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Abstract
In this paper, we propose a sparse point-plane odometry used in structured environments. Compared to a point-based
odometry, we add additional planar constraints into the process of optimization, making the results more reliable.
A novel grid-based plane detection algorithm is proposed to cluster sparse points in the same planes. Then, the
planes are parameterized by inverse normal and take part in the windowed optimization. By reducing the size of
Hessian Matrix, the process of optimization converges faster. Compared to the original point-based odometry, the
proposed method performs better on both robustness and efficiency in structured environments.

1. Introduction
Odometry is a fundamental building block to estimate the sequential changes of sensor poses over time
using sensors [1]. With the rapid development of computer vision, visual odometry (VO) [2, 3], and
visual simultaneous localization and mapping (v-SLAM) [2] have been one of the most active research
fields and can be found in many emerging technologies like autonomous car, unmanned aerial vehicle,
and augmented reality.

While the mainstream frameworks of VO like Parallel Tracking and Mapping [4], ORB-SLAM
[5], and Direct Sparse Odometry (DSO) [6], use point parameterization due to its high flexibility,
higher-level entities like plane have also been actively exploited in many studies. Due to its rich
geometric information even in low-texture regions, planar SLAM has shown better performance in
some challenging situations [7, 8, 9]. As planes may not provide enough constraints sometimes, points
are usually used together with planes [10]. However, most of them are based on range sensors and
aim to provide dense maps with regular planes. Instead, this paper focuses on the monocular case of
point-plane odometry in structured environments.

Our work is based on DSO, which is one of the state-of-the-art direct monocular odometries.
Compared to a feature-based odometry, direct odometry provides denser points, which benefits the
detection of planes. We will try to detect planes whenever new points are activated at the first time
for a new keyframe. As a direct odometry, accurate observations have an important impact on the sub-
sequent optimization. As for optimization, we build a joint photometric error model for both points and
planes, which is optimized later using Gauss-Newton method. Note that geometric error of planes is not
considered here, unlike in many dense methods [8, 9].

This paper extends DSO to a sparse point-plane odometry (SPPO), enhancing its accuracy and
efficiency in structured environments, which will be called as SPPO in the later sections. The main
contributions of this paper are as follows:
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• Integrate planes with monocular point-based VO.
• Effective plane detection from monocular image sequences.
• Our method improves the efficiency of optimization.

The rest of the paper is organized as follows. Section 2 reviews related works about planar-based SLAM.
Methods of plane detection are also introduced in this section. In Section 3, we will show some pre-
liminaries at first, including the annotation of this paper and a brief introduction of DSO. Then, the
point-planar odometry model is put forward in Section 4. We will show how to integrate the param-
eters of plane with point-based optimization here. Section 5 proposes an effective method of plane
detection. Section 6 compares the proposed algorithm with DSO, showing our superiority in structured
environments. The whole work is concluded in Section 7.

2. Related Work
In this section, we review some related works about planar SLAM, from plane detection, plane parame-
terization, to optimization with planar constrains. Traditional point-based methods will not be described
here.

2.1. Plane detection
Plane detection has been widely studied in recent decades and has been applied in many computer vision
fields, such as occlusion detection [11] and human pose estimation [12]. Typically, we can find that
Hough Transform, Random Sample Consensus (RANSAC) [13], and region-growing-based methods
are usually used for plane detection.

For depth images, Vera et al. [14] proposed a real-time technique for plane detection with an efficient
Hough transform voting scheme, which has asymptotic time complexity of O(N). Quadtree was used to
identify clusters. Instead, Taguchi et al. [10] used multi-stage RANSAC to extract plane primitives from
the 3D point cloud, which is more flexible but has higher time complexity when too many outliers exist.
Xiao et al. [15] proposed a grid-based region-growing algorithm, as they noticed that if a point cloud
was divided into small grids in structured environments, most of them were in a planar shape. Feng
et al. [16] constructed a graph for depth image and performed an agglomerative hierarchical clustering
algorithm to merge nodes, which has been shown effective in CPA-SLAM [8].

For stereo images, Piazzi et al. [17] showed that three corresponding noncollinear points are enough
to compute the normal vector when the two cameras are aligned to the same orientation. They used
Delaunay triangulation to group feature points and then detected coplanar triangles using a seed-growing
strategy. Similar idea was adopted in ref. [18], where Aires et al. used affine homography to represent a
plane and compute reprojection errors to validate a plane.

2.2. Plane parameterization
There are lots of ways for plane parameterization. The Hesse notation is one of the most general
models that represents a plane [19], using normal n and distance d. However, the Hesse model is over-
parametrized, which may lead to a rank-deficient information matrix, causing a Gauss-Newton solver to
fail [20]. An alternative solution is using Spherical coordinates, that is, (α, β, d), as a minimal represen-
tation, but there are singularities that will also disturb optimization. An intermediate parameterization
is to divide normal by distance [21], which removes one degree of freedom (DoF). If distance is always
far from zero, it is safe to update in the optimization.

Kaess proposed to represent a plane by using unit quaternions [20], which is a minimal representation
for plane without any singularities. The only problem is that it is not intuitive, that is, the geometric
meaning is not clear. In ref. [22], Geneva et al. used the Closest Point to represent a plane and also
formulated a simple additive error model when updating the parameters during optimization. It is also
singularity free when the value of distance does not equal to zero.
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2.3. Optimization with planes
Similar to the case of point-to-point correspondences, a naive idea for planar SLAM is to minimize the
distances between the associated plane pairs, which can be solved by decoupling the rotation and transla-
tion components [10]. However, the direct model suffers from depth noise and inaccurate plane fitting.
Another more common strategy is to minimize the distance between the point and its corresponding
plane [8, 9]. CPA-SLAM [8] used points and a global plane model to optimize the system, which aimed
to reduce both photometric residuals and geometric residuals. The geometric residual came from the
point-plane distances mentioned above and the point-point distances.

Instead of using range sensors, Pop-up SLAM [23] is a monocular point-plane odometry, which
extracts semantic planar information through CNN ground segmentation and gets normal vectors from
it. The planar information was used to enhance depth and implement a planar alignment. However,
Pop-up SLAM uses quaternion to represent planes, which does not have a clear geometric meaning.

3. Preliminaries
3.1. Notation
We denote a 3D point by p and its corresponding pixel by u. The projection between them is u = �(p),
thus p = �−1(u, ρ) representing the reprojection process while ρ is the inverse depth. K represents the
intrinsic matrix of the camera. The plane parameterization is denoted as n, a minimal representation
of plane described in Section 4. � ∈ R2 represents a 2D continuous domain, and �n is considered as a
planar region.

Camera pose is denoted by transformation matrix T ∈ SE(3), that is, Tcw transforms a point from
the world coordinate to the camera coordinate, and Twc the opposite. The pose update is represented
by Lie-algebra elements ξ ∈ se(3) with a left-multiplicative formulation. Similar to most papers, bold
lower-case letters represent vectors while bold upper-case letters represent matrices in this paper.

3.2. DSO
As our work is mainly based on DSO, it is necessary to briefly introduce the framework of DSO at first.
DSO optimizes photometric errors in a sliding window [6], and the energy function for a single residual
is defined as:

Euj :=
∑

u∈N (u)

wu

∥∥∥∥(Ij[u′] − bj) − tjeaj

tieai
(Ii[u] − bi)

∥∥∥∥
γ

, (1)

u′ = �(T�−1(u, ρ)), (2)

where I denotes an image, t is the exposure time, a, b are the affine brightness parameters, w means the
weight of each point, ‖ · ‖γ represents the Huber norm, and N (u) is the set of neighbors of pixel u with
a specific pattern. Eq. (1) defines the cost of an observation that point p in the j th keyframe projected
into the i th keyframe.

The optimization is implemented whenever a new keyframe is inserted into the sliding window, using
a Gaussian-Newton method. After optimization, an additional Hessian Matrix is processed to keep all
constraints from marginalized frames and points. For other frames, they are used to help all immature
points to converge, using a simple idepth filter.

4. Point-plane Odometry
4.1. Limitation of point
DSO extracts point candidates in the regions with enough gradient and regards one point as the inter-
section of the source pixel’s ray and the object. So only one parameter, that is, inverse depth, is used to
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Figure 1. Approxiamtation error using a residual pattern in different situations. We can find that there
is a certain deviation between the actual depth (bold red line) and the approximation (bold black line).
The two triangles represent the camera poses at different times.

represent the point. In the optimization process, residual pattern is used to enhance the differentiation of a
single pixel, considering the trade off between computation and providing sufficient information. Several
nearby pixels share the inverse depth of the middle pixel, which implies the fronto-parallel assumption
that the surface of object is assumed to be parallel to the camera. Obviously, this assumption is just an
approximation in the real world, which may fail to hold slanted surfaces, as Fig. 1 shows.

As the inverse depth only tells us where the point is, information about the orientation is not included.
Therefore, the approximation error is unenviable in a point-based odometry. Instead, if the normal vector
of the surface is known, the deviation can be reduced to zero theoretically. By providing useful informa-
tion about the normal vectors of all detected planes, the final energy function is much easier to converge,
especially in structured environments where large numbers of planar patches can be found.

4.2. Plane parameterization
The most intuitive representation of plane is Hesse notation, that is,

nT
0 p − d = 0, (3)

where n0 represents the unit normal vector of the plane and d is the distance from the camera to the
plane.

The parameterization [n0, d] is not a minimal representation, which has four variables while the DoF
of plane is just three. Similar to [20], we remove one DoF by forcing the distance term to 1:

nTp − 1 = 0, (4)

where the plane parameterization n = n0/d becomes a minimal representation. Note that when d = 0,
there is also singularity. To avoid this, we will not build a global planar model similar to ref. [8]. Instead,
we only represent a plane in the camera coordinate. A plane with d approximating zero in the camera
coordinates indicates that the plane passes through the camera center, which means it will be projected as
a line (i.e., not detected as a plane). The plane will not be observed, thus avoiding from being added into
the final optimization process. Local planar patches may not provide long-time consistent constraints as
those of global planar models, but have much higher flexibility and adaptability.

The geometric meaning of this parameterization is also clear: the norm of n is the inverse distance
from the origin point to the plane, while its direction represents the normal. So n is also called as inverse
normal in this paper, which is illustrated in Fig. 2.
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Figure 2. Illustration of inverse normal.

Figure 3. Illustration of inverse normal.

From the pinhole imaging model,

p = ρ−1K−1u, (5)

and Eq. (4), we can get the relation between inverse depth and inverse normal:

ρ = (K−1u)Tn, (6)

We use p = �(u, n) to represent this transformation.
The partial derivative of the inverse depth about the inverse normal can also be derived easily:

∂ρ

∂n
= (K−1u)T . (7)

Then, we can get the Jacobin matrix about inverse normal through the chain rule ∂f
∂n = ∂f

∂ρ

∂ρ

∂n directly,
based on the existing Jacobin matrix from DSO. Here, f is the residual of all observations.

4.3. Model
We formulate the whole optimization problem with planes in this section, which is illustrated in Fig. 3.
Compared to DSO, our point-plane system add additional planar constraints into the optimization.
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Figure 4. Factor graph of the point-plane odometry model. Here we show three keyframes with three
points and one plane. Each factor term depends on the host frame (blue), target frame (red), and the
point’s inverse depth or the plane’s inverse normal (black). The lines about planes are all bold.

Suppose that we have got some planar patches in the local window with a set of keyframes F , the
full target function is given by

E :=
∑
i∈F

(∑
u∈Pi

∑
j∈obs(u)

Euj +
∑
n∈Ni

∑
j∈obs(n)

Enj

)
, (8)

where Pi represents all points in the i th keyframe except those in the planar regions, Ni is the set of
all available planes, obs(x) returns all observations of target x over all frames in the window, and Enj

defines the cost energy of a planar patch n observed from another view j, that is,

Enj :=
∑
u∈�n

wu

∥∥∥∥(Ij[u′] − bj) − tjeaj

tieai
(Ii[u] − bi)

∥∥∥∥
γ

, (9)

u′ = �(T�(u, n)), (10)

where �n is a region regarded as a plane, the extraction of which is discussed in next sections.
From Eqs. (8)–(9), we can find that only photometric residuals are used in our model. Geometric

residuals are not adopted here. This is because that as we extract planar information from a monocular
sparse odometry, the contours of planes are not clear; that is, it is difficult to judge if a projection pixel
belongs to the plane. What’s more, the normal vectors are not as reliable as that from dense sensors.
Inaccurate geometric constraints may destroy the stability of the system. Instead, photometric errors
accumulated from single points are more flexible. A sudden increase of errors will be considered as a
outlier or in bad conditions like being obscured and then be omitted in this time.

Another advantage is that no planar data association is needed in this way. Planar features are not
distinguished as those of points. Some works like refs. [7] and [9] used exhaustive searches over all
candidates using intuitive metrics like the differences of normal vectors and distances, overlaps, and
projection errors. However, these intuitive metrics are not appropriate for our small planar patches.
With a direct photometric optimization, we avoid from finding tedious data association among planar
patches.

The factor graph of the whole model is shown in Fig. 4. We can find that with the help of inverse
normal, large numbers of variables about inverse depth can be reduced to only one variable, inverse
normal, thus simplifying the graph. For example, without n1, there are hundreds of inverse depth ρ that
should be added into the factor graph. The simplification utilizes the important prior information, that
is, points in a same plane shares common parameters. Therefore, the number of final variables to be
optimized is significantly less than that of DSO.
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4.4. Optimization
The Gauss-Newton method is applied to optimize all variables in the sliding window. The variable x
to be optimized consists of the increments of the camera intrinsic parameters c, camera poses T, light
affine parameters a, b, inverse depth ρ of all active points, and inverse normals n of all active planes.
Suppose that there are k frames, l points, and m planes in the current window. Then the state variable

x =
[

δcT , (ξ T
1 , δa1, δb1), · · · , (ξ T

k , δak, δbk)︸ ︷︷ ︸
xα

, δρ1, · · · , δρl, δnT
1 , · · · , δnT

m︸ ︷︷ ︸
xβ

]T

, (11)

can be computed through the linear equation

JTWJx = −JTWr, (12)

where J is the Jacobin matrix of the photometric residual r about the variable x, and W is the weight
matrix set intuitively. By using the Schur complement, the part xα can be derived firstly and then be
used to compute δρ and δn, respectively. Though the dimension of xβ is much larger than that of xα,
the computation is fast due to the sparsity of the Hessian matrix. What’s more, the adoption of inverse
normal further reduces the dimension of xβ . One important thing to note is that each plane patch must
include enough active points to avoid from rank-deficient information matrix.

The marginalization of planes follows the strategy of that of points. One difference is that the planes
stay longer, as the projections of planar residuals cover a much larger area.

5. Grid-Based Plane Detection
In this section, we propose an effective plane detection algorithm for sparse monocular odometry, which
is shown in Fig. 5. As mentioned before, it is impracticable to extract accurate planes with clear bound-
aries without dense depth map. Therefore, we just try to cluster points belonging to the same plane and
generate plane patches simply consisting of sparse points. As a result, the detected planes may not be real
actually, that is, a virtual plane consisting of real points can also be detected. But it does not influence
the process of optimization.

DSO extracts immature points for each frame when added into the set of keyframes in the sliding
window and activates them the next time a keyframe is built. Our process of plane detection starts when
immature points in a keyframe are activated at the first time. From Fig. 5, we can see that a M × N grid
is used to divide all points at first. The idea comes from [15], that for a structured environment, if the
points are divided into small grids, most of them should be in a planar region. So, our target is to find
such planar regions through the grids. A 3 × 3 patch with six or less valid points will probably cause a
problem to the plane detection criteria, and testing whether such patches are degenerated will increase
the computational complexity [15]. To guarantee rich information and avoid from high computational
complexity, we only detect grids with enough points. We also set a relatively strict criteria of the plane
features we use, including planar region judgment and plane merging, as is described in the following
algorithm.

The covariance matrices of points in each grid are computed, which are used to get eigenvalues and
eigenvectors. As is known to all, the eigenvalues describe the distribution of a point cloud. Suppose the
eigenvalues of a covariance matrix are sorted in ascending, that is, λ1 < λ2 < λ3, with corresponding
eigenvectors v1, v2, v3. For a plane, λ1 must be a small quantity, while for a line, both λ1 and λ2 are small
quantities. So, we judge a plane by checking if

k1λ1 < λ2, k2λ2 > λ3, (13)

both hold at the same time, where k1, k2 are two constants, set as 1000 and 10 respectively in this paper.
After a new plane patch is built, we will try to merge it with nearby patches if exist. As we check all

grids from top left to bottom right, we only test left and upper grids. Then, two planes are merged if their
inverse normal are close, that is, the cosine value cos < n1, n2 > is larger than a threshold (0.99 here)
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Figure 5. Grid-based plane detection algorithm.

and the distance between two patches |||n1||−1 − ||n2||−1| is smaller than a threshold (0.01 here). After
the process, we update the inverse normal for all merged planes and then try to cluster scattered points.
To avoid from bringing too many outliers, we only test grids next to the planar regions. The criterion
depends on the distance from the point to the plane. Two examples are illustrated in Fig. 6. We can find
that points detected really belong to planes. Normally about 0 to 4 planes can be detected though this
way in a keyframe, based on the density and quality of points. As is shown in Fig 6, some grids with
apparent planar regions are not detected as our planar features. When no plane is detected, our SPPO
degenerates to DSO and it is acceptable.

6. Experimental Results
In this section, we will illustrate the results of the proposed SPPO in different scenes and compare them
with those of DSO. We use the default parameters of DSO, and the common ones are also not changed
in SPPO. Some distinctive parameters in SPPO have been shown when they were firstly introduced. For
most of them, the experimental results are insensitive, as long as they are not too singular. More details
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Figure 6. Two examples of plane detection from sparse points. Black points represent candidate points
in the current frame (inverse depth is known) and gold points represent those detected belonging to
planar regions. The black grids are set to divide all points while grids with other colors are the final
remaining grids.

about the parameter settings can be referred to our open-source code: https://github.com/kidlin/sppo. All
experiments run on a 3.7 GHz Intel machine with 16 GB memories. When comparing running times,
the two methods run one by one to ensure that each project has sufficient CPU resources.

We use the TUM monoVO dataset [24] to evaluate our method, which consists of 50 photometrically
calibrated sequences, including both indoor and outdoor scenes. Therefore, a lot of structured environ-
ments can be found here, although some natural scenes like grassland and forest also exist. As only
loop-closure ground truth are provided, we use the alignment error ealign [24] to evaluate the methods,
that is,

ealign :=
√√√√ 1

N

N∑
i=1

∥∥Tgt
s pi − Tgt

e pi

∥∥2

2
, (14)

where N is the number of all available poses, p is the translational part of the pose, and two relative
transformations

Tgt
s := arg min

T∈Sim(3)

∑
i∈S

(Tpi − p̂i)
2, (15)

Tgt
e := arg min

T∈Sim(3)

∑
i∈E

(Tpi − p̂i)
2, (16)

where S and E are the sets of associated poses in the start segments and end segments respectively.

6.1. Quantitative comparison
Figure 7(a) illustrates the alignment errors for both DSO and SPPO on the full TUM monoVO dataset.
Generally speaking, the error distributions of the two are similar, while SPPO seems a little more robust
on some sequences. This is clearer in Fig. 7(b), where we show the median values of each runs. From
Fig. 7(b) we can find that in some scenes like Sequence 36, our SPPO performs much better. This is
due to the fact that our approach utilizes more priori knowledge, that is, planar constraints in a small
region, to help the optimization of the system. However, we can also find that in some sequences our
approach does not even perform as well as DSO, which is due to the fact that natural environments are
also included in some sequences.
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Figure 7. Results of the full TUM monoVO dataset. (a) Colorbar representation of all runs. Each
sequence is implemented 10 times for both DSO and SPPO, which corresponds to the horizontal axis.
And the vertical axis shows the index of sequences. (b) Median values of 10 runs for each run. The mean
error of DSO is 1.274 while for SPPO it is 1.222.
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Figure 8. Running time of each sequences. We adopt the median value of 5 runs to avoid from stochastic
factors. Here we do not force real-time for both two methods, and multi-threads are also opened. And
the size of all rectified images is 640x480.

Due to proper planar constraints, our SPPO runs faster than DSO, which is shown in Fig. 8. The
mean running time of DSO is 33.2 ms while for SPPO, it is 25.3 ms. What’s more, in most sequences
our approach is about 20% faster than DSO. The improvement is pretty important for some hardware-
limited applications like mobile robots. The high efficiency mainly comes from three factors: (1) our
efficient plane detection algorithm gives almost no pressure on the computing sources; (2) the introduc-
tion of planar constraints helps to reduce the size of the Hessian Matrix in the optimization, avoiding
from unnecessary updates of points; (3) the planar constraints accelerates the convergence of the
optimization.

6.2. Discuss
Plane detection is a key step in the proposed point-plane odometry. Our grid-based plane detection algo-
rithm performs well in most scenes, except some natural environments like lawn. The TUM monoVO
dataset provides some outdoor scenes including lawn, forest, and so on. Fig. 9 shows four samples of
plane detection in different scenes. In Fig. 9(a), two virtual planes are detected due to regular edge pro-
trusions. And in Fig. 9(b), no planes are detected in a natural forest, which implies SPPO degenerates
into DSO in fact. Fig. 9(c) shows some detected planes on the lawn while Fig. 9(d) illustrates a proper
plane detected on a wall. In both Fig. 9(a) and (c), the detected planes are not stable, which implies that
the additional planar constraints may give false optimization directions. This explains why our SPPO
may perform a little worse than DSO in some sequences (see Fig. 7). Therefore, our SPPO is suggested
to run in a structured environment, especially indoor scenes.

When detecting planes, one important consideration is the factor between two eigen values, that is,
k1, k2 in Eq. (12). The value of k1 is used to find proper planes while the value of k2 is used to avoid from
bad planes (clustered in a line). Figure 10 illustrates the accumulative alignment errors with different k1,
from 100 to 10,000. We can find that the trends at the earlier stage are close to each other, which means
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(a) (b)

(c)(c) (d)

Figure 9. Four samples of plane detection. (a) A virtual plane; (b) No planes are detected in a natural
forest; (c) False detections on the lawn; (d) A proper detection in structured environments.

they all work well in “good” environments. However, if k1 = 10, 000, which implies less planes are
added into the optimization, the errors grow much faster. Therefore, our point-plane joint optimization
approach really helps to control the error growth in some situations.

7. Conclusion
In this paper, we have proposed a SPPO in structured environments. We firstly introduce the limitations
of points when a residual pattern is used in the optimization. Then, the concept of planes is introduced,
which is parameterized using inverse normal. By introducing additional planar constraints, we build a
SPPO framework based on DSO. Only photometric errors are used for planes, as the selected planes
are just sparse, that is, full of holes. Then, we build the Hessian Matrix of plane by accumulating the
information from the points that locate on it in the optimization. The marginalization strategy of planes is
same as that of points. As for the plane detection, we propose an efficient grid-based detection algorithm,
which is fast and adapt to the requirements of optimization. The proposed SPPO is evaluated on the TUM
monoVO dataset. Compared to DSO, our method performs better in general and has a smaller running
time due to the help of additional planar constraints. Further work will focus on how to add global planar
constraints in the sparse odometry and how to utilize planar information to relocalize.
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Figure 10. Accumulative alignment errors with different settings.
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