THE EDINBURGH
 Mathematical Notes

PUBEISHED BY

THE EDINBURGH MATHEMATICAL SOCIETY
 Edited by D. MARTin, M.A., B.Sc., Ph.D.

No. 38
1952

A note on the logarithmic derivative of the gamma function

By A. P. Guinand.

Introduction. The object of this note is to give simpler proofs of two formulae involving the function $\psi(z)$ which I have proved elsewhere by more complicated methods. ${ }^{1}$

The formulae are ${ }^{2}$

$$
\begin{equation*}
\psi(x+1)-\log x=2 \int_{0}^{\infty}\{\psi(t+1)-\log t\} \cos 2 \pi x t d t \tag{1}
\end{equation*}
$$

for all real positive x, and

$$
\begin{align*}
& \sum_{n=1}^{\infty}\left\{\psi(1+n z)-\log n z-\frac{1}{2 n z}\right\}+\frac{1}{2 z}(\gamma-\log 2 \pi z) \\
& \quad=\frac{1}{z} \sum_{n=1}^{\infty}\left\{\psi\left(1+\frac{n}{z}\right)-\log \frac{n}{z}-\frac{z}{2 n}\right\}+\frac{1}{2}\left(\gamma-\log \frac{2 \pi}{z}\right) \tag{2}
\end{align*}
$$

for $|\arg z|<\pi$, where γ is Euler's constant.
Proof of (1). Now ${ }^{3}$

[^0]\[

$$
\begin{align*}
\psi(x+1) & =\int_{0}^{\infty}\left(\frac{e^{-t}}{t}-\frac{e^{-x t}}{e^{t}-1}\right) d t \tag{3}\\
& =\frac{1}{2 x}+\log x-2 \int_{0}^{\infty} \frac{d t}{\left(t^{2}+x^{2}\right)\left(e^{2 \pi t}-1\right)} \tag{4}
\end{align*}
$$
\]

Also

$$
\int_{0}^{\infty}\left(e^{-t}-e^{-x t}\right) \frac{d t}{t}=\log x
$$

by Frullani's integral, ${ }^{1}$ and $\int_{0}^{\infty} \frac{d t}{t^{2}}+x^{2}=\frac{\pi}{2 x}$.
Combining these results with (3) and (4) we have

$$
\begin{align*}
\psi(x+1)-\log x & =\int_{0}^{\infty}\left(\frac{1}{t}-\frac{1}{e^{t}-1}\right) e^{-x t} d t \\
& =2 \int_{0}^{\infty}\left(\frac{1}{2 \pi t}-\frac{1}{e^{2 \pi t}-1}\right) \frac{t d t}{t^{2}+x^{2}} \tag{5}
\end{align*}
$$

Hence

$$
\begin{aligned}
2 \int_{0}^{\infty}\{\psi(t+1)-\log t\} \cos 2 \pi x t d t & =2 \int_{0}^{\infty} \cos 2 \pi x t d t \int_{0}^{\infty}\left(\frac{1}{u}-\frac{1}{e^{u}-1}\right) e^{-u t} d u \\
& =2 \int_{0}^{\infty}\left(\frac{1}{u}-\frac{1}{e^{u}-1}\right) d u \int_{0}^{\infty} e^{-u t} \cos 2 \pi x t d t \\
& =2 \int_{0}^{\infty}\left(\frac{1}{u}-\frac{1}{e^{u}-1}\right) \frac{u d u}{u^{2}+4 \pi^{2} x^{2}} \\
& =2 \int_{0}^{\infty}\left(\frac{1}{2 \pi t}-\frac{1}{e^{2 \pi t}-1}\right) \frac{t d t}{t^{2}+x^{2}} \\
& =\psi(x+1)-\log x
\end{aligned}
$$

by (5). The inversion of order of integration is justified by absolute convergence for u in the range $(\delta, \infty),(\delta>0)$ and the result follows on making δ tend to +0 .

Proof of (2). Let $z=p / q$ where p and q are integers and $(p, q)=1$. Consider the expression

$$
\begin{align*}
S_{N}(p, q)= & \frac{1}{q} \sum_{n=1}^{N q}\left\{\psi\left(1+\frac{n p}{q}\right)-\log \frac{n p}{q}-\frac{q}{2 n p}\right\} \\
- & \frac{1}{p} \sum_{m=1}^{N p}\left\{\psi\left(1+\frac{m q}{p}\right)-\log \frac{m q}{p}-\frac{p}{2 m q}\right\} \tag{6}\\
& \psi(1+p y)=\log p+\frac{1}{p} \sum_{r=1}^{p} \psi\left(y+\frac{r}{p}\right)
\end{align*}
$$

Now ${ }^{2}$
1 (\%. A. Stewart, loc eit. 457.
2 C. A. Stewart, loc. eit. 504.

A note on the logarithmic derivative of the gamma function 3 hence $\quad \psi\left(1+\frac{n p}{q}\right)=\log p+\frac{1}{p} \sum_{r=1}^{p} \psi\left(\frac{n p+r q}{p q}\right)$.

Substituting this result in both parts of (6) we have

$$
\begin{align*}
S_{N}(p, q)=\frac{1}{q} \sum_{n=1}^{N q}\left\{\frac{1}{p_{r}}\right. & \left.\sum_{r=1}^{p} \psi\left(\frac{n p+r q}{p q}\right)-\log \frac{n}{q}-\frac{q}{2 n p}\right\} \\
& -\frac{1}{p} \sum_{m=1}^{N p}\left\{\frac{1}{q} \sum_{s=1}^{q} \psi\left(\frac{m q+s p}{p q}\right)-\log \frac{m}{p}-\frac{p}{2 m q}\right\} \tag{7}
\end{align*}
$$

Now

$$
n p+r q
$$

$$
(1 \leqq n \leqq N q, \quad 1 \leqq r \leqq p)
$$

and $\quad m q+s p \quad(1 \leqq m \leqq N p, \quad 1 \leqq s \leqq q)$
both run through the same sets of integers in the range $p+q$ to $(N+1) p q$, inclusive. Hence the repeated sums in (7) cancel, and

$$
\begin{aligned}
S_{N}(p, q)= & -\frac{1}{q} \sum_{n=1}^{N q}\left(\log \frac{n}{q}+\frac{q}{2 n p}\right)+\frac{1}{p} \sum_{m=1}^{N p}\left(\log \frac{m}{p}+\frac{p}{2 m q}\right) \\
=N \log & \frac{q}{p}+\frac{1}{p} \log (N p!)-\frac{1}{q} \log (N q!) \\
& +\frac{1}{2 q} \sum_{m=1}^{N p} \frac{1}{m}-\frac{1}{2 p} \sum_{n=1}^{N q} \frac{1}{n} .
\end{aligned}
$$

Now $\log (M!)=\left(M+\frac{1}{2}\right) \log M-M+\frac{1}{2} \log 2 \pi+O\left(M^{-1}\right)$,
and

$$
\sum_{n=1}^{M} \frac{1}{n}=\log M+\gamma+O\left(M^{-1}\right)
$$

as $M \rightarrow \infty$. Hence, as $N \rightarrow \infty$

$$
\begin{aligned}
S_{N}(p, q)= & N \log \frac{q}{p}+\frac{1}{p}\left\{\left(N p+\frac{1}{2}\right) \log N p-N p+\frac{1}{2} \log 2 \pi\right\} \\
& -\frac{1}{q}\left\{\left(N q+\frac{1}{2}\right) \log N q-N q+\frac{1}{2} \log 2 \pi\right\} \\
& +\frac{1}{2 q}(\gamma+\log N p)-\frac{1}{2 p}(\gamma+\log N q)+O\left(N^{-1}\right) \\
= & \frac{1}{2 q}\left(\gamma-\log \frac{2 \pi q}{p}\right)-\frac{1}{2 p}\left(\gamma-\log \frac{2 \pi p}{q}\right)+O\left(N^{-1}\right) \\
= & \frac{1}{q}\left\{\frac{1}{2}\left(\gamma-\log \frac{2 \pi}{z}\right)-\frac{1}{2 z}(\gamma-\log 2 \pi z)\right\}+O\left(N^{-1}\right) .
\end{aligned}
$$

Multiplying by q and re-arranging, we have

$$
\begin{gather*}
\sum_{n=1}^{N q}\left\{\psi(1+n z)-\log n z-\frac{1}{2 n z}\right\}+\frac{1}{2 z}(\gamma-\log 2 \pi z) \\
=\frac{1}{z} \sum_{n=1}^{N p}\left\{\psi\left(1+\frac{n}{z}\right)-\log \frac{n}{z}-\frac{z}{2 n}\right\}+\frac{1}{2}\left(\gamma-\log \frac{2 \pi}{z}\right)+O(N-1) \tag{8}
\end{gather*}
$$

Further ${ }^{1}$ if $|z| \rightarrow \infty$ in the region $|\arg z| \leqq \pi-\delta,(\delta>0)$ then

$$
\psi(1+z)-\log z-\frac{1}{2 z} \sim-\frac{1}{12 z^{2}}
$$

Hence the two series in (8) converge absolutely as $N \rightarrow \infty$, and thus (2) holds for positive rational z. Further, both the series in (2) converge absolutely for $|\arg z|<\pi$, and they define analytic functions of z in this region. Hence (2) holds by analytic continuation for $|\arg z|<\pi$.

Extensions of (2). The method of the previous section can be used to prove that

$$
z \sum_{n=1}^{\infty}\left\{\psi^{\prime}(1+n z)-\frac{1}{n z}\right\}-\frac{1}{z} \sum_{n=1}^{\infty}\left\{\psi^{\prime}\left(1+\frac{n}{z}\right)-\frac{z}{n}\right\}=\log z
$$

for $|\arg z|<\pi$. For higher derivatives ($k \geqq 2$) the corresponding results are

$$
\begin{equation*}
\sum_{n=1} \psi^{(k)}(1+n z)=z^{-k-1} \sum_{n=1}^{\infty} \psi^{(k)}\left(1+\frac{n}{z}\right) \tag{9}
\end{equation*}
$$

In these cases the results follow immediately on substituting ${ }^{2}$

$$
\psi^{(k)}(1+n y)=(-1)^{k-1} k!\sum_{m=1}^{\infty}(m+n y)^{-k-1}
$$

in each side of (9).

[^1]
Military College of Science, Shrivenham.

[^0]: ${ }^{1}$ Journal London Math. Soc., 22 (1947), 14-18. $\psi(z)$ denotes $\Gamma^{\prime}(i) / \Gamma(z)$.
 \because The first formula shows that $\psi(x+1)-\log x$ is self-reciprocal with respect to the Fourier cosine kernel $2 \cos 2 \pi x$. It is strange that this result should have been overlooked, but I can find no trace of it.

 Cf. B. M. Mehrotra, Journal Indian Math. Soc. (New Series), 1 (1934), 209-27 for a list of self-reciprocal functions and references.
 ${ }^{3}$ C. A. Stewart, Advanced Calculus, (London, 1940), 495 and 497.

[^1]: ${ }^{1}$ E. T. Whittaker and G. N. Watson, Modern Analysis (Cambridge, 1927), 278.
 ${ }^{2}$ C. A. Stewart, loc. cit. 50 o .
 Note added in proof.
 Professor T. A. Brown tells me that he proved the self-reciprocal property of $\psi(1+x)-\log x$ some years ago, and that he communicated the result to the late Professor G. H. Hardy. Professor Hardy said that the result was also given in a progress report to the University of Madras by S. Ramanujan, but was not published elsewhere.

