b) ≥ P(Xi > a)P(Xj > b) for all (a, b) ∈ R
2 and 1 ≤ i < j < n.

Throughout this paper, we will choose the �1-norm ‖ · ‖1 defined by

‖x‖1 =
d∑
j=1

|xi |,

and we will denote by S
d−1
1 and H1 the corresponding unit sphere and spectral measure,

respectively. The motivation for these choices of normalizing function and norm on R
d is

that if X is MRV and satisfies the assumptions of Lemma 1, then we have, for all x > 0,

lim
t→∞ t P

( d∑
i=1

Xi > a(t)x

)
= x−α.

For any d-dimensional vector X, let Q(X) denote the limit, when it exists:

Q(X) = lim
x→∞

P(
∑d
i=1Xi > x)∑d

j=1 P(Xj > x)
.
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Similar limits toQ(X) have been considered in the literature. The following result can be found
in several references and under different assumptions. We refer the reader to, for instance, Alink
et al. (2004), Barbe et al. (2006), Kortschak andAlbrecher (2009), and Embrechts et al. (2009a),
(2009b). The unique assumption needed is multivariate regular variation, as proven in Section 6.
The components of a regularly varying random vector are called asymptotically independent if
its spectral measure (with respect to any norm) is concentrated on the axes.

Lemma 2. If X is a d-dimensional MRV random vector with index α > 0 such that (6) holds
then Q(X) exists and

d−(1−α)+ ≤ Q(X) ≤ d(α−1)+ . (7)

If the components of X are asymptotically independent then Q(X) = 1.

Remark 2. Note that these bounds are universal and (obviously) do not depend on any partic-
ular choice of norm on R

d , even though the proof we give below makes use of the �1-norm. For
analogous comments on the choice of norm, we refer the reader to the remark in Mainik and
Rüschendorf (2009) after Equation (13) therein or to Embrechts et al. (2009a, Proposition 4.6).

Remark 3. Note that contrary to Barbe et al. (2006) and Embrechts et al. (2009a, Corol-
lary 4.2), we do not assume that the random variablesXi are positive or that they have the same
marginal distribution. This implies in particular that the usual standardization

∫
wiH1(dw) =

1/d (see Barbe et al. (2006, Equation (11)) or Beirlant et al. (2004, p. 260)) does not hold here,
but it is not needed. Kortschak and Albrecher (2009) also considered such generalizations to
nonpositive or nonidentically distributed marginals. However, the bounds given in Lemma 2
are new in this context.

Remark 4. If X is MRV with index α > 0, for any fixed norm on R
d , Q(X) depends only

on α and on the associated spectral measure H . Thus, with an abuse of notation, we define
Q(X) = Q(α,H). The properties of Q(α,H) were first investigated in Barbe et al. (2006,
Proposition 2.2). For a given α, the upper and lower bounds in (7) are achieved by independent
or fully dependent components, and, for a given spectral measure H , Q(α,H) is increasing
in α. See also Kortschak and Albrecher (2009) and Embrechts et al. (2009a), (2009b).

3. Multivariate extensions of Breiman’s theorem

Let X and Y be two random vectors in R
d . A Breiman-type result consists in obtaining

sufficient conditions for the vector Y · X to be MRV. We start by recalling a particular case of
Basrak et al. (2002, Proposition A.1), who proved the multivariate regular variation of MX,
where M is a random matrix independent of X. Let νY denote the measure defined on Ed by

νY (K) = E[ν(Y−1 ·K)] =
∫

[−∞,∞]d
ν(y−1 ·K)PY (dy).

Theorem 1. Let X ∈ MRV(α, a, ν). Let Y be a random vector independent of X. Assume
that there exists a positive ε such that 0 < E[|Yi |α+ε] < ∞ for each i in {1, . . . , d}. Then the
random vector Y · X ∈ MRV(α, a, νY ), i.e.

t P(Y · X ∈ a(t)·) v−→ νY

as t tends to ∞.
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The hypothesis of independence between X and Y might be restrictive. In the sequel
we generalize Theorem 1 with respect to this point. The rest of the section is divided into
subsections according to the type of dependence considered between X and Y . We investigate
three situations that seem meaningful in an actuarial context:

• X is MRV and asymptotically independent of Y ;

• X has independent and identically distributed (i.i.d.) regularly varying components, and
Y is predictable with respect to X;

• X and Y are jointly MRV and asymptotically dependent.

In each of these situations, an extension of Breiman’s theorem is stated.

3.1. Case of asymptotic independence

The first generalization of Theorem 1 is done under the condition that X and Y are asymp-
totically independent in the following sense. We assume that

t P

((
X

a(t)
,Y

)
∈ ·

)
v−→ (ν × L)(·) (8)

on the Borel sets of Ed × [−∞,∞]d , where ν is a Radon measure on Ed not concentrated
at ∞ and L is a probability measure on [−∞,∞]d . Note that the roles of X and Y are
not symmetric in this definition since it specifies their independence when X is large only.
Condition (8) implies in particular that X ∈ MRV(α, a, ν) for some positive α. This case
obviously contains the case of stochastic independence between X and Y , L being then the
distribution of Y .

Following Maulik et al. (2002), we make the following asymptotic negligibility assumption.
Assume that, for some δ > 0 and any i in {1, . . . , d},

lim
ε→0

lim sup
t→∞

t E

[( |X||Yi |
a(t)

)δ
1{|X|/a(t)≤ε}

]
= 0, (9)

and also that ∫
[−∞,∞]d

‖y‖αL(dy) < ∞. (10)

Let νL be the measure defined on Ed by

νL(A) = (ν × L)({(x, y), x ∈ y−1 · A}) =
∫

[−∞,∞]d
ν(y−1 · A)L(dy).

Note that if Y ∗ is a random vector with distribution L then νL = νY ∗ .

Theorem 2. Suppose that assumptions (8), (9), and (10) hold. Then the random vector Y ·X ∈
MRV(α, a, νL), i.e.

t P(Y · X ∈ a(t)·) v−→ νL

as t tends to ∞.

The proofs of Theorem 2 and subsequent results are postponed until Section 6.1. We establish
a more general result on a random vector MX in the proof of Theorem 2, where M is a random
matrix of size q × d .
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3.2. Case of predictable weights

The following generalization is a straightforward consequence of the predictable framework
introduced in Hult and Samorodnitsky (2008). In this context, we assume that the components of
X are i.i.d. and regularly varying with index α at ∞ so that X is MRV(α, a, ν). More precisely,
the sequence t P(X/a(t) ∈ ·) converges vaguely to a measure ν, which is concentrated on the
axes

ν =
d∑
j=1

νj ,

where νj (A) = ν(A ∩ δj ) and δj = {z ∈ R
d | zj �= 0, zi = 0, i �= j} is the j th punctured

coordinate axis.
The predictable framework of Hult and Samorodnitsky (2008) consists of assuming that there

exists a filtration with respect to which the Xj s are measurable and the Yj s are predictable.
This implies in particular that, for each j , Xj and Yj are independent.

This framework is of interest in time series. An example is the EGARCH process of Nelson
(1991). This process, say {ζj }, can be expressed as

ζj = XjYj , Yj = exp

{ ∞∑
i=1

ciηj−i
}
,

and the relevant filtration is Fj = σ(Xi, ηi, i ≤ j − 1), {Xj } and {ηj } are two i.i.d. sequences,
not necessarily independent of each other, E[ηj ] = 0, var(ηj ) = 1, and

∑∞
i=1 c

2
i < ∞. The

process {Yj } is called the volatility. The extremal properties of this process have been studied
in Davis and Mikosch (2001) in the case of independence between the processes {Xj } and {Yj }.
Theorem 3. Let X and Y be two random vectors of R

d . Assume that the components of X are
i.i.d. and regularly varying with index α at ∞ so that X is MRV(α, a, ν). Suppose that there
exists a filtration {Fj } such that Xj is Fj+1-measurable and Yj is Fj -measurable. Assume
moreover that there exists ε > 0 such that

E[|Yj |α+ε] < ∞ for all j = 1, . . . , d.

Then the random vector Y · X is MRV and

t P(Y · X ∈ a(t)·) v−→
d∑
j=1

E[|Yj |α]νj (11)

as t tends to ∞.

3.3. Case of joint multivariate regular variation

When neither independence nor asymptotic independence is a relevant assumption, one might
be interested in extensions of Breiman’s theorem under asymptotic dependence. Specifically,
we assume that X and Y are jointly MRV, i.e. there exist a and b such that

t P

((
Xi

a(t)
,
Yi

b(t)

)
i=1,...,d

∈ ·
)

v−→ νX,Y (12)

as t tends to ∞, for a nonnull Radon measure νX,Y on E2d . Define the map� : R
d×R

d → R
d

by �(x, y) = y · x. We assume that the measure νX,Y ◦�−1 is not identically 0. This means
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that there exists one index i such that the pair (Xi, Yi) is asymptotically dependent, i.e.

there exists i ∈ {1, . . . , d} such that ν(i)X,Y ((0,∞]2) > 0, (13)

where ν(i)X,Y is defined as the restriction of ν to the ith coordinates in x and y. For instance,
when i = 1, ν(1)(A) = ν2d(A× [−∞,∞]2d−2) for anyA ∈ B2. The normalizing functions a
and b are regularly varying with indices respectively denoted by 1/α and 1/β for some positive
real numbers α and β.

Theorem 4. Suppose that assumptions (12) and (13) hold. Then the random vector Y · X ∈
MRV(αβ/(α + β), ab, νX,Y ◦�−1), i.e.

t P(Y · X ∈ a(t)b(t)·) v−→ νX,Y ◦�−1

as t tends to ∞.

In the particular case Y1 = · · · = Yd , this result can be found in Resnick (2007, Proposi-
tion 7.6).

Remark 5. Traditional models include an assumption of regular variation on the exp(Yi)s
instead of the Yis, for instance, when the Yis are log-normal. As a consequence, assuming
that the discount factors have heavy tails might be considered as a strong hypothesis in a usual
context. However, the model defined by (12) and (13) yields quite light tails for large values
of β and allows dependence between the X and Y components.

4. Application to risk measures

The link between a Breiman-type result and asymptotics for the ruin probability is highlighted
in Subsection 4.1. The equivalents that we obtain depend on the ratio Q(Y · X), which is not
always explicitly known. Since numerical approximations can be done, we show some patterns
in Subsection 4.2 in the case of the asymmetric logistic measure. Finally, in Subsection 4.3,
we apply our results to the value at risk.

4.1. Ruin probability

Recall that the ruin probability associated to model (1) is defined by

ψ(x, d) = P

(
max

1≤k≤d

k∑
i=1

XiYi > x

)

and that, for any random vector Z, we have defined

Q(Z) = lim
x→∞

P(
∑d
i=1 Zi > x)∑d

i=1 P(Zi > x)

when the limit exists.
The next result establishes that the first equivalence of (2) holds if the random vector

(X1Y1, . . . , XdYd) is MRV and if all the random variables Xi have lower tails lighter than
their upper tails.
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Theorem 5. Under the assumptions of either Theorem 1, 2, 3, or 4, if the components of Y are
nonnegative and the components of X satisfy (6), then we have, as x tends to ∞,

ψ(x, d) ∼ P

( d∑
i=1

XiYi > x

)
. (14)

The second equivalence in (2) is specific to the asymptotic independence context considered
in Zhang et al. (2009) and does not hold in general. However, as soon as a Breiman-type
result is valid, we can derive other asymptotics for (14) depending explicitly on the margins
of X and on Q(Y · X). We make these relations explicit in the following corollaries, whose
proofs are deferred to Section 6. Let us introduce the two sets T = {z ∈ R̄

d | ∑d
i=1 zi > 1}

and Ti = {z ∈ R̄
d | zi > 1}.

Corollary 1. Under the assumptions of Theorem 1, if the components of Y are nonnegative
and the components of X satisfy (6), then, as x tends to ∞,

ψ(x, d) ∼ Q(Y · X)

d∑
i=1

E[Yαi ] P(Xi > x), (15)

where

Q(Y · X) = νY (T )∑d
i=1 νY (Ti)

= E[ν(Y−1 · T )]∑d
i=1 E[Yαi ]ν(Ti)

. (16)

Note that, for any deterministic vector Y , the numerator νY (T ) of the middle term in (16) cor-
responds to the extreme risk index of the portfolio denoted by γY . See Mainik and Rüschendorf
(2009) and the references therein for complements on this risk measure.

Corollary 2. Under the assumptions of Theorem 2, if the components of Y are nonnegative
and the components of X satisfy (6), then, as x tends to ∞,

ψ(x, d) ∼ Q(Y · X)

d∑
i=1

P(Xi > x)

∫ ∞

0
yαi dL(y), (17)

where

Q(Y · X) = νL(T )∑d
i=1 νL(Ti)

=
∫
ν(y−1 · T ) dL(y)∑d

i=1 ν(Ti)
∫
yαi dL(y)

.

Remark 6. Corollary 1 recovers the results (for the finite time horizon) of Zhang et al. (2009).
Indeed, under Corollary 1, as well as under Corollary 2, it can easily be proven that the
components of Y · X are asymptotically independent as soon as those of X are asymptotically
independent, so that Q(Y · X) = 1. This comes from linearity properties combined with the
fact that, for any vector y with positive components, any i ∈ {1, . . . , d}, and any subset A of
Ed , we have

(y−1 · A) ∩ Rei = y−1 · (A ∩ Rei),

where Rei = {rei, r ∈ R} and ei is the ith canonical basis vector of R
d .
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Corollary 3. Under the assumptions of Theorem 3, if the components of Y are nonnegative
and the components of X satisfy (6), then, as x tends to ∞,

ψ(x, d) ∼ P(X1 > x)

d∑
i=1

E[Yαi ]. (18)

In Corollary 3, the independence of the claim amounts Xi yields Q(Y · X) = 1, so that
actuarial and financial information are separated in (18).

Corollary 4. Under the assumptions of Theorem 4, we have, as x tends to ∞,

ψ(x, d) ∼ Q(Y · X)

d∑
i=1

P(XiYi > x), (19)

where

Q(Y · X) = νX,Y ◦�−1(T )∑d
i=1 νX,Y ◦�−1(Ti)

.

Let us make some comments on the constantQ(Y ·X). We know from Lemma 2 that, under
the assumptions of any of the previous corollaries, we have

d−(1−δ)+ ≤ Q(Y · X) ≤ d(δ−1)+ ,

with δ = α under Corollaries 1 and 2 and δ = αβ/(α+β) under Corollary 4. Consequently, if
δ ∈ (0, 1] thenQ(Y ·X) is between d−(1−δ) and 1, so the range between the two bounds is less
than 1, no matter the dimension d . Roughly speaking, the sum of probabilities is asymptotically
smaller than the probability of the sum. However, it is possible to derive bounds depending
on the moments of Y . Let Y(1) and Y(d) be the smallest and the greatest component of Y ,
respectively. For instance, Corollary 1 yields

∑d
i=1 ν(Ti)

(1/E[Yα(1)])
∑d
i=1 E[Yαi ]ν(Ti)

Q(X) ≤ Q(Y · X) ≤
∑d
i=1 ν(Ti)

(1/E[Yα(d)])
∑d
i=1 E[Yαi ]ν(Ti)

Q(X).

These bounds are particularly interesting because they allow us to separate the financial infor-
mation contained in Y and the actuarial part given by X and ν. The previous upper and lower
bounds can also be relaxed and lead to

E[Yα(1)]
maxi=1,...,d E[Yαi ]Q(X) ≤ Q(Y · X) ≤ E[Yα(d)]

mini=1,...,d E[Yαi ]Q(X).

Analogous bounds may be obtained under the assumptions of Corollary 2:
∫
[0,∞]d y

α
(1) dL(y)

maxi=1,...,d
∫
[0,∞]d y

α
i dL(y)

Q(X) ≤ Q(Y · X) ≤
∫
[0,∞]d y

α
(d) dL(y)

mini=1,...,d
∫
[0,∞]d y

α
i dL(y)

Q(X).

When the limit measure ν of X is given, numerical bounds forQ(Y ·X) can thus be obtained
from the preceding inequalities. This relies on the computation of the value ofQ(X), which is
illustrated in the following section for the bivariate logistic dependence case.
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4.2. Illustrative features of Q(X)

In this subsection we illustrate the behavior of the term Q(X) in the bivariate asymmetric
logistic case. For other examples, we refer the reader to, e.g. Alink et al. (2004), Barbe et al.
(2006), Kortschak and Albrecher (2009), and Embrechts et al. (2009a), (2009b). Recall that,
when d = 2, Q(X) may be written in terms of the limit measure ν as follows:

Q(X) = ν(T )

ν(T1)+ ν(T2)
.

Here T = {z ∈ R̄
2 | z1 + z2 > 1} and Ti = {z ∈ R̄

2 | zi > 1}.
We consider a random vector X = (X1, X2) with the following bivariate extreme value

distribution:

• both margins are identically distributed from the Fréchet (µ = 0, σ = 1, ξ = α)
distribution, which means that there exists some positive α such that, for any positive x,
we have FXi (x) = P(Xi ≤ x) = exp{−x−α};

• the dependence between the margins of X is characterized by a function � satisfying the
conditions of a stable tail dependence function (see, e.g. Conditions L1, L2, and L3 of
Beirlant et al. (2004, p. 257)), so that the distribution function of X can be written as

FX(x) = P(X ≤ x) = exp{−�(x−α
1 , x−α

2 )}.
We fix the stable tail dependence function to be the asymmetric logistic defined by

�ψ1,ψ2,r (x1, x2) = (1 − ψ1)x1 + (1 − ψ2)x2 + {(ψ1x1)
1/r + (ψ2x2)

1/r}r

for any 0 < r ≤ 1 and 0 ≤ ψ1, ψ2 ≤ 1. This parametric model has been widely used, and is,
e.g. presented in Section 9.2.2 of Beirlant et al. (2004).

We compute Q(X) by standard upper and lower Riemann approximations. In dimension
two, this procedure is very accurate: lower and upper curves are so close that they are
indistinguishable; see Figures 1 and 2.

In the special case where ψ1 = ψ2 = 1, the distribution of X is the bivariate symmetric
logistic model with Fréchet margins. The strength of dependence between the components of X

is a decreasing function of r . In particular, the independence and the total positive dependence
respectively correspond to r = 1 and r → 0. The values of Q(X) for this model are given in
Figure 1 as functions of r and α.

Several aspects of these plots have already been observed in the literature for other models:
Q(X) tends to 1 as r tends to 1;Q(X) tends to 2α−1 as r tends to 0; for α < 1,Q(X) is strictly
increasing in r and, for α > 1, Q(X) is strictly decreasing in r; for all r , Q(X) is strictly
increasing in α.

More generally, the patterns ofQ(X)whenψ1 andψ2 are in (0, 1) are presented in Figure 2.
For specific values of α, ψ1, and r , we plot Q(X) as a function of the parameter ψ2.

Again, we observe several elements of these plots: Q(X) is strictly decreasing or increasing
in ψ1 or ψ2 when α < 1 or, respectively, α > 1; for any values of ψ1 and ψ2, Q(X) is strictly
increasing or decreasing in r when α < 1 or, respectively, α > 1.

The computation of numerical approximations ofQ(X) can also be performed for values of
d larger than two. Note however that this procedure becomes quickly time consuming when d
is large.
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Figure 1: Values of Q(X) as a function of r or α when X has the symmetric logistic dependence
structure �1,1,r and Fréchet(α) margins. Left: Q(X) as a function of the dependence parameter r ∈ (0, 1)
for values of α among {0.1, 0.8, 1.5, 2.2, 3}. Right: Q(X) as a function of α ∈ (0.1, 3) for values of r

among {0.1, 0.3, 0.5, 0.7, 0.9}.
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Figure 2: Values ofQ(X) as a function of ψ2 when X has the asymmetric dependence structure �ψ1,ψ2,r

and Fréchet(α) margins. Left: ψ1 = 0.1, . . . , 0.9 (in order from top to bottom) for α = 1
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4 ,
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Right: ψ1 = 0.1, . . . , 0.9 (in order from bottom to top) for α = 2 and r = 1
4 ,

3
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4.3. Value at risk

Another classical risk measure is the value at risk, defined as follows. Given p ∈ (0, 1) and
a random variable Z, the value at risk of Z at level p, denoted by VaRp(Z), is the pth quantile
of Z, i.e. VaRp(Z) = inf{z | P(Z ≤ z) ≥ p}. An important feature of risk measures is the
property of subadditivity or superadditivity, which can be written for the value at risk in terms
of the ratio

R
(p)
Z = VaRp(

∑d
i=1 Zi)∑d

i=1 VaRp(Zi)
,
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where Z denotes the vector (Z1, . . . , Zd)
�. We say that subadditivity or superadditivity holds

for VaRp(Z) if R(p)Z ≤ 1 or R(p)Z > 1, respectively. Analogously, asymptotic subadditivity or
asymptotic superadditivity holds for VaRp(Z) if

lim
p→0

R
(p)
Z ≤ 1 or lim

p→0
R
(p)
Z > 1,

respectively.
In the following corollary we summarize the consequences of the asymptotics obtained in

the previous subsection on the value at risk, which in particular allows us to discuss explicit
cases where asymptotic subadditivity and asymptotic superadditivity of VaRp(Y · X) holds.
Analogous results are given in Embrechts et al. (2009a) in the case of elliptical claim amounts.

Corollary 5. Assume that the components of Y are nonnegative and that the components of X

satisfy (6). Then, under the assumptions of Theorem 1,

lim
p→1

R
(p)
Y ·X = Q(Y · X)1/α

(∑d
i=1 E[Yαi ]ν(Ti)

)1/α

∑d
i=1(E[Yαi ]ν(Ti))1/α

.

Under the assumptions of Theorem 2,

lim
p→1

R
(p)
Y ·X = Q(Y · X)1/α

(∑d
i=1

∫ ∞
0 yαi L(dy)ν(Ti)

)1/α

∑d
i=1

(∫ ∞
0 yαi L(dy)ν(Ti)

)1/α .

Under the assumptions of Theorem 3,

lim
p→1

R
(p)
Y ·X =

(∑d
i=1 E[Yαi ]ν(Ti)

)1/α

∑d
i=1(E[Yαi ]ν(Ti))1/α

.

Under the assumptions of Theorem 4,

lim
p→1

R
(p)
Y ·X = Q(Y · X)1/α

(∑d
i=1 νX,Y ◦�−1(Ti)

)1/α

∑d
i=1(νX,Y ◦�−1(Ti))1/α

.

The proof of Corollary 5 is postponed until Section 6.

Remark 7. Corollary 5 allows us to deduce in some cases asymptotic subadditivity or super-
additivity. For instance, under the assumptions of Theorem 1, and using (16), we obtain

lim
p→1

R
(p)
Y ·X = {E[ν(Y−1 · T )]}1/α∑d

i=1(E[Yαi ]ν(Ti))1/α
.

If the Yis are identically distributed and the measure ν is symmetric, we obtain

lim
p→1

R
(p)
Y ·X ≥ {νY ([0, 1]c)}1/α

d{E[Yα1 ]ν(T1)}1/α ≥ {�(1, . . . , 1)}1/α

d
.

Now, if we take the stable tail dependence function � to be the symmetric logistic, that is,
�(u) = (

∑d
i=1 u

1/β
i )β with 0 < β ≤ 1, we obtain limp→1 R

(p)
Y ·X ≥ dβ/α−1. Hence, asymptotic

superadditivity follows as soon as β ≥ α.
An example of asymptotic subadditivity can be derived from Corollary 5, under the assump-

tion of Theorem 3. When the Yis are identically distributed and the measure ν is symmetric,
we can easily prove that limp→1 R

(p)
Y ·X = d1/α−1. Asymptotic subadditivity is thus equivalent

in this framework to the condition α > 1.
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5. Concluding comments and discussion

In this paper, discrete-time risk models with finite time horizon have been considered, and
asymptotics for risk measures, as ruin probability or value at risk, have been obtained under
different dependence settings for the claim amounts and discount factors. The key role of the
multivariate regularly varying (MRV) setting has been highlighted, as well as the usefulness of
Breiman-type results. This allowed us to generalize (for the finite time horizon) the result of
Zhang et al. (2009) outside the asymptotic independence of the claim amounts, and outside the
independence of claim amounts and discount factors.

A specific parameter Q(Y · X) arises from these asymptotics, for which explicit bounds
have been provided in terms of the limit measure of X and the characteristics of the discount
factors Y . These bounds are easily numerically computable as long as the time horizon d is not
too large. Dealing with very high dimensions still represents a challenging numerical problem.
Ideas coming from the algorithms developed in Arbenz et al. (2011) could be promising for
this task.

Another important issue is to measure the accuracy of the approximations stated in Theorem 5
and its corollaries. Such a problem requires MRV hypotheses with second-order conditions, as
formulated in the univariate case in Degen et al. (2010). This will be the subject of future work.

6. Proofs

Proof of Lemma 1. We prove the first assertion of Lemma 1 by induction. Let K be a
relatively compact set of Ed−1 such that ν(∂K) = 0, and let ε > 0. By assumption,
convergence (3) implies that

lim
t→∞ t P(a(t)−1X ∈ K × (−∞,−ε]) = ν(K × (−∞,−ε]).

Furthermore,

t P(a(t)−1X ∈ K × (−∞,−ε]) ≤ t P(Xd < −a(t)ε) → 0;
therefore, ν(K × (−∞,−ε]) = 0, so the support of ν is included in R

d−1 × [0,∞) \ {0}. The
rest of the induction argument is along the same lines. It is then obvious that the measure H‖·‖
is concentrated on S

d−1
‖·‖ ∩ [0,∞]d . Now, for simplicity, we consider the following sets:

Tmax =
{
z ∈ R̄

d

∣∣∣∣ max
1≤k≤d

k∑
i=1

zi > 1

}
,

T =
{
z ∈ R̄

d

∣∣∣∣
d∑
i=1

zi > 1

}
,

T+ =
{
z ∈ [0,∞]d

∣∣∣∣
d∑
i=1

zi > 1

}
.

The last assertion of Lemma 1 may then be written as ν(Tmax)/ν(T ) = ν(T +)/ν(T ) = 1,
which is obvious when ν is concentrated on the nonnegative quadrant.

Proof of Lemma 2. Recall that H1 denotes the spectral measure of X with respect to the
�1-norm. This is a probability measure concentrated on {w ∈ S

d−1
1 | wi ≥ 0, 1 ≤ i ≤ d}.
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The choice of the �1-norm yields limt→∞ t P(
∑d
i=1Xi > a(t)) = 1. Furthermore, for any

y ∈ [0,∞]d , from (5) we obtain

ν

({
z ∈ [0,∞]d \ {0}

∣∣∣∣
d∑
i=1

yizi > 1

})
=

∫
S
d−1
1

( d∑
i=1

yiwi

)α
H1(dw),

which implies in particular that

lim
t→∞ t P(Xi > a(t)) =

∫
S
d−1
1

wαi H1(dw).

Consequently, we obtain

lim
t→∞ t

d∑
i=1

P(Xi > a(t)) =
d∑
i=1

∫
S
d−1
1

wαi H1(dw),

so that

Q(X) = 1∑d
i=1

∫
S
d−1
1
wαi H1(dw)

.

If α > 1 then the function x → xα is convex. By Jensen’s inequality we have

1

d

d∑
i=1

∫
S
d−1
1

wαi H1(dw) ≥
{

1

d

d∑
i=1

∫
S
d−1
1

wiH1(dw)

}α
=

{
1

d

∫
S
d−1
1

d∑
i=1

wiH1(dw)

}α
= d−α.

If α < 1 then, again by Jensen’s inequality, the reverse bound holds:

d−α =
{

1

d

d∑
i=1

∫
S
d−1
1

wiH1(dw)

}α
≥ 1

d

d∑
i=1

∫
S
d−1
1

wαi H1(dw).

On the other hand, if α > 1 then wα ≤ w for w ∈ [0, 1] so

d∑
i=1

∫
S
d−1
1

wαi H1(dw) ≤
d∑
i=1

∫
S
d−1
1

wiH1(dw) = 1.

The reverse inequality obviously holds for α < 1. Gathering these bounds yields (7). The
equality Q(X) = 1 when the components of X are asymptotically independent follows from
the fact that H1 is then concentrated on the axes.

6.1. Proof of Theorem 2

In order to simplify the notation, we denote by ‖ · ‖ a given norm on a Euclidean space, and,
for any q × d matrix M , the induced matrix norm is ‖M‖ = sup‖x‖=1 ‖Mx‖. For a q × d

matrix M and a set K ⊂ R
q , we define

M−1 ·K = {x ∈ R
d | Mx ∈ K}.
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In order to prove Theorem 2, we state and prove a more general result. We use the concept
of asymptotic independence introduced in Maulik et al. (2002). Assume that M is a random
matrix of size q × d and X ∈ R

d is a random vector satisfying

t P

((
X

a(t)
,M

)
∈ ·

)
v−→ (ν ×G)(·) (20)

as t tends to ∞ on Ed × [−∞,∞]qd , where ν is a Radon measure on Ed not concentrated at
∞ and G is a probability measure on [−∞,∞]qd . This implies that ν is homogeneous with
positive index α, say, and we can still choose the normalizing function a such that

lim
t→∞ t P(‖X‖ > a(t)) = 1.

Assume also that there exists δ > 0 such that

lim
ε→0

lim sup
t→∞

t E

[(‖M‖‖X‖
a(t)

)δ
1{‖X‖≤εa(t)}

]
= 0, (21)

∫
[−∞,∞]qd

‖M‖αG(dM) < ∞. (22)

Let νG denote the measure defined on Eq by

νG(K) = ν ⊗G({(x,M) | Mx ∈ K})
=

∫
[−∞,∞]qd

ν(M−1 ·K)G(dM)

= E[ν(M∗−1 ·K)],
where M∗ is a random matrix with distribution G.

Theorem 6. Assume that assumptions (20), (21), and (22) hold. Then

t P(a(t)−1MX ∈ ·) v−→ νG

as t tends to ∞.

Proof. Let K be relatively compact in Eq such that νG(∂K) = 0. Fix some real number
s > 0, and write

P(MX ∈ a(t)K) = P(MX ∈ a(t)K, ‖M‖ ≤ s)+ P(MX ∈ a(t)K, ‖M‖ > s).

SinceK is relatively compact in Eq , there exists κ > 0 such that ‖x‖ ≥ κ for all x ∈ K . Thus,
‖M‖ ≤ s and Mx ∈ K imply that ‖x‖ ≥ s−1κ; thus, assumption (20) implies that

lim
t→∞ t P(MX ∈ a(t)K, ‖M‖ ≤ s) = E[ν(M∗−1 ·K) 1{‖M‖≤s}].

By the homogeneity of ν, condition (22), and the monotone convergence theorem, it holds that

lim
s→∞ E[ν(M∗−1 ·K) 1{‖M‖≤s}] = E[ν(M∗−1 ·K)].

https://doi.org/10.1239/jap/1339878792 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1339878792


380 A.-L. FOUGERES AND C. MERCADIER

Next, since y ∈ K implies that ‖y‖ ≥ κ , we have, for s ≥ 1 and ε > 0,

P(MX ∈ a(t)K, ‖M‖ > s) ≤ P(‖M‖‖X‖ > κa(t), ‖M‖ > s)

≤ P(‖X‖ > εa(t), ‖M‖ > s)+ P

(‖M‖‖X‖
a(t)

> κ,
‖X‖
a(t)

≤ ε

)
.

By assumption (20),

lim
t→∞ t P(‖X‖ > εa(t), ‖M‖ > s) = ε−α P(‖M∗‖ > s),

which can be made arbitrarily small by choosing s large enough. By Markov’s inequality and
assumption (21),

lim sup
t→∞

t P

(‖M‖‖X‖
a(t)

> κ,
‖X‖
a(t)

≤ ε

)
≤ κ−δ lim sup

t→∞
t E

[(‖M‖‖X‖
a(t)

)δ
1{‖X‖≤εa(t)}

]

= 0.

Thus, we have proven that limt→∞ t P(MX ∈ a(t)K) = E[ν(M∗−1 ·K)] and this concludes
the proof.

Proof of Theorem 3. It is a straightforward consequence of Hult and Samorodnitsky (2008,
Theorem 3.1) for p = 1, A0 = 0, Aj = Yjej and Zj = Xj for j = 1, . . . , d, and Aj = 0 for
j > d.

Proof of Theorem 4. LetK be a relatively compact set in Ed such that νX,Y ◦�−1(∂K) = 0.
Then νX,Y (∂�−1K) = 0, since � is continuous, which implies that ∂�−1(K) ⊂ �−1(∂K).
Moreover, �−1(K) is relatively compact in E2d . To see this, we can choose some arbitrary
norm and prove that, for some ξ > 0, the set K = {x ∈ R

d | ‖x‖ > ξ} is such that �−1(K)

is bounded away from 0 in E2d . Choose, for instance, the Euclidean norm in both Ed and E2d .
Then

‖x · y‖2 =
d∑
i=1

x2
i y

2
i ≤

d∑
i=1

(x2
i + y2

i )y
2
i ≤

d∑
i=1

(x2
i + y2

i )
2 = ‖(x, y)‖2.

Thus, if (x, y) ∈ �−1(K) then ‖(x, y)‖ ≥ ‖x · y‖ > ξ and this proves that �−1(K) is
relatively compact in E2d . Define c(t) = a(t)b(t). Then,

lim
t→∞ t P

(
Y · X

c(t)
∈ K

)
= lim
t→∞ t P

((
Xi

a(t)
,
Yi

b(t)

)
i=1,...,d

∈ �−1(K)

)

= νX,Y ◦�−1(K).

Proof of Theorem 5. We want to state (14). Under the assumptions of any of the theorems
of Section 3, Y · X is MRV. Let µ denote the Radon measure associated with Y · X, and let a
be the normalizing function. Then (14) is equivalent to

µ(T ) = µ(Tmax) = µ(T+),

where T , Tmax, and T+ are as defined above. This holds as soon as the support of µ is included
in [0,∞]d \ {0}, which we now prove. By Lemma 1, it suffices to prove that (6) holds for the
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vector Y · X, i.e. for each i = 1, . . . , d,

lim
x→∞

P(XiYi < −x)
P(XiYi > x)

= 0. (23)

The latter equivalence holds under the assumptions of Theorems 1, 2, and 3 since Xi and Yi
are asymptotically independent, so that

P(XiYi > x) ∼ ci P(Xi > x) and P(XiYi < −x) ∼ ci P(Xi < −x)
in each of these cases, where ci = E[Yαi ] under the assumptions of Theorems 1 and 3, and
ci = ∫ ∞

0 yαi L(dy) under the assumptions of Theorem 2.
Under the assumptions of Theorem 4, we must prove that if X and Y are two jointly

regularly varying random variables such that Y is nonnegative and X satisfies (6), then XY
also satisfies (6). This clearly holds since, for any x > 0,

0 = lim
t→∞ t P(X < −a(t)x) = νX,Y ((−∞,−x)× [0,∞)).

Thus, the support of νX,Y is included in [0,∞]2. This proves (23) and concludes the proof
of (14) under the assumptions of Theorem 4, completing the proof of Theorem 5.

Proofs of Corollaries 1–4. We need to respectively prove (15), (17), (18), and (19). Note
that (19) follows directly from the definition ofQ(X · Y ) and is valid in all contexts. Thus, we
only need to give further equivalents of

∑d
i=1 P(XiYi > x).

• Under the assumptions of Theorems 1 and 3, Xi and Yi are independent, and Breiman’s
theorem applies: P(XiYi > x) ∼ E[Yαi ] P(Xi > x). Under the assumptions of
Theorem 3, the components of Y · X are asymptotically independent, as shown in (11),
so a consequence of Lemma 2 is that Q(Y · X) = 1.

• Under the assumptions of Theorem 2, it follows from conditions (8), (9), and (10) that
P(XiYi > x) ∼ ∫ ∞

0 yαi L(dy)P(Xi > x).

Proof of Corollary 5. The following lemma is useful to prove Corollary 5, and is a straight-
forward consequence of usual properties of inverses of regularly varying functions; see, e.g.
Resnick (1987, Proposition 0.8(vi)). We state it here (without proof) for completeness.

Lemma 3. Let 0 < α < ∞. If X and Y are two random variables with regularly varying
upper tails with index −α, then, for 0 ≤ a ≤ ∞,

lim
x→∞

P(X > x)

P(Y > x)
= a ⇐⇒ lim

p→1

VaRp(X)

VaRp(Y )
= a1/α.

Under the assumptions of either Theorem 1, 2, 3, or 4, we want to obtain the following
common expression:

lim
p→1

VaRp(
∑d
i=1XiYi)∑d

i=1 VaRp(XiYi)
= {Q(Y · X)D}1/α. (24)

Here

D =
∑d
i=1 µ(Ti)

{∑d
i=1 µ(Ti)

1/α}α , (25)
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where Ti = {z ∈ R̄
d | zi > 1} and µ denotes the limit measure of Y · X. Define the random

variable Z via the relationship

VaRpZ =
d∑
i=1

VaRp(XiYi).

Lemma 3 says that (24) is equivalent to

lim
x→∞

P(
∑d
i=1XiYi > x)

P(Z > x)
= Q(Y · X)D,

which is also equivalent, by the definition of Q(Y · X), to

lim
x→∞

∑d
i=1 P(XiYi > x)

P(Z > x)
= D.

This limit D can be made explicit using the change of variable x = γ (t), where γ (t) =
a(t) under the assumptions of Theorems 1–3, and γ (t) = a(t)b(t) under the assumptions of
Theorem 4. We then obtain, under any of these assumptions,

lim
t→∞ t P(XiYi > γ (t)) = µ(Ti). (26)

This gives the numerator announced in (25). The denominator is obtained by applying Lemma 3
twice. Indeed, from (26), for any i, j ∈ {1, . . . , d},

lim
p→1

VaRp(XjYj )

VaRp(XiYi)
=

{
µ(Tj )

µ(Ti)

}1/α

,

so that, for any i ∈ {1, . . . , d},

lim
p→1

VaRp(Z)

VaRp(XiYi)
= lim
p→0

d∑
j=1

VaRp(XjYj )

VaRp(XiYi)
=

d∑
j=1

{
µ(Tj )

µ(Ti)

}1/α

.

This is still equivalent, thanks again to Lemma 3, to

lim
t→∞

P(Z > γ (t))

P(XiYi > γ (t))
=

[ d∑
j=1

{
µ(Tj )

µ(Ti)

}1/α]α
.

Combining the last limit with (26) yields

lim
t→∞ t P(Z > γ (t)) =

[ d∑
j=1

{µ(Tj )}1/α
]α
,

which is the expected denominator in (25). Checking that µ(Tj ) has the different expressions
announced under the assumptions of Theorems 1–4 is straightforward, completing the proof of
Corollary 5.
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