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INTERSECTIONS OF PRIMARY IDEALS IN RINGS 
OF CONTINUOUS FUNCTIONS 

R. DOUGLAS WILLIAMS 

Introduction. Let C be the ring of all real valued continuous functions on 
a completely regular topological space. This paper is an investigation of the ideals 
of C that are intersections of prime or of primary ideals. 

C. W. Kohls has analyzed the prime ideals of C in [3 ; 4] and the primary ideals 
of C in [5]. He showed that these ideals are absolutely convex. (An ideal I oi C 
is called absolutely convex ii \f\ ^ |g |andg Ç l imply t h a t / G J.) It: follows that 
any intersection of prime or of primary ideals is absolutely convex. We consider 
here the problem of finding a necessary and sufficient condition for an absolutely 
convex ideal /of C to be an intersection of prime ideals and the problem of finding 
a necessary and sufficient condition for I to be an intersection of primary ideals. 

The solution to the first problem is given in Theorem 2.1 : an absolutely convex 
ideal I of C is an intersection of prime ideals if and only if / = P. 

The problem of characterizing the absolutely convex ideals that are inter
sections of primary ideals turns out to be considerably more difficult, and we are 
less successful. In Theorem 2.8 we show that for any absolutely convex ideal / 
of C the ideals / • I112 and / : I1/2 are always intersections of primary ideals. Thus 
if / satisfies either 1 = 1- I1/2 or I = I : I112, then I is an intersection of primary 
ideals ; it is not difficult, however, to find examples of ideals that are intersections 
of primary ideals but satisfy neither of these conditions (Example 2.11). A 
necessary condition for an absolutely convex ideal to be an intersection of 
primary ideals is given in Theorem 2.15: if / is an intersection of primary ideals, 
then I2 = I - (I : I1/2). Finally, we show that although this condition is not, in 
general, a sufficient condition for an absolutely convex ideal to be an inter
section of primary ideals (Example 2.21), it is sufficient for absolutely 
convex ideals that satisfy an additional hypothesis. In particular, we show in 
Theorem 2.17 that if / is an absolutely convex ideal such that the intersection 
of all the minimal primary ideals of / is irredundant, then I is an intersection of 
primary ideals if and only if I2 = I • (I : I112). 

1. Background and preliminary results. Our terminology and notation 
will, with only a few exceptions, be that of [1]. The symbol C will denote set 
inclusion, while < will denote proper inclusion. The term "ring" unmodified will 
mean a commutative ring with identity. The term "ideal" will always mean a 
proper ideal ; i.e., an ideal can never be the whole ring. If l i s an ideal of a ring, we 
will denote the radical of / by Im. 
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Let P be a prime ideal of C. We list now some facts about the prime and 
pr imary ideals of the rings C and C/P and prove some preliminary propositions. 
For the proofs of s ta tements about the prime ideals of these rings see 
[1, Chapter 14]. For the proofs of s ta tements about the pr imary ideals see [5]. 

If / is an absolutely convex ideal of C, the residue class ring C/I is a part ial ly 
ordered ring, according to the de f in i t i on : / ( / ) ^ 0 if there exists g £ C such t h a t 
g ^ 0 a n d / = g (mod I). The canonical homomorphism of C o n t o C/I, which is 
clearly order preserving, is a lattice homomorphism. If r is a real number, we 
denote by r both the constant function whose constant value is r and the residue 
class of this constant function modulo / . T h u s we view the real field as a subfield 
of both C and C/I. 

For a prime ideal P of C, the residue class ring C/P is totally ordered 
[1, Theorem 5.5]. Every positive element b of C/P has a unique positive nth 
root b1/n: if/ is any pre-image of b in C, w i t h / ^ 0, then P(fl/n) = b1/n. If a is a 
positive non-unit of C/P, then a is infinitely small, i.e., a < l/n for every positive 
integer n. In particular, then, a < 1, so if r and 5 are positive rational numbers , 
r < s if and only if as < aT. 

A convex ideal in a totally ordered ring is a symmetric interval: with every two 
of its elements, it also contains all elements t ha t lie between them. Hence the 
prime and pr imary ideals of C/P are symmetric intervals. If a is a positive non-
unit of C/P, then in the ring C/P there is a smallest prime ideal Pa t h a t contains 
a and a largest prime ideal Pa t h a t does not contain a: 

p* = {b ç C/P: \b\ S a1/n for some n G N], 

pa = {b c C/P: \b\ < an for all n G N). 

Also, there is a smallest pr imary ideal P\a t h a t contains a and a largest pr imary 
ideal P\a t h a t does not contain a: 

P|« = {ft £ C/P: \b\ < a}-lfn for all n £ N}, 

p\a = [b C C / P : |&| ^ a1+1/w for some w G iV}. 

Clearly P a < P\a < P\a < Pa. 

1.1. Definition. In any ring an upper prime ideal (respectively, upper primary 
ideal) is a prime (respectively, primary) ideal t ha t has an immediate predecessor 
in the set of all prime (respectively, primary) ideals partially ordered by inclu
sion. A lower prime ideal (respectively, lower primary ideal) is a prime (respec
tively, primary) ideal t ha t has an immediate successor in the set of all prime 
(respectively, primary) ideals partially ordered by inclusion. 

The ideals of the form Pa are the upper prime ideals of the ring C/P, and the 
ideals Pa are the lower prime ideals. The ideals P\a are the upper pr imary ideals 
of C/P, and the ideals P\a are the lower pr imary ideals. There are, in general, 
many prime ideals of C/P t ha t are neither upper nor lower prime ideals. T h e 
maximal ideals of C/P, for example, which are clearly not lower prime ideals, are 
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not upper prime ideals either. Every non-prime pr imary ideal of C/P, however, 
is either an upper or a lower pr imary ideal. No prime ideal of C/P can be both an 
upper and a lower prime ideal. We show now t h a t this is also t rue of the pr imary 
ideals of C/P. 

1.2. P R O P O S I T I O N . NO primary ideal of C/P can be both an upper and a lower 
primary ideal. 

Proof. We show t h a t if P | & C P \a for some positive non-units a and b of C/P, 
then P\b < P\a. If P\b C P\\ then for all n, m G N, bl+l,m < a>-lln. By 
[1, Lemma 14.15] there exists c G C/P such t h a t bl+1/m S c S cLl~lln for all 
n,m G N. Clearly c G P\a - P | 6 . 

Now we turn our a t ten t ion to the prime and pr imary ideals of the ring C. 
Every lower prime ideal of Chas a unique immediate successor. Also, every upper 
prime ideal of C has a unique immediate predecessor ; in fact, if Q is an upper 
prime ideal of C and P is an immediate predecessor, then every predecessor of Q 
is contained in P. From these facts we conclude t h a t if P is any prime ideal 
contained in a prime ideal Q, then Q is a lower prime ideal of C if and only if Q/P 
is a lower prime ideal of C/P. And if P' is any prime ideal properly contained in a 
prime ideal Q\ then Qr is an upper prime ideal of C if and only if Q''/ P' is an upper 
prime ideal of C/P'. 

We want to verify the analogous s ta tements for the pr imary ideals of C. In 
addit ion to facts s ta ted above, we will make use of the following information 
about the pr imary ideals of C: every pr imary ideal contains a prime ideal, and 
every pr imary ideal is absolutely convex. 

1.3. PROPOSITION, (a) Every lower primary ideal of C has a unique immediate 
successor, 

(b) Every upper primary ideal of C has a unique immediate predecessor. 

Proof, (a) Let K be a lower pr imary ideal of C. Let P be any prime ideal 
contained in K. Since the convex ideals containing P form a chain (i.e., are total ly 
ordered by inclusion), the pr imary ideals containing K form a chain, so (a) is 
clear. 

(b) Let J be an upper pr imary ideal of C, and let 7 and V be two pr imary 
ideals t h a t are immediate predecessors of J. Let P be any prime ideal contained 
in 7, and let P' be any prime ideal contained in V. In C/P, J/P = P\a and 
I/P = P\aîorsomea.Hw: C -> C/P, then we have Tr-\Pa) C 7 C J C Tr~l{Pa). 
Now 7r -1(Pa) is an immediate predecessor of 7r_1(Pa) in the set of all prime ideals 
of C. Therefore, since P' C P < J C ^-l(Pa), P ' C ir-\Pa). Hence P' C 7; 
since P' C P also and the pr imary ideals containing a given prime ideal form a 
chain, we mus t have 7 = P. 

1.4. COROLLARY. Let J be an upper primary ideal of C, and let I be its immediate 
predecessor. If I' is any predecessor of J, then P C 7. 
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Proof. Note that J is not a prime ideal since a prime ideal cannot be an upper 
or lower primary ideal in C. Let P' be any prime ideal contained in V. J/P' is a 
non-prime primary ideal in C/Pf, so there are two possibilities: either (1) 
J/P' = p'\t> for some b, or (2) J/P' = Pf\c for some c. Let w: C->C/P'. In 
case (1) it is clear that V C Tr~1(Pf \ 6), and ir~l{Pf | 6) is an immediate predecessor 
of / . By Proposition 1.3, 7r_1(P'|6) = I, and so V C J We conclude the proof 
by showing that case (2) is impossible. Assume, on the contrary, that J/P' = Pr \c. 
Then in C, J is an immediate predecessor of 7r-1(P' \C). Let P be any prime ideal 
contained in I. In C/P, I/P is the immediate predecessor of J/P, and J/P is the 
immediate predecessor of 7r_1(P'|c)/P. This contradicts Proposition 1.2. 

1.5. COROLLARY. Let J be an ideal in C, and let P be any prime ideal contained 
in J. Then: 

(a) / is an upper primary ideal in C if and only if J/P is an upper primary 
ideal in C/P. 

(b) J is a lower primary ideal in C if and only if J/P is a lower primary ideal 
in C/P. 

By the remarks following Proposition 1.2 the upper prime ideals of Care of the 
form ir~1(Pa), and the lower prime ideals of C are of the form 7r_1(Pa), where P 
is a prime ideal of C, T: C —> C/P, and a is a positive non-unit of C/P. By 
Corollary 1.5 the upper primary ideals of C are of the form 7r-1(P|a), and the 
lower primary ideals of C are of the form 7r_1(P|a). If ir(\f |) = a, we will denote 
ir-\Pa) by Pf, ir~l{P\a) by P\f, etc. 

We will also want to know about intersections of chains of prime and primary 
ideals of C. In any ring the intersection of a chain of prime ideals is prime, so in 
particular this holds for the ring C. It is not true that in any ring the intersection 
of a chain of primary ideals is primary: for example, in the polynomial ring 
F[X, Y] in two indeterminates over a field F the ideals (Xk, X Y, Y2) for k G N, 
k ^ 2, are all primary, and they clearly form a chain ; but 

oo 

/ = n (X\XY, F2) 

is not primary since X F G I, Y £ I, andX g 71/2. Fortunately, however, in the 
ring C the intersection of a chain of primary ideals is in fact primary. For by 
[2, 2.10 and 4.1] the intersection of a chain of primary ideals of C contains a 
prime ideal, and it easily follows that the intersection is primary. 

Finally, we will make much use of a theorem of L. Gillman and C. W. Kohls 
on pseudoprime ideals. 

1.6. Definition. An ideal of C is called a pseudoprime ideal if it contains a prime 
ideal. 

We remark that in [2] the pseudoprime ideals of C are defined as those ideals I 
satisfying the condition: fg = 0 implies/ G I or g G I. This definition is then 
shown to be equivalent to Definition 1.6. 
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1.7. PROPOSITION [2, Theorem 4.7]. An ideal of C is absolutely convex if and 
only if it is an intersection of absolutely convex pseudoprime ideals. 

2. The main results. Using Proposition 1.7 we can immediately obtain 
our characterization of the absolutely convex ideals of C that are intersections 
of prime ideals. 

2.1. THEOREM. Let I be an absolutely convex ideal of C. I is an intersection of 
prime ideals if and only if I = P (i.e., I is idempotent). 

Proof. Necessity: If jf G I, then/1 7 3 G / , so 

f = f 1/3 . ( f 1/3)2 £ p 

Sufficiency: L e t / G C — I. We are to find a prime ideal that contains I but 
not / . By Proposition 1.7 there exists an absolutely convex pseudoprime ideal J 
that contains / but not / . Let P be any prime ideal contained in / . If M is the 
unique maximal ideal that contains P a n d / G M, we are done; so assume that 
/ G M. Since / G Pf, the proof will be complete if we show that / C Pf> Now 
since/ G P\f — J and the convex ideals containing P form a chain, we must have 
J C P\f. Therefore I C P\f. Let g G I, and let n G N. Since 

g £ /2(n+l) = ^ 

we have 
k 

& = ^ &H • • • &2(w+l)* 

for some {g^} C I and some & G N. Therefore 

\P(&)\ ^ Z IP(gi«) | . . . 1^(2*^1)01 

^ ft- max {|P(gi<) . . .P(g2(»+i)i)|} 

^ « |P(/)|M+1 since |P(g„)l < |P( / ) | 1 / 2 for all j .» 

< |P(/)|B-

Since g and w are arbitrary, / C Pf. 

2.2. COROLLARY. Every pseudoprime idempotent ideal of C is prime. 

Proof. Let / be a pseudoprime idempotent ideal of C. It is sufficient to show 
that / is absolutely convex. For then by Theorem 2.1 I is an intersection of 
prime ideals, and a pseudoprime ideal that is an intersection of prime ideals is 
prime. Suppose that |g| ^ | / | for some g G C a n d / G / . Then by [1, ID.3], 
g5/3 G I, so g5/3 G I2- Therefore for some k G N there exists 

{̂ i, • • • , ù,ju • • • ii*} CI 
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such that 
k 

5/3 V * l 

Let P be a prime ideal contained in I. Then if 

P(\imjm\) = « l a x {P(\injn\)}, 

P{\im\) = m a x { P ( | 4 | ) , P ( | j m | ) } , 

p(k\r/3^ip(\injn\) 

^kPQimjm\) 

èkP(\im\)2 

= P(\A)\ 
where* = y/kim G J. HenceP(|g|) ^ P(|i |)6 7 5 . It follows that there exists/* £ C 
such that g = h (mod P) , and |A| ^ |*|675. By [1, 1D.3] A 6 / , so since 
g - A € P C / , g € / . 

We now turn our attention to the study of the absolutely convex ideals of C 
that are intersections of primary ideals. Our first theorem gives a sufficient 
condition for an absolutely convex ideal to be an intersection of primary ideals. 

2.3. THEOREM. Let I be an absolutely convex ideal of C. If I = I • P / 2 , then I is 
an intersection of primary ideals. 

Proof. We show first that for any ideal / of C, any prime ideal P , and any 
f Ç M — P , where M is the maximal ideal that contains P , 

(*) JCP\J implies / • P ' 2 C P\f-

It is sufficient to show that if g Ç / and h G P72, then gh G P | / . Since h Ç J172, 
hm £ J for some m. If we set P(g) = 6, P(A) = c, and P ( | / | ) = a, we have 
|6| < a1"17" and |c|w < a1"17" for all n £ N. Hence \bc\ ^ aa+iM)(i-i/n) for all 
n G iV. Since (1 + l/ra)(l — 1/w) > lwhenw > m + 1, |6c| ^ a1+1/* for some 
positive integer &, and we have gh Ç P | / . 

Now let / be the ideal of the theorem, and l e t / Ç C — I. We want to find a 
primary ideal that contains I but not / . Let Q be an absolutely convex pseudo-
prime ideal that contains / but not / . Let P be a prime ideal contained in Q. 
If M is the maximal ideal that contains P and / Ç? M, we are done ; so assume 
t h a t / G M. Since/ (? P | / , the proof will be complete if we show that I C P\f. 
Now the convex ideals containing P form a chain, so since/ Ç P | r — Q, we must 
have QCP\f. Therefore / C P | r , so by ( * ) / = / • P72 C P\f. 

We will show in Example 2.11 that the condition 1 = 1- Im of Theorem 2.3 is 
not a necessary condition for an absolutely convex ideal / to be an intersection 

and 

we have 
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of primary ideals. The next theorem gives information about the ideal I • I1'2 

for any absolutely convex ideal I of C. 

2.4. THEOREM. Let I be an absolutely convex ideal of C. Then: 
(a) J . 71/2 = {/ G C: l/l1"17* G I for some n G N}, so I • Im is absolutely 

convex. 
(b) I • 71/2 • (7 • I1/2)1/2 = 7 • Im. 
(c) If P is a prime ideal of C, then I • I1/2 C P\jif and only if I C P\f. 

2.5. LEMMA. L ^ J be an absolutely convex pseudoprime ideal of C. If 
0 = J(\g\)m < J(\f\)mfor some m G N, then J(\g\) £ J(\f\). 

Proof. Assume, on the contrary, that J(\g\) $ J(\f\)- Then since C/J is 
totally ordered, J(\g\) > J(\f\). Hence 0 = J(\g\)m è / ( | / | ) w è 0, and so 
J(\f\)m = 0, which is a contradiction. 

Proof of Theorem 2 A: (a) Set J = {/ 6 C: l/l1""1771 G /forsomerc G iV}.Note 
that since / is clearly closed under multiplication by elements of C, [1, 1E.1] 
implies t h a t / G / if and only if | / | A 1 G / . We show first that J (Z L Let 
f G J ; then | / | A 1 G / , so ( | / | A iy~1/n G I for some n G N. Therefore since 
l/l A 1 ̂  (l/ l A I)1"17", l/l A 1 G J. By [1, 1E.1] this implies that | / | G J. 
Hence/ G / , and so J C L It follows from this that J C I - Il/2. For, l e t / G / ; 
then/1*-17™ G I for some odd m £ N. Also, since/ G I,f1/m G /1/2, and we have 
^ _ fl-l/m . -film r J . Jl/2# 

Before verifying the reverse inclusion we show that / is closed under addition. 
Le t / , g G J, and suppose first that | / | ^ 1 and \g\ ^ 1. Then |/|1_1/ra G / a n d 
|g|i-iM ç /forsomew,m G N,soiîk = max{w,wj, | / | 1 - 1 / A : + |g|1_L/* G /.Since 

(l/l + lgl)1-1'*^ l / h ^ + lgl1-1'*, 
(l / l + |g|)1_1M € / . Therefore since 

| / + f | i - i / * £ ( | / | + |g|)i-i/*, 

| / + g|1_1/A; G / , and we h a v e / + g G J. In the general case, if/, g G / , then 
l/l A 1, |g| A 1 G / , so by the above | / | A 1 + \g\ A 1 G /• Since 

| / + g| A 1 £ (l/ l A l) + (|g| A 1), 

| / + g| A 1 G J, and s o / + g G / . 
Now since J is closed under addition, to verify the reverse inclusion it is 

sufficient to show that if h G / and g G /1/2, then gh G J" (equivalently, 
|g&| A 1 G / ) . Let u be a unit of Csuch that u\gh\ = |gfe| A 1. Suppose, on the 
contrary, t h a t / = u\gh\ G / . Since w|g| G /1/2, (^|g|)w G / for some m £ N. 
Pickrc G Nsuch that 1 < 1 + 1/m - (l/w)(l + 1/m). Since/ G J,fl~1,n £ I, 
so there exists an absolutely convex pseudoprime ideal K that contains / but 
no t / 1 " 1 ^ . Then -.0 = K(u\g\)m < K(fy~1/n, so K(u\g\) S K(fyi-1/n»/m by 
Lemma 2.5; and 0 = 2£(|ft|) < K(fy~1/n since |A| G / , so 

2E(/) = K(u\gh\) ^ X(/)d-lM)(l+lM). 
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Therefore since 0 û f Û 1> 

U ( l - 1/«)(1 + l/m)) = 1 + 1/m - (l/w)(l + 1/m), 

which is a contradiction. 
(b) Clearly J • 71/2 C J- For the reverse inclusion let / £ / with | / | ^ 1. 

Then l/l1"17* G /for some even integers. We claim tha t / I-I/(*+D £ / . L e t & £ N 
be such that 

1 - 1/» ^ (1 - l / (» + 1))(1 - 1/*). 
Then 

(mi- l / (n+l)) l - l / fc <g U ll-l/w g J 

Therefore 
( | / | i - l / («+D) i - l / * ç / , 

and so 
yi-l/(n+l) £ J^ 

Now we have 
f = f l-l/(w+l) . fl/(n+l) ç. J . j l /2# 

(c) We showed in the proof of Theorem 2.3 that if I C P\f, then I • J172 C P\f, 
for any ideal I. For the converse, suppose that / C P\f, and let g £ / with 
|g| ^ 1. Note that for all m £ iV there exists n £ N such that 

| l + l / m \ l - l / » < | „ | 

\g\1+1/m e J 

\g\1+1/m e p \ f 

for all m £ N, and it follows that g Ç P\f. 

Combining Theorems 2.3 and 2.4 we have: 

2.6. COROLLARY. If I is an absolutely convex ideal of C, then I • I172 is an inter-
section of primary ideals. In fact, I • I172 is the intersection of all the maximal ideals 
containing I and all the lower primary ideals whose corresponding upper primary 
ideals contain I. 

Proof: By Theorems 2.3 and 2.4 (b), / • I172 is an intersection of primary ideals. 
Let K be the intersection of all the maximal ideals containing / and all the lower 
primary ideals whose corresponding upper primary ideals contain / . By 
Theorem 2.4 (c), I • J172 C K. For the reverse inclusion suppose t h a t / (? / • J172. 
Since I • J172 is an intersection of primary ideals, there exists a primary ideal / 
such that I - Im C / and / £ J. Let P be a prime ideal contained in J, and let M 
be the maximal ideal that contains P. If/ £ M, then since clearly / C tà,f (? K. 
So assume that f € M. Since f $ J, J C P\f, and so I • J172 C P\f. By 
Theorem 2.4 (c), / C P\f, so again we have / $ K. 

Therefore 

for all m £ N, so 
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2.7. Definitions, (a) If / a n d J are ideals of a ringP, the quotient I : J is denned 
as follows: I : J = {r G R: rj C I}- (It is clear that I : J = R ii and only if 
J ÇL I\ a n d \l J (jL I, then / : / is an ideal of P which contains /.) 

(b) If I is an ideal of a ring R and i£ is a primary ideal of R which contains / , 
then K is called a minimal primary ideal of I if there does not exist a primary 
ideal JoiR such that I C J < K. 

If I is an absolutely convex ideal of C, we denote by /* the intersection of all the 
primary ideals containing / and by I# the set I# = {/ G C: |/ |1+1/w G I for all 
n £ N\. The next theorem shows that the ideals / : I1/2 and In are always 
intersections of primary ideals and provides descriptions of the ideals / • P / 2 , / , 
I*, and I1/2 which will be frequently used throughout the remainder of this paper. 

2.8. THEOREM. Let I be an absolutely convex ideal of C. Let {Qa: a G A} be the 
set of minimal primary ideals of I that are prime, {Pp\fP: fi G B} be the set of 
minimal primary ideals of I that are upper primary ideals, and {Py\f : y G T} be 
the set of minimal primary ideals of I that are lower primary ideals. Then: 

(a) i• i1/2 = (nQa)r\(n p„\f)n ( n P M ) . 
a £ A /3£B 7 € T ' 

(6) i=(ne.)n(nPj + i)n(nAy. 
(c) i* = ( n Qa) r\ ( n ^l'") n ( n P7 | ,T). 

«GA ^GB 7 € T 

(d) z» = ( n a ) n ( n P^I") n ( n pTr»). 
a € A )3GB T ^ r 

(e) i1/2 = ( n <2«) n ( n P/") n ( n P /* ) . 
a € A /36B 7 € T 

(0 i : i I , ' = ( n P j | * ) n ( n p ^ ) . 
/3€B 7 € T 

Proof. We will need the following fact several times: 

(*) Every primary ideal containing I contains a minimal primary ideal of / . 

Since the intersection of a chain of primary ideals of C is primary, this follows 
from a Zorn's Lemma argument. 

(a) This is easily verified by using Corollary 2.6 and (*). 
(b) C is clear. L e t / G C — I. If / is not in every minimal primary ideal of I, 

then / is not in the given intersection ; so assume that / is in every minimal 
primary ideal of / . Let K be an absolutely convex pseudoprime ideal that 
contains / but not / , and let P be a prime ideal contained in K. P\f is a minimal 
primary ideal of / . (Otherwise, by (*), P\f properly contains a minimal primary 
ideal of / ; but no primary ideal properly contained in P ^ contains/.) Therefore 
I + P appears in the given intersection. And since I + P C K,f g I + P. 

(c) This follows from (*). 
(d) First we note that for a lower primary ideal P\g of C, (P\g)

# = P\9: for, 
/ e P\g if and only if e i ther/ G P or P\f C P\\ if and only if e i ther / G P or 
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P\fC P\g, if and only if \f\1+1/n G P\g for all n G TV. It follows from this that 
if h is in the given intersection, then 

|fc|l+l/» Ç. J.p/2 C I 

for all n G N, so h G I# . For the reverse inclusion suppose t h a t / G 7#. Then / i s 
in every upper primary ideal that contains / : for, if \f \l+l/n Ç P\g for all n G N, 
then either) G P or P\f C P | ' ; hence either/ G P o r P | ' C P | ' , and s o / 6 P|*. 
Since clearly 

/ G n &, 
aÇA 

/ is in the given intersection. 
(e) C is clear. For the reverse inclusion let P be a prime ideal containing / . 

If P is a minimal primary ideal of I, then P appears in the given intersection. 
If P is not a minimal primary ideal of i", then P contains an ideal that appears 
in the given intersection. 

(f) First we record the following fact, which is routine to verify: if P is a 
prime ideal of C and / G M — P , where M is the maximal ideal containing P , 
then 

(**) P\f: Pf = P\f: Pf = P\f. 

Now set 

(n^)n (ni\l/7)-

J . Jl/2 C J . Jl/2 C 7 ) 

/ C / : P/2. 

For the reverse inclusion suppose that AG C — J. Then & G P/sl^ for some 
/3 G B (or & G P71 ̂  for some y G T in which case the proof is the same). By (**) 
there exists g G P/fl such that g ^ 0 and hg G P ^ - Choose/ G / — P^^such 
that / ^ 0. Since / G P / 0 - PPfpt P//3 = P / . Therefore g G P / , and so 
Pp(g) S Pp(f)1/k for some k G iV.Set* = g A/1/fc.SinceO ^ * ^/1 / f c ,0 ^ t* g / ; 
hence ^ G / , so / G P / 2 . Also, since P ^ ) = P^g) A P^{f)l,k = P^g) and 
*g G P ^ , we have A* G Pp\fP. Therefore ft* G / , and it follows that A G / : P / 2 . 

Applying Theorem 2.8 to the class of absolutely convex pseudoprime ideals 
we have: 

2.9. COROLLARY. If I is an absolutely convex pseudoprime ideal of C that is not 
prime, then I# = I : P/2 is an upper primary ideal, and I • P / 2 is the corresponding 
lower primary ideal. 

Proof: Since I is pseudoprime, / has a unique minimal primary ideal / ; and 
since I is not prime, it is easy to see that / is not prime and consequently is 

By (**), (a), and (e) 

and so 
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either an upper or a lower primary ideal. In either case the conclusion of the 
Corollary follows immediately from Theorem 2.8. 

We can now give a characterization of the absolutely convex pseudoprime 
ideals that are primary (equivalently, are intersections of primary ideals). 

2.10. COROLLARY. Let I be an absolutely convex pseudoprime ideal of C. I is 
primary if and only if either I = I : I1/2 or I = I - I1/2. 

Proof: Suppose that / is primary. If / is prime, then / = 71/2 and I = I2, so 
1 = 1- I1/2. If I is not prime, then 

I • I1'2 < I < I: I112 

is impossible by Corollary 2.9. Conversely, suppose that either 1 = 1: I112 or 
1 = 1- I112. If / is prime, then I is primary. If / is not prime, then I is primary 
by Corollary 2.9. 

We have seen that for any absolutely convex ideal I of C the ideals I • P / 2 , / # , 
and / : I1/2 are always intersections of primary ideals. Thus each of the conditions 
1 = 1- I112, I = /#, and 1 = 1: I1/2 is a sufficient condition for an absolutely 
convex ideal I to be an intersection of primary ideals. An obvious question arises: 
if I is an intersection of primary ideals, does I necessarily satisfy one of these 
conditions? If I is pseudoprime, then by Corollary 2.10, the answer is "yes"-
We show now that the answer in general, however, is "no". 

2.11. Example. Let TV* = N U {co} be the one point compactification of the 
discrete space Nof positive integers. We construct an ideal /of C(N*) such that I 
is an intersection of primary ideals, but 

/ • 71/2 < I < i* C / : 71/2. 

In our construction we will make use of free ultrafilters on N: an ultrafilter is a 
maximal filter, and an ultrafilter °lé is called free if for every n Ç N there exists 
U 6 & such that n i U. Every infinite subset of N belongs to 2C free ultrafilters 
on N [1, Section 9.3]. 

Let &p and °ttQ be free ultrafilters on N such that {n G N: n odd} G %p and 
{n £ N: n even} Ç <%Q. Set 

P = {fe C(N*):Z(f) - {œ} £ ^ P } , 
Q = {/ € C(N*): Z{f) - {co} e ®Q}. 

By [1,14G.3] P and Q are non-maximal prime ideals contained in Mw. Let j be the 
function j(n) = 1/nîorn G NJ(œ) = 0, and s e t / = P | , n Q | > . By Theorem 2.8, 
(PI,)* = P\\ m n = Q\\ TO * (P\j)m = ^ U and (G|0 • (<2|01/2 = G|,. Using 
these facts, the definition of /#, and Theorem 2.4(a), a straightforward computa
tion shows that i* = P\j C\ Q\j and / • /1/2 = P|,- Pi Ç|,, Now / is an inter
section of primary ideals, but we have j Ç In — I. And if / is defined by 
f(n) = 1/n for n even,/(») = 0 for n odd, and f(co) = 0, then / 6 P H 0|> C I; 
but /g G|„so/€ /-/1/2. 
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The next theorem, which gives a description of the square of an absolutely 
convex ideal, will be useful in obtaining a necessary condition for an absolutely 
convex ideal to be an intersection of primary ideals. 

2.12. THEOREM. Let I be an absolutely convex ideal of C. Then 

I2=\f£ C: \f\1/2 G I}. 

Proof. L e t / G P. Then 

n 

f = Z) gut 

for some gu ht G I and some n G N. Note that since gu ht G I, |g*| V \ht\ G I 
for all i. We have 

l/l1/2 =s (± \gt\ \ht\)
1!i 

z±\itnhtr 
i=i 

^È (kil v N)1/2 .(|g4 | v N) 1 / 2 

= E |g«l V \h(\ 6 /• 
i= l 

Therefore, |/ |1/2 G 7. Hence P C {/ G C: |/ |1/2 G / } . 
Conversely, let |/ |1/2 6 7. Then | / | = | / |1 / 2 | / |1 / 2 G I2, so it is sufficient to 

show that P is convex. Suppose that 0 ^ g ^ h, with & G I2. By the first part of 
the proof h1/2 = \h\1/2 G I. Therefore since 0 ^ g1/2 ^ h1/2, g1/2 G I, and so 
g = gmgm e p. 

2.13. COROLLARY. If I is an absolutely convex ideal of C, then P is an absolutely 
convex ideal of C. 

2.14. COROLLARY. If 

I = O /«, 

where the Ia are absolutely convex ideals of C, then 

i2 = n 42. 
a€A 

Now we give a necessary condition for an absolutely convex ideal to be an 
intersection of primary ideals. This theorem and Theorem 2.17 are examples of 
how Theorem 2.8 can be used to obtain information about the ideal theory of C. 

2.15. THEOREM. If an absolutely convex ideal I of C is an intersection of primary 
ideals, then!2 = / • ( / : I1/2). 
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Proof. First we show that if P is a prime ideal of C and a is a positive non-unit 
of C/P, then 

(*) P\a'P\a= (P|a)2-

Since P | a C P\a, (P|a)2 C P\a * P\a- For the reverse inclusion it is sufficient to 
show that if b € P | a andc G P|a,thenfo; Ç (P|a)2 . Now |6| g a1"1^ for all w G N, 
and |c| g aw/m for some w 6 iV, so |6c| ^ ai-i/(«H-Dai+iM = ^ I M W ) , Hence 
|6c|1/2 ^ a1+1/2m^+1), so |fo;|1/2 G P | a , and we have be G (P\a)

2-
To prove the theorem it is clearly sufficient to show that 

7 • (7 : 71/2) C P. 

Using the notation of Theorem 2.8 we have 

i = i* = ( n Qa) r\ ( n P*!*) n ( n PT|,J,! 
« € A 0 € B 7 € T ' 

and 

7:/1/2= ( n p ^ ) n ( n p ^ ) . 

By Corollary 2.14 

i 2 = ( n c j n ( n W ) 2 ) n (n (P7|,T)2). 
a € A (3ÇB T € T 

The inclusion 7 • (7 : 71/2) C 72 follows from these expressions and (*) above. 
We note that since 7* C 7# C 7 : 71/2 for any absolutely convex ideal 7 by 

Theorem 2.8, it follows from Theorem 2.15 that if 7 is an intersection of primary 
ideals, then 

72 = 7 • (7 : 71/2) = 7 • 7# = 7 • 7*. 

2.16. Definition. Let {Ja: a Ç A} be a collection of ideals of a ring. We shall 
say that the intersection of the collection {Ja: a £ A} is irredundant if for all 
0 Ç A we have 

a£A> a^jS 

If 7 is an absolutely convex ideal of C such that the intersection of all the 
minimal primary ideals of 7 is irredundant, then the condition 72 = 7 • (7: 71/2) of 
Theorem 2.15 turns out to be a sufficient condition for 7 to be an intersection of 
primary ideals. In fact, we have: 

2.17. THEOREM. Let I be an absolutely convex ideal of C such that the intersection 
of all the minimal primary ideals of I is irredundant. Then the following are 
equivalent: 

(a) 7 = 7*. 
(b) 72 = 7- ( 7 : 71/2). 
(c) 72 = 7 • 7#. 
(d) 72 = 7 • 7*. 
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2.18. LEMMA. If I is an absolutely convex ideal of C such that P\f < 7 < P\f, 
then P < I • P\f. 

Proof. We may assume t h a t / (? 7 and 0 ^ f S 1: for, otherwise choose any 
t £ P\f - I such t ha t 0 ^ t ^ 1 ; then P\f = P\t and P\f = P\\ so we may 
replace / by t. Now take h £ I — P\f such t h a t 0 ^ h ^ 1. Since / g P | r , 
h A / (? P |/, so by replacing h by h A / , we may assume tha t 0 ^ & rg / ^ 1. 
And since/372 G P | / , / 3 / 2 G 7; so by replacing h by ft V /3 /2 , we may assume t h a t 
0 S f3/2 S ft ^ / ^ 1. We define a function g as follows: 

g(x) = / 2 (x) / f t (x) if x g Z(ft); 

g(x) = 0 if x G Z(h). 

F o r x G Z(ft),0 ^ g(x) ^ / 1 / 2 ( x ) , so since Z(g) = Z(ft) = Z ( / ) , g is continuous. 
Now / 2 = hg, so since f $ I, hg & P by Theorem 2.12. Bu t for all n £ N, 
P ( / ) 2 = P{g)P(h) > P(g)P(fY+1/n, so P(fy~1/n > P{g) for all w G N . There
fore g Ç P | r , and we have ftg G 7 • P | r — J2. 

Proof of Theorem 2.17. By Theorems 2.15 and 2.8 the implications 
(a) => (b) => (c) =̂ > (d) hold for any absolutely convex ideal of C. T o complete 
the cycle, suppose t ha t I 9e 7* ; we will show tha t P j * I - 7*. L e t / G 7* — 7. 
Let / be an absolutely convex pseudoprime ideal t ha t contains 7 bu t n o t / , and 
let P be a prime ideal contained in J. If M is the maximal ideal t ha t contains P , 
t h e n / £ 1 7 s i n c e / i s in every pr imary ideal containing 7. S i n c e / G P | r — / a n d 
the convex ideals containing P form a c h a i n , / < P ^ , and so 7 + P < P\f. Also, 
1 (Z P\f ( s ince / is in every pr imary ideal containing 7), so 7 + P (2 -^l/- Since 
the sum of two absolutely convex ideals of C is absolutely convex [2, Proposi
tion 2.6], 7 + P is absolutely convex, so we must have P\f < 7 + P . By 
Lemma 2.18 there exists g G P\f, i G 7, and p £ P such t ha t 

g(* + £) g (7 + P ) 2 = 72 + P . 

Now P | f is a minimal pr imary ideal of 7 since 7 (J_ P\f. If P | r is the only minimal 
pr imary ideal of 7, then g G 7* = P\f, so tha t gi G 7* • 7 — 72, and we are done. 
If P\f is not the only minimal pr imary ideal of 7, let K be the intersection of all 
the other minimal pr imary ideals of 7. By hypothesis there exists ft G K — P\f. 
Since ft G P | ' , |P(g) | < \P(h)\. Now (X + P ) / P is absolutely convex, so since 
P(ft) £ (K + P)/P, we have P(g) G (J£ + P ) / P . Hence g = ft + p' for some 
ft G K and £ ' G P . Now ft + £ ' G P\f and £ ' G P C P\f, so ft G P | ' , and 
therefore ft G K C\ P\T = 7*. Finally, since 

(*+£')(* + £) =g(i + P) d P + P, 

ki $ 72, and we have 

ki G I* • 7 - 72. 

2.19. COROLLARY. L ^ 7 fre an absolutely convex ideal of C such that 7* is a finite 
intersection of primary ideals. Then the following are equivalent: 
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(a) I = 7*. 
(b) 72 = 7- ( 7 : 71/2). 
(c) P = I • 7*. 
(d) J2 = 7 • 7*. 

Proof. Clearly we can write 7* as a finite irredundant intersection of minimal 
primary ideals of 7, J* = J\ C\ . . . C\ Jn. By Theorem 2.17 it is sufficient to 
show that every minimal primary ideal of 7 appears in this expression. Let / be 
a minimal primary ideal of 7, and let P = J1/2. Since 7* C P and P is prime, 
we must have Jt C P for some i. If Jt = P, then J C Ju so J = Ju and we are 
done. If J = P , then Jt C J, so Jt = J, and we are done. We assume therefore 
that Ji < P and J < P. Let <2 be a prime ideal contained in / . Then P = Qfand 
Qf (1 J for some / . Now let Qf be a prime ideal contained in Jt. Since Jt < Qf, 
Q' < Qf, and so Qf C Ç/. Therefore Q' is contained in J also. Since the primary 
ideals containing a given prime ideal form a chain, either J (Z Ji or Jt C J, and 
in either case J = J^ 

We have characterized the absolutely convex pseudoprime ideals of C that 
are primary in Corollary 2.10. In view of Corollary 2.19 we can now say con
siderably more about such ideals. We have: 

2.20. COROLLARY. Let I be an absolutely convex pseudoprime ideal of C. Then 
the following are equivalent: 

(a) I is primary. 
(b) P = I-(I: 71/2). 
(c) 72 = 7 • 7#. 
(d) 72 = 7 • 7*. 

We have seen that the conditions 72 = 7 • (7 : 71/2), P = I - 7#, and 72 = 7 - 7 * 
are necessary conditions for an absolutely convex ideal 7 to be an intersection of 
primary ideals. And if the intersection of all the minimal primary ideals of 7 is 
irredundant, each of these conditions is a sufficient condition as well. It may seem 
reasonable to conjecture that at least one of these conditions is a sufficient condi
tion for an arbitrary absolutely convex ideal to be an intersection of primary 
ideals. Such a conjecture would be false, however; in the following example we 
show that even the strongest of these conditions, 72 = 7 • (7 : 71/2), does not in 
general imply that 7 is an intersection of primary ideals. 

2.21. Example. Let iV* = N ^J {co} be the one point compactification of the 
space N of positive integers. We will construct an absolutely convex ideal 7 of 
C(N*) such that 72 = 7 • (7 : 71/2), but 7 ^ 7*. In this construction we will use 
the points of ($N — N, where (IN is the Stone-Cech compactification of N, to 
index the set of all free ultrafilters on N: if a £ /3N — N, the unique free ultrafilter 
on N that converges to a in the topology of @N will be denoted by °tta, i.e., 

Wa= {SCN:a£ clfuS}. 

https://doi.org/10.4153/CJM-1972-043-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-043-8


PRIMARY IDEALS 517 

For each free ultrafilter °U'a on N, Pa will denote the set 

Pa= {/<= C(N*):Z(f) - jco} eWa\. 

By [1, 14G.3 ] each Pa is a non-maximal prime s-ideal of C(N*) contained in Ma, 
and every non-maximal prime s-ideal contained in M^ is of the form Pa for some 
unique a £ ftN — N. 

Now we construct our ideal / . We define a sequence, Un, of subsets of N as 
follows: 

Ui = N, 

Ui = {n £ N: n is odd} , 

tf8 = { 1 , 5 , 9 , . . . } , 

and in general, 

Uk = | 2 W ( » - 1) + 1 :» € # } • 

Since the intersection of a strictly decreasing sequence of open-and-closed 
subsets of /3N — N is never open in /3N — N [1, 6W.3] , there is a point 
y £ (3N - N such t ha t 

7 G H n c l ^ î / n — int^N-N[nn c\^NUn]. 

Let 
A = (0iV - N) r\ [Un cW(C/« - Un+i) ]. 

Let j be the function j(n) = 1/nîorn (E N,j(œ) = 0. For each positive integer fe 
we define a function/^ by 

h\Un - Un+1 =jl+1/n*,Ml) = 1, and /* (« ) = 0. 

We will denote by L the smallest absolutely convex ideal of C(N*) t h a t contains 
the set {fk: k £ N}. I t is easy to verify t h a t / 6 L if and only if | / | g .M/* for 
some positive constant M and some &. Finally, we set 

X € A 

I t is clear t ha t I is absolutely convex. We show first t ha t j (? I. Assume, on the 
contrary, t h a t j £ I. Then j £ i \ + £ , so there exists 17 G ^ 7 , a positive 
constant ikf, and a positive integer fe such t ha t j(x) S Mfk(x) for all x £ Z7. 
Since [/ € ^%, cl̂ jv Uisa, pN neighborhood of y. Since y (? i n t ^ - v [H » cl#v Î7» ], 
c W [ / n (fttf - TV) <£ On c W l / » . T h e r e f o r e c W C / n (0N - N) <£ c\mUmior 
some m, and it follows tha t U — Um is infinite. For all x £ £7 — £/TO, 
j (x) ^ .M/*(x) < ifj1+1/mA;(x), so j-(1/wA;)(x) < M for all * G U - Um. Since 
£7 — Z7m is infinite, this is clearly impossible. Hence j £ / . 

We next show t h a t j £ /*. Let Q be a pr imary ideal t ha t contains / . Note t h a t 
Q C TkTo,: for, s ince / i £ / a n d Z( / i ) = {co}, Afu is the only maximal ideal t h a t 
contains / . Let P be a minimal prime ideal contained in Q. By [1,14G.4 ] P = Pa 

for some a £ (3N — N. Uj £ Q, then QCPa U and so J C i\* | j . We show t h a t this 
is impossible. There are two possibilities for the point a: either a £ f | » clpNUni 
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or a ? rUclftv£/„. If a G C\nc\^NUn, then / i 6 / — Pa\}, so I (£. Pa\j. If 
a d Dn clpNUn, then a g clpNUm for some w. Define a function g as follows: 
g\N* - Um = j , g| £/m = / i . Since O g ^ j , 

And since 7 G clpNUmj g £ P7 + L, so g £ I. But since a G clpNUm, 
a G cl#v-CAf — [7m), and so Pa(g) = Pa(j). Hence g G P«|i, and we have 
I (jL Pa\v Since / C Pa\j is impossible in either case, j G Q. Since Ç is arbitrary, 
j £ I*. We have shown that I < I*. 

It remains for us to verify that 

P = I- (I: 71/2). 

Set 

J= n Px\j. 
X£A 

We showed above that for all a G /3N — N, I (£_ Pa\j- Thus the ideals 
P\\j, X G A, are minimal primary ideals of / . By Theorem 2.8, I : P/2 C / , so it 
is sufficient for us to show that J - I (Z I2. Now 

f = (py + L)2r\(n (PxlO2) 
X 6 A 

by Corollary 2.14. Clearly, 

. / • / e n (PxiO2, 
X < = A 

so we need only to verify that 

Let g G J and h £ I such that g ^ 0 and & ̂  0. (It is sufficient to deal with 
non-negative functions since all the ideals involved are absolutely convex.) Since 
AG Py + L, there exists U G ^ 7 , a positive constant M, and a positive integer & 
such that A(x) ^ Mfk(x) for all x G £/. For each w set 

G» = {x G Un - Un+1: g(x) ^?-™»*(x)}. 

Since 

g e nPx\\ 
X < E A 

Gn is finite for all n. Let F = TV — Un^n- Since Gn is finite for all n, 

cW(U )ri(pN-N) c n.ciflyt/.. 

Therefore since 7 (L intm-N[f\n c\^U„], y (t cl^CUnG,,), so we must have 
y € c\pNV. Hence 

y € c\mUC\ c\&NV = c W ( £ / r \ V). 
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For all x Ç U H V C\ {Un - Un+i) we have 

gh(x) ^jl-mn\x)Mjl+lln\x) = Mf+mnk(x). 
Thus 

(gh)1/2(x) S M1/2j1+mnk(x) 

for all x e U(^VC\ {Un - Un+i), so 

(gh)^(x) s Mi/y4k(x) 

for all x e Ur\ V - {1}. Since UC\ V - {1} G ^ 7 , 

(gA)1/a ^ , + i , 

and therefore gft G (P 7 + L)2. 
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