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Introduction. Let G be a compact, simply-connected Lie group. The cohomology of
the loop space HG has been described by Bott, both in terms of a cell decomposition [1]
and certain homogeneous spaces called generating varieties [2]. It is possible to view fiG
as an infinite dimensional "Grassmannian" associated to an appropriate infinite dimen-
sional group, cf. [3], [7]. From this point of view the above cell-decomposition of Bott
arises from a Bruhat decomposition of the associated group. We choose a generator
H e H2(QG, Z) and call it the hyperplane class. For a finite-dimensional Grassmannian the
highest power of H carries geometric information about the variety, namely, its degree.
An analogous question for ilG is: What is the largest integer Nk = Nk(G) which divides

Of course, if G = SU(2) = S3, one knows Nk = h!. In general, the deviation of Nk from
k! measures the failure of H to generate a divided polynomial algebra in H*(£IG, Z).

One approach to the above question is to find a general formula for multiplying H by
an arbitrary Bott class in terms of the Bott basis arising from the cell decomposition. This
is an analogue of the classical Pieri formula in a Grassmannian and will be described
elsewhere.

In fact, the numbers Nk can be computed more efficiently using the generating variety
approach. If we interpret the problem mod p, we are led to finding the smallest integer r
such that 0 = H"' in H2p'(fiG,Z/p). A result of Hubbuck [6] allows one to glue together
this p-primary information so as to answer the original problem. We compute the
numbers Nk(G) explicitly for all classical G and G2. Further computation with the
exceptional groups provides an easy alternative proof of the Serre-Kumpel theorem on
the regular primes of groups G ̂  Es.

It is a pleasure to thank J. Hubbuck, L. Smith and R. Switzer for helpful conversa-
tions concerning this problem.

1. Classical groups. Suppose that G is a compact, simply-connected Lie group of
rank n with exponents m ^ . . .^mn. In particular the dimensions of the exterior algebra
generators of H*{G, Q) are 2mf + 1, 1 =s i =£ n. Recall that p is a torsion prime for G if
H*(G, Z) contains p-torsion.

We begin with the following lemma which expresses the basic relation between
powers of the hyperplane class H in G and the Steenrod algebra action in G.

LEMMA 1.1. If p is not a torsion prime and p' is not an exponent for G, then Hp' = 0 in
H*(ilG,Z/p).

t Partially supported by the Alexander von Humboldt Stiftung.
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Proof. There is a commutative diagram in Z/p-cohomology:

H2((IG) -^* H2p'(ClG)

-I I-
H3(G) -j* H2p'+1(G)

where 9> = &"' '•...• 0*" • 0*1 and a' is cohomology suspension. Since p is not a torsion
prime, the indecomposables x2m,+i of H*(G, Z/p) lie in dimensions 2mj + l, l=si=£n.
Hence if p r ^ m,, 0*(x3) is indecomposable. But cr' kills indecomposables and cr'(x3) = H, so
Hp' = 0.

REMARK 1.2. If p is a non-torsion prime for G, then apart from the cases (Sp(n), 2)
and (G2, 3), pr is not an exponent for G if and only if pr > mn. (See Table at the end of
this section.)

REMARK 1.3. Bott [1] showed the following are equivalent:
(i) TT4(G) = Z/2,
(ii) 2 is neither a torsion prime nor an exponent prime for G,

(in) H2 = 0 in H*(Q,G, Z/2),
(iv) G = Sp(n) for some n^l.

REMARK 1.4. For the torsionless groups SU(n + l), Sp(n) there is another way to see
that H" = 0, p > mn, which is of interest in its own right. We observe:

n +1), Z) = 21a,, a2,

n), Z) = Z[cr,, cr2,. . .]

where the o-j's can be viewed as elementary symmetric power series and the t/fj's as the
corresponding Newton polynomials. One recalls that <|fp=cr? (mod p) and H = <rl, so the
result follows.

We now examine the classical groups, family by family, to show that H"' is non-zero
essentially when it is allowed by (1.1). We exploit Bott's construction of generating
varieties G/P-»nG[2] .

PROPOSITION 1.5. In H*(Q, SU(n +1), Z/p), H"' = 0 if and only if pr > mn = n.

Proof. The generating variety is g :CP" ->nSU(n + l). (This is the adjoint of the
well-known map 2CP" -»SU(n + l).) Since g*(H) generates H2(CP",Z/p), Hp'^0 if
p r ^n . The other direction is from (1.1).

PROPOSITION 1.6. In H* (H Spin(2n +1), Z/p), p > 3, Hpr = 0 if and only if pr > mn =
2 n - l . Ifp = 2, H2' = 0 if and only if T^n.

Proof. The generating variety is g : Q2n-i —»H Spin(2n +1), where Q2n-\ is the
quadric hypersurface in CP2". Recall that

H*(Q2n-i,Z)=Z[x, y]/(x"+1-2y, y2)
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where x€fT2(O2n_i,2) and y eH"(Q2n_i,Z) and g*(H) = x. In particular, if p is odd:
H*(Q2n-,,Z/p) = H*(CP2tl~\ Z/p), so that H p > 0 if p r =s2n- l . This proves the first
assertion. If p = 2, x'V 0, i < n. Hence H2' f 0, if 2r < n. It remains to show H2' = 0 if
2r 2= n. We consider the following commutative diagram (with Z/2 coefficients suppressed):

in(2n +1)) - ^ » H2"'(il Spin(2n +1))

-1 V
H3(Spin(2n +1)) * H2"'+1(Spin(2n + l))

H4(B Spin(2n +1)) — * H2'+1+2(B Spin(2n +1))
Sci

where Sq = Sq2' • . . . • Sq4 • Sq2. Using the Wu formula one can compute that Sq(w4) =
w2r+1 2 modulo decomposables. Since H*{B Spin(2n +1), Z/2) = Z/2[w3, vv4,..., w2n+1],
Sq(w4) is decomposable if 2r+1 + 2>2n + l, i.e. 2rs=n. Hence the result follows.

PROPOSITION 1.7. In H*(tlSp(n),llp), p>2, Hp' = 0 if and only if pr>mn = 2n-l.
Ifp = 2,H2 = 0.

Proof. The last line follows from either (1.1) or (1.4). If p is an odd prime, we can
simply quote the p-equivalence nSp(n)~fiSO(2n + l) of Harris [4] and (1.6) above.

PROPOSITION 1.8. In H*(fl Spin(2n), Z/p), p>2 , H"' = 0 if and only if pr>mn =
2 n - 3 . If p = 2, H2' = 0 if and only if 2rs=n.

Proof. As in (1.6), there is a generating variety Q2n_2—»fiSpin(2n). The integral
cohomology of an even-dimensional quadric possesses, at least, a 2-dimensional
generator e satisfying ek is a generator of H2lc(Q2n_2), k<n. In particular, H p ' ^ 0 if
p r j s 2 n - 2 . This proves the first assertion and the second follows as in (1.6).

We now recall the following lemma from Hubbuck [6] which essentially allows us to
globalize the above p-primary information.

LEMMA 1.9 (Hubbuck). Suppose X has no p-torsion. If x eFfiX, Z) and xp = py, then
there is a z e Hp2i(X, Z) such that y" = pz. Hence

xv< _ -(p'-D/Cp-Dy

forsomeveHpli(X,2).

We also have the following easy arithmetic fact.

LEMMA 1.10. (i) If <rp(k) denotes the sum of the coefficients in the p-adic expansion of
k and vp denotes p-adic valuation, then

Sf
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The numbers Nk(G), defined in the introduction, will be described using the
following function:

p,fc) = « P | ,1OBp(m)i'J

where [x] is the greatest integer ^x . Observe that if p>m then Fm(p, k) = up(k!). It is
now possible to combine (1.5) to (1.10), using elementary arguments with cup products
and the comultiplication in cohomology induced from the loop multiplication to obtain:

THEOREM 1.11. If Nk(G) denotes the largest integer which divides Hk &H2k{£lG, 2),
then the p-adic valuations of these numbers for the classical groups are given by:

(i) UpNfc(SU(n + l)) = Fn(p,k).
n_2(p, k) if p>2 ,

\U) Vy . K V « K . . . V . . / / | j_, /_ ,_\ -r _ 2

lFi(p,k) if p = 2.

We can use the following arithmetic result to simplify the statement of this result in
low rank cases.

LEMMA 1.12. uP(k!)-up([k/p]!) = [k/p].

Proof. Let fc = ap + j , 0=£/<p. Then by (1.10)

Up(k!)-Up([k/p]!) = ^ [ k - C T p ( k ) - ( a - a p ( a ) ) ]

p - 1

1

Since H*(HSU(2),Z) is a divided power algebra, Nfc(SU(2)) = k!, for all k. For the
rank 2 groups we have

COROLLARY 1.13.

(i) NkSU(3) = k!2-Ck/2].
(ii) NfcSp(2) = k!3-[k/3:l.

(iii) NkG2 = k!2-[k/2]5-[k/5].

Proof, (i) and (ii) follow from (1.11), (1.12) and (iii) is done in the next section.
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TABLE 1

Group

SU(n + l)
Spin(2n +1)

Sp(n)

Spin(2n)

E7

Ga

Exponents

1,2, ...,n

1,4,5,1, 8,11 '
1,5,7,9,11,13,17
1,5,7,11
1,5

Torsion

0
2

0

2
2, 3
2, 3
2, 3

2

Generating variety V

CP"
Q2,,-,

Sp(n)/U(n)

Q2--2

Q5

din^ V

n
2 n - lm
2n-2

16
27
15
5

2. Exceptional groups. The generating variety for the exceptional group G2 is the
5-dimensional quadric QS^>£IG2. The cohomology of Q5 (as in (1.6) above) contains a
2-dimensional generator x with x2 a generator and x3 divisible by 2. Hence we obtain:

PROPOSITION 2.1. In H*(flG2, lip), p > 2, H"' = 0 if and only if pr is not an exponent,
i.e. p'± 5. / / p = 2, H2 ^ 0 and H4 = 0.

Proof. For the first assertion, it suffices to show H 5 ^ 0 . This follows from the fact
that x5 j= 0, for odd primes. Similarly, H2 f 0. The last assertion follows from the existence
of a fibration

which induces the following diagram in Z/2-cohomology:

H3(Spin(7)) - ^ H3(G2)

i h
H9(Spin(7)) —T+ H9(G-;d

where Sq = Sq4Sq2. Hence by the argument in (1.6), Sq(x3) = 0 on the left-hand side,
therefore also on the right. Hence H4 = 0 in H*(ilG2) by the usual argument with a'.
This also completes the proof of (1.13).

PROPOSITION 2.2. In H*(nE6, 1/p), p>3 , Hpr = 0 if and only if p r >m 6 = 11. 1/

Proof. For the first assertion it suffices to show H"^ 0 in H*(£IE6, lip) for p = 5, 7,
11. There is a generating map E6/SO(10) -*• flE6. So we need only check our assertions in
this homogeneous space. This follows from the following picture of the Schubert cell-
decomposition of E6/SO(10). The numbers attached to the cells give the coefficients of the
pullback of powers of H in the Schubert basis (see [8], [5]).
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Figure 1
Eg/SOdO)

PROPOSITION 2.3. In H*(CLE7, Z/p) p > 3, H"r = 0 if and only if pr > m7 = 17. 1/ p = 2,

. The generating map is E7/E6 -^ O,E7. As in (2.2) the result follows from the
picture.

REMARK 2.4. If p = 2 in (2.3) and (2.2), in fact, one knows H 1 6 ^ 0 [9].

PROPOSITION 2.5. In H*(Q,F4, lip), p > 3, Hpr = 0 if and only if pr 3= m4 = 11. / / p = 2,
O. Ifp = 3,H3±0.

Proof. The minimal generating variety for HF4 is F4/Sp(3) —* ClF4. The corresponding
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Figure 2
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cell-decomposition of the homogeneous space is described by:

1056'

Figure 3
F4/Sp(3)

The coefficients in this example are more difficult to compute as multiplication by H
produces multiplicities. These numbers are computed using the generalized Pieri formula
[5, p. 151] and appear as edge labels. The assertions are now easy to check.

We record here a geometric consequence of the three propositions above. (The
second one corrects a mis-count in [5, p. 179].) Recall that the degree of a projective
variety can be computed from the top power of a hyperplane class.

PROPOSITION 2.6. The degrees of the generating varieties are given by:

degE6/SO(10) = 78,

deg E7/E6 =13110,

deg F4/Sp(3) = 9984.
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Finally we obtain

COROLLARY 2.7. If G is a compact, simply-connected Lie group ̂  Es and p =£ mn, then
p is not a regular prime for G, i.e. the p-localization of G is not a product of mod p spheres.

Proof. If p is a torsion prime the result is clear. For all other primes ^mn, we have
shown H"'j=0 in H*(D,G,2/p). It now follows from the diagram in (1.1) that G has a
non-trivial Steenrod reduced power in its mod p cohomology. Hence the claim follows.
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