CMS
}ZSMC

http://dx.doi.org/10.4153/CMB-2018-008-3

Canad. Math. Bull. Vol. 61 (4), 2018 pp. 878-890 ]
© Canadian Mathematical Society 2018

Weak Approximation for Points with
Coordinates in Rank-one Subgroups of
Global Function Fields

Chia-Liang Sun

Abstract. For every affine variety over a global function field, we show that the set of its points
with coordinates in an arbitrary rank-one multiplicative subgroup of this function field satisfies
the required property of weak approximation for finite sets of places of this function field avoiding
arbitrarily given finitely many places.

1 Introduction

Let K be a global function field over a finite field k of positive characteristic p. We
denote by k¥ the algebraic closure of k inside a fixed algebraic closure K!8 of K. Let
Xk be the set of all places of K. For each v € g, denote by K, the completion of K
at v; by O,, m,, and I, respectively the valuation ring, the maximal ideal, and the
residue field associated with v. For each finite subset S c Xk, we denote by Og the
ring of S-integers in K. We fix a cofinite subset S ¢ T, and endow [1,.5 K, with
the natural product topology. For any semi-abelian variety A over K and any subset
H of A(K), we denote by Hy the image of H in A([], .5 K,) under the diagonal em-
bedding, and denote by Hy its topological closure; an element (), g € A(T, 5 Ky)
lies in Hg if and only if there is a sequence (h, ) > in H, such that for each v € S the
sequence (1, ), in the complete topological space A(K,) converges to «,. In view
of a conjecture proposed by Poonen and Voloch, we propose the following question.

Main Question  Let X be a closed K-subvariety of a semi-abelian variety A over K,
and let H be a finitely generated subgroup of A(K). Does the equality

(L1) X(T1K) nHs = (X(K)n H)

ves

hold?

Remark 1.1 Poonen and Voloch [PV10, Conjecture C] conjecture that the Main
Question has a positive answer in the case where A is an abelian varietyand H = A(K).
They also prove that this conjecture holds in the case where A has no nonzero isotrivial
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quotient, X does not contain a translate of a positive-dimensional subvariety of A, and
A(K*P)[p>] is finite [PV10, Theorem B].

Remark 1.2 Without requiring the subgroup H c A(K) to be finitely generated,
the Main Question would have a negative answer [Sunl3, Example 1].

Remark 1.3 'The author shows that the Main Question has a positive answer in the
following two cases.

(i) Thereisanisogeny f from A to an semi-abelian variety A, defined over k*I# sat-
isfying the condition that each translate P+ f(X) of f(X), where P € Aq(K*#),
contains no positive-dimensional closed K*8-subvariety Y of the base change
of Ao to K8 such that Y is the base change of a k?l&-subvariety of Ao. ([Sun13])

(ii) When X is a (finite) union of linear subvarieties of A = G, i.e., those subvari-
eties defined by linear forms in M variables and H = AM(T) for some finitely
generated subgroup I' ¢ K* = G, (K) satisfying the condition that X contains
no linear K-subvariety Y with dimension greater than one such that the translate
of Y by some element in AM(p(T')), where p(T) = M,uso(K?")*T, is defined
over k [Sunl4].

The set X([1,.5Ky) N Hy is shown to be contained in a zero-dimensional variety
under the condition on X in Remark 1.1 and that in Remark 1.3(i), respectively, and
contained in a (finite) union of lines under the condition that in Remark 1.3(ii). Thus

we have in the former situation that X(I],.5K,) n Hy = (X(K) n H)z is a finite

ves

set, and in the latter situation that X ([T, .5 K,) n AM(T)z is the set of Ts-multiples of

points in some fixed finite subset Z ¢ AM(T) such that X (K) n AM(T) is the set of
I-multiples of points in Z, i.e.,

X(K)OAM(F):{(ycl,...,ycM):yeF,(cl,...,cM)eZ},

and X([1, g K,) n AM(T)z is the set of limits of sequences ((ynC1,..->YnCm))ns1>

ves

where (ci,...,cm) € Z and (y,)nz1 is a sequence in T converging in AM(T], s K}).
It is interesting to find cases in which the Main Question has an affirmative answer,

while the set X(IT,.5 Ky) N Hz cannot be described as easily as above. On the other

ves

hand, in the known results of the Main Question, for a given setting (K, S, A, X, H)
with dim X > 3, it is almost impossible to verify whether the hypotheses are satisfied;
thus, in this sense, these results are not practical. For these two reasons, we desire to
have another approach to show that the Main Question has a positive answer.

Toward a positive answer to the Main Question, i.e., to prove that (1.1) holds, the
following idea is very straightforward: given an arbitrary a ¢ X([],.sK,) n Hs,
i.e., given a sequence (h,),» in H converging to a, we aim to construct a sequence
(h?,)us1 in X(K) N H such that the sequence (h,, — h!,) ,>1 in H converges to the neu-
tral element of A([], .z K, ). This suffices for our purpose since the desired property

ves
will show that « is the limit of the sequence (k;, )51 in X(K) n H in A(T], 5Ky ).
To avoid the complicated geometry that A may have, in this paper we implement the
above idea on the same setting in Remark 1.3(ii), where A = G is embedded in the

affine space AM in the usual way.
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Denote the coordinates in AM by X = (Xy,..., Xy). For each polynomial f €
K[Xi,...,Xm], we denote by Hy ¢ AM the hypersurface defined by f. If the total
degree of f is one, we say that Hy is a hyperplane. By a linear K-variety in AM, we
mean an intersection of K-hyperplanes. In our setting, any subvariety X of A comes
from some affine variety W in AM; thus, it is natural to work on the case where H =
AM(T) for a finitely generated subgroup I' ¢ K*, where for any commutative ring R
with unity, denote by R* the group of its units. In this particular case, we simply have
X(T1,.5Ky) n Hy = W(T3) and X(K) n H = W(T), where I's and Ts are defined
above by viewing K* = G (K), and W (T) (resp., W(I')) is the set of points on W
with coordinate components in Iy (resp., in I'). For each v € Zg, we simply write T,
for m

Our main result is as follows.

Theorem 1.4 LetT c K* be a finitely generated subgroup such that I' n O has rank
at most one, where S = Sk \ S. Then for every closed K-variety W in an affine space,
we have that W (T5) = W(T)z; equivalently, the Main Question always has a positive
answer in the case where A is a direct product of copies of the multiplicative group, H is

the subgroup of A(K) consisting of elements with each component in T.

Remark 1.5 Note that in the case where S = S, the product formula implies that
the subset A(K)g = A(K)s, is discrete in A(IT,cy, Ky), hence Hs, = Hs,, and
thus (1.1) holds trivially. On the other hand, given a fixed finitely generated subgroup
I' ¢ K*, the condition in Theorem 1.4 that I' n Og has rank at most one imposes a
restriction on S, and we can always find a finite subset S ¢ Xk with arbitrarily large
cardinality such that this condition is satisfied. For example, in the case where K =
k(T) is a rational function field, T is generated by irreducible polynomials in k[ T],
and § is a finite subset containing the place corresponding to + and exactly one place
corresponding to some of these irreducible polynomials generating I', we have that
the rank of I' n Og is exactly one.

Proved at the end of Section 2 as an immediate consequence of Theorem 1.4, the
next corollary provides a local-global criterion of simultaneous solvability of finitely
many multi-variate polynomials over K in the subgroup I'. Note that the torsion sub-
group Tor(T') of T is cyclic.

Corollary 1.6  Let T c K* be the rank-one subgroup generated by y and T with T €
Tor(T). Let fi(Xy,...,Xn) € K[Xy,...,Xn] for each j € {1,...,]}, where ] is a
natural number. Let Sy c i be a finite subset such that Sy U S=3Tc O;D, and
fiXt, ..., Xm) € Osy[Xa,..., Xpm] for each j € {1,...,]}. Consider the following
Statements:

(L) For every non-zero ideal a € Og,, there exists a tuple

(eami:me{l,...,M},ie{0,1})
of rational integers with length 2M such that for each j€ {1,...,]},

ij(Ten,l,O,yen,l,l, e, Tea,M,o yen,M,l) €a.
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(G) There exists a tuple (eq,m,; : m € {1,..., M}, i € {0,1}) of rational integers with
length 2M such that for each j€ {1,...,]},

fj(Teo,l,oym,l,l) . 60.M,0 yeO,M,l) -0

Then (L) implies (G).

Remark 1.7  Since Tor(T) is finite, it is easy to see that Condition (L) stays equiv-
alent when additionally requiring that e, ;0 does not depend on the ideal a. There-
fore, roughly speaking, Corollary 1.6 is a local-global criterion for the existence of M
independent integer parameters. In the case where K is a number field, and J = 1
with fi(X1,..., Xm) = MX; + -+ + Ay X, Bartolome, Bilu, and Luca [BBLI3] prove
the analogous statement of Corollary 1.6 with additionally requiring in Condition (L)
that there is a tuple (11,0, ..., 1,0, #1,15 - - - » Mpg,1) Of rational integers (independent
on the ideal a) satisfying 1, r€a,m,i = Wm,r€a,m,i for every m,m’ € {1,..., M}, ev-
ery r € {0,1}, and every non-zero ideal a ¢ Og,. This additional requirement makes
their number-field result a local-global criterion for the existence of a single integer
parameter.

In the rest of this paper, which is devoted to our proof of Theorem 1.4, we fix a
natural number M, a closed K-variety W in AM, and a finitely generated subgroup
I c K*. We also drop the subscript S in the notation of topological closure so that 1"75
and W (T')5 are simply written as T and W (T') respectively.

2 The Proof of Theorem 1.4

Recall that we have fixed a closed K-variety W in AM and a finitely generated sub-
group I' ¢ K*. We say that W is a homogeneous linear K-variety if its vanishing
ideal is generated by linear forms over K. For any subgroup A c K*, we say that
W is A-isotrivial if there is some (&, ..., 83 ) € AM(A) such that the multiplicative
translate (8y,..., 8y ) - W is a k-variety; we denote by k(A) the smallest subfield of
K containing k and A, by p(A) the subgroup M,uso(K?" )*A of K*, and by VA the
subgroup {x € K* : x" € A for some n € N} of K*. We need the following earlier
result of the author.

Proposition 2.1 ([Sunl4, Proposition 6]) Let d be the dimension of W. Suppose
that W is a union of homogeneous linear K-varieties, and that each d-dimensional ir-
reducible component of W is not p(T)-isotrivial. Then there exists a finite union V
of homogeneous linear K-subvarieties of W with dimension smaller than d such that
W(T,) = V(T,) for every v € Zx; in particular, we have W(T) = V(T).

Remark 2.2 Proposition 2.1 is motivated by an earlier result of Derksen and Masser
[DM12], which roughly says that the weaker conclusion W(T') = V(T') holds under
the slightly stronger hypothesis that each d-dimensional irreducible component of W

is not \/T-isotrivial. For a homogeneous linear K-variety W that is VT-isotrivial,
they also express W(T') in terms of Frobenius orbits of the I'-valued points of its
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proper homogeneous linear K-subvarieties; however, this expression has no “adelic
analog”. For precise details, see Appendix A .

One of the key ingredients in the proof of the main result in this paper is the fol-
lowing unexpected application of Proposition 2.1.

Proposition 2.3  For any closed K-variety W c AM, there exists some closed
k(p(T))-subvariety V of W such that W(T,) = V(T,) for every v € Zg; in partic-
ular, we have W(T) = V(T).

Proof Let {fj:1< j <]} c K[Xy,...,Xum] be a set of polynomials defining W.
Choose D € N such that for each j € {1,..., ]}, we can write

d d
fj(Xlx'--:XM): Z C(j,dyy..., dM)X11'~~XMM
(diyerrdig)e{0,1,..., DIM

with each ¢(j 4,,....4,) € K. Consider the tuple Y = (Ya,..., dm))(dl _____ dy)efo,1,...,pym of
new variables, in which we define linear forms

2i(Y) = > C(jrdirrndrr) Y(drrendar)

foreach j e {1,...,]J}. Let N = (D + 1) and W’ c A¥ be the homogeneous linear
variety defined by {¢; : 1 < j < J}. By Proposition 2.1, there exists a finite union V" of
homogeneous linear K-subvarieties of W’ such that each irreducible component of V'
is p(T')-isotrivial and that W/(T, ) = V'(T,) for every v € Z. In particular, each irre-
ducible component of V" is defined over k(p(T)); thus, sois V'. Let {g; : 1< j<J'} c
k(p(T))[Y] beaset of polynomials defining V. Foreach j € {1,..., ]}, we construct
fj(X1,..., Xpu) by substituting each variable Y(4, 4, in g;(Y) by the monomial
XM ... X9 thus, we have that fi(Xe, s X)) € k(p(T)[ X1, ..., Xum]- Let V e AM
be the k(p(T'))-variety whose vanishing ideal is generated by {f : 1 < j < J'}. For
every j € {1,...,J'} and every (xi,...,x) € V(K*8), we have fi(xi,. o xm) =0,
thus the point (x;" --- x4 ) (dusordat)e{0,1,.... 03 € AN (K*€) is a zero of gi(Y) by con-

.....

.....

and thus the construction yields (x1, ..., x) € W(K*8). Hence, we see that V.c W.
Similar reasoning gives the other desired conclusion that W(T,) = V(T,) for every
Ve ZK. |

For any finitely generated subgroup A c K*, [Vol98, Lemma 3] shows that p(A) c

V/A, and thus that A and p(A) have the same rank; we also note that A c p(A) =
p(p(A)), by definition.

Proposition 2.4 Letting S = Xk \ Z, there exists a free subgroup ® c Og that has
the same rank as T n O} and satisfies the following property: if V(®) = V(@) for every
closed k(®)-variety V.c AM, then W(T) = W(T) for every closed K-variety W ¢ AM,

Proof Let @ be a maximal free subgroup of the finitely generated abelian group
p(I'nOg). Since ® c p(®) c p(p(I'n 0F)) = p(I' n OF), it follows that ® is a
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maximal free subgroup of p(®), and this implies that p(®) = Tor(p(®))D = k*O.
Letting So ¢ Zk be a finite subset such that I' ¢ Og , we see that the image of I' in
[1,es K; is contained in ([Tyesns, Ky) X (ITyezas, Oy ); since S = Tk \ I, this shows
that the image of I' 1 Og in [], s K is exactly the intersection of the image of I in
[Tyex K; with the open subgroup (IT,czns, Oy ) % (ITvesws, Ky ) of [T,ex K. It fol-
lows that ' n Oy is open in I'. Since the index of ® N T n OF in I' n OF is finite,
[Sunl4, Corollary 2] shows that ® N I' n Og is open in I' n Og, and thus is open in T.
We note that @ nI'n Og = ® N T, since ® c Og.

Fix a closed K-variety W ¢ AM. Consider an arbitrary x € W(T), which is the
limit of a sequence (X, ) nery in AM(T). Since ® N T is open in T, we can assume that
X, = ry, with some r ¢ AM(T) and a sequence (y,)ney in AM(® N T). Note that
the sequence (y,)nen converges to r'x € (r™W)(®). Recalling that p(®) = k*®,
Proposition 2.3 says that there exists some closed k(®)-subvariety V of r!W such
that (r'W)(®) = V(®). Assuming V(®) = V (D), we see that

rlxe (FTW)(@) = V(D) = V(D) c (W) (D) c r (W(D)),

ie, x € W(®) is the limit of some sequence (x},) sy in W(®). Letting (X)) ey ©
AM(®T) be the sequence defined by x5, _; = x,, and xj, = x/,, we see that the sequence
(X)) yeny € AM(®T) is Cauchy. As abelian groups, ®T/T is isomorphic to ®/(T N @),
which is finite by the construction of ®; thus, [Sunl4, Corollary 2] shows that I' is open
in @T. It follows that ® N T is open in ®TI'. Hence, for sufficiently large n € N, we have
that (r™'x,,) 1 (r"'x},) = (x§,_,) 7'x, € AM(® N T); sincer'x, =y, € AM(®NT),

we conclude that r'x/, ¢ AM(® N T), and thus x;, ¢ AM(T) n W(®) c W(T), i.e.,
x € W(T). This finishes the proof. [ |

We make the following convention. For a polynomial Q(T) € k[ T] and a rational
function P(T) € k(T), we say that Q(T) divides P(T) if any zero of Q(T) in k8 is

%. The long proof of the following proposition, which is the core in

the proof of Theorem 1.4, is postponed to Section 3.

not a pole of

Proposition 2.5  Let 8 be a finite set of irreducible polynomials in k[T]. Let ] be a
natural number. For each j€ {1,...,]}, let fj(Xy,..., Xpm) € k[T][ X1, ..., Xnm]-

Assume that there exists a sequence {(e1 ..., enn) }ns1 in AM(Z) satisfying the
following condition.

For every Q(T) € k[T] not divisible by any element in 8, there is an Ng € N
such that for any n > Nq we have that Q(T) divides f;(T®",..., T*™) for all
jed{l,.... ]}
Then there exists a sequence {(e{ .. .., e} ,) tnen in AM(Z) indexed by an infinite
subset N c N with the following properties:

(i) ForeachneN we havef]-(T‘?{m, o Tun) =0 forall je{l,...,]}.
(ii) For every G(T)f k[T] not divisil?le by T, there is an ﬁq € N such that for any
n € N with n > N we have that Q(T) divides T — T*» for all .

The next theorem follows formally from Proposition 2.5.
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Theorem 2.6 Let W be a closed k(T)-variety in AM. Suppose that T is free with rank
one, is contained in OF, where S = X \ 2. Then we have that W(T) = W(T).

Proof Lety bea generator of T'. Let 2[4, ¢ Z be the subset satisfying the following
property: for each v € X, there exists a unique w € X[,y such that both v and w
restrict to the same place of k(y). Consider the k-isomorphism between fields

(2.1) k(T) — k(y), Tr—y.

Through the isomorphism (2.1), the set X[,y is injectively mapped onto a subset of
the set of places of k(T). For each v € X[y, we have that y € OJ; let P,(T) € k[T]
be the irreducible polynomial corresponding to the image of v under this map. Let
8 be the complement of the subset {P,(T) : v € X[y, } of the set of all irreducible
polynomials in k[ T']. Note that § is a finite set containing the polynomial T, and that
k[T] c I ex Oy, where k[T] is the smallest subring of K containing both k and T
Write W = ﬂ;zl Hy,, where f;(X,...,Xum) € k[y][X1,..., Xa] for each j. Let

{(yen,...,p®n)} 51 be a sequence in AM(T') that converges to a point

(x1,...,xm) e W(T) c AM( TT K;),
vex

where e; , € Z. In fact, this sequence lies in the image of AM(HVGZMO) k(y);) in
AM(T1,ex K;) under the natural map, where k(y), denotes the topological closure
of the subfield k(y) in K,. Note that this image is a closed subset. The topology on
T is induced from the usual product topology on [T,.s k(y)%, and the latter topol-
ogy is the same as the subspace topology restricted from the usual product topol-
ogy on [[,cx k(y)y. Thus, for each i € {1,..., M}, the sequence (y°"),>; converges
to x; in [T,es k(y)y. Therefore, from the continuity of each f; at (xi,...,xpm) €
AM(TT,ex k(y)y), we see that each sequence (fj(y*",...,y**")) 1 converges to
fi(x1...,xpm) = 01in [ ey k(y)y. Consider the sequence {(eyn,...,enmn)}ns1 in
AM(Z). Fix an arbitrary Q(T) € k[T] not divisible by any element in 8. Thus we
have the prime decomposition Q(T) = [1,ez, ,, P»(T)" in k[T], where there are
only finitely many v € X[i(,y with n, > 0. In particular,

Ug= [T k()vx [T (mynk(),)™

VeZ|k(ey) veZ[k(y)
n,=0 n,>0
is an open subset in [, .z, o k(y), endowed with the product topology. Note that
fiysn,...,yn) € k[y,y™"] for each j € {1,...,]} and n € N. The intersection
of Uqg with the image of k[y,y™!] in ey, k(y)v is the image of Q[y]k[y, ],
which is thus an open subset of k[y, y*] containing zero with respect to the subspace
topology restricted from [],ez, k(y)y-. Therefore, from the fact that each sequence
(fi(yerm, ..., p™m)) s converges to zero in [],ex k(y)y, it follows that there is an
Nq € N such that for any n > N we have that f;(y®",...,y*") € Q[y]k[y,y™"]
for each j € {1,...,]}; thus by the isomorphism (2.1), we have that Q(T) divides
fi(Ten, ..., T, because 0 is not a zero of Q(T). Therefore, the assumption of
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Proposition 2.5 is verified. Applying the isomorphism (2.1) to the conclusion of Propo-
sition 2.5, we see that there exists a sequence {(e] ., . ., €}y ,,) }nex in AM(Z) indexed
by an infinite subset N c N satisfying the following properties:
* Foreach n e N we havefj(ye{m, . ymn) =0forall je{l,...,J}.
* For every Q(T) € k[T] not divisible by T, there is an N, g € N such that for any
n e N with n > Na we have that y®» — yin € Q(y)k[y,y"] forall i € {1,..., M}.
The first property says that (yin,...,y%n) e W(T) for each n € N. On the
other hand, because the image of k[y,y™!] in [yes),,, k(y)v lies in [Tyez),,, (Oy 0
k(y),), one can argue similarly as above that the topology on k[y,y™*], which is
induced from the usual product topology on [],cs k(y)y, is generated by those
subsets Q(y)k[y,y™'] with Q(T) € k[T] not divisible by any element in the set
8. Since § contains the polynomial T, the second property implies that for each
i € {1,..., M} the sequence (y°" — y%.n),cn converges to zero in [] ez k(y)y; this
shows that the two sequences (y%*" ) ,ex and (y%in ) sex converge to the same element
in [T,cx k(y),. Hence, for each i € {1,..., M}, the sequence (y®.» ) cx converges to
x;in [Tyex k(y)ys since x; € [1,e5 k(y)5, it follows from what is explained above that
the same convergence also happens in [T, ..s k(y);. This shows that

(%15 .. x00) € {(y0m, .., y%un) b pey € W(T),

which completes the proof. ]
Proof of Theorem 1.4 Combine Proposition 2.4 and Theorem 2.6. ]

Proof of Corollary 1.6  Condition (L) is equivalent to W (Tg,\s,) # @ by a com-
pactness argument using the assumption I' ¢ Og,, while Condition (G) is clearly
equivalent to W(T) # @; these two conditions are equivalent, since Theorem 1.4 im-
plies that W(T')g,.s, is dense in the subspace W (T, .s,) of the topological space
AM(TTyes, s, Kii), where W ¢ AM is the variety defined by f;(Xi, ..., Xu) = 0 for
eachje{l,...,]}. [ |

3 The Proof of Proposition 2.5
For any a e Nand b € N \ pN, consider the polynomial

T —1
Ta-1

ga,b(T) = Ek[T]'

The following result is proved in the author’s recent work [Sunar].

Lemma 3.1 Let f(T) =3¢ T% € k(T) witheach c; € k and e; € Z, where I is a
finite index set. Let a € N, b € N\ pN with b greater than the cardinality of I. Denote
by € the collection of those partitions & of the set I such that for each set QO € & we
have ¥ ;.q ¢i = 0 and for each nonempty proper subset Q' ¢ Q we have ;.o ¢; # 0.
Suppose that g, ,(T) divides f(T). Then there is some & € € such that for each set
Q € & and each iy, i, € Q, we have that ab divides e;, — e;,.
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Proved by an elementary linear-algebra argument, the following result plays a cru-
cial role so that Proposition 24 in the author’s recent work [Sunar] can be generalized
to Proposition 2.5, which is the core in the proof of Theorem 1.4.

Lemma 3.2 Let N c N be a subset such that for each m € N there is some n € N
divisible by m. Let aj; € Z and bj € Z, (j,i) € {1,...,J} x {1,..., M} be fixed
integers. Suppose that for each n € N, there are some e; ,, i € {1,..., M} such that
n divides bj — M ajiein for each j. Then there is some ny € N with the following
property: for each n € N divisible by no, there are some e; ,, i € {1,..., M}, such that
o divides e;,, — €] , and that bj = Y aj el for each j.

Proof Consider the J-by-(M + 1) matrix (aj,; | b;), where j indexes rows and i
indexes the first M columns. Applying a sequence of the following operations: inter-
changing any two rows or any two of the first M columns, multiplying some row by an
integer, adding some row to another one, we can transform this matrix to (a’; | b%)
such that for some R < min{/, M}, we have that a’ ; = 0 for any

Gri)e({L.... )} x{L....,R}) U ({R+1,..., ]} x{1,..., M})

with i # j, and that a} ; # 0 if and only if i € {I,...,R}. Then there is some permuta-
tion o on {1,..., M} such that n divides b’ - M a’; ie4(i),n for each n € N'and each
je{L,...,J}. By the properties of N, there is some ng € N divisible by [T}, a/ ;. For
any j € {1,...,R} and any n € N divisible by n, from the fact that

M M
’ ’ ! / ’
bj - Z aji€o(i)n = bj—aj j€s(j),n — Z aj,i€s(i).n
i=1 i=R+1

is divisible by n € a’ ;Z, we see that a} ; divides b} - M e aj ;€q(i),n» and thus
there exists a unique e,y , € Z satisfying b} — a] ;e[\ , - M e a} ieo(iyn = 0;
hence, n divides a;-)j(e;(j))n — €g(j),n)- Forany j € {I,..., R}, since is no divisible
by a’ ;, we conclude that e, (j),, — €/4(j),n is divisible by n/a’; ; and thus by n/n as
desired. Forany j € {R+1,...,J} and any n € N divisible by ny, we simply define
€o(jyn = €o(j).ns thus n/ng divides eq(j),n — €, , trivially. For every pair (j,1) €
{R+1,...,J}x{L,..., M}, wehavea’; = 0,hence b’ is c%ivisible by every integer, and
o(j),n forany j € {1,...,R},
we see that for any j € {1,...,/} and any n € N divisible by ng, we always have
b - M aj i€, = 0. Transforming the matrix (aj; | b}) back to (aj,; | b;), we

therefore b;- = 0. Combined with the construction of e

obtain that b; — ¥, ajie; , = 0,as desired. [ |
Proof of Proposition 2.5 Choose D € N such that for each j € {1,...,]}, we can
write
do d d
filXn, .., X)) = > C(judosdyendy) T X7 X"

(dosdis..rdyt )€{0,1,..., D} M+

with each ¢(j 4,.4,,....dy) € k- Foreach j € {I,..., ]}, denote by ¢ the collection of
those partitions 2 of the set {0, 1, ..., D}™*! such that for each set Q) € &, we have
z(do,dl ..... dy)eQ C(Gdordrrdy) = 0 and for each nonempty proper subset Q' c Q we
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have Y40 a1, du)eqr C(do.dy....dy) # 0 By [Sunar, Remark 14], we can choose some
ay € N\ pNand by € N\ pN with by > (D +1)M*! such that for any a € aoN the
polynomial g, 5, (T) is not divisible by any element in 8. By our assumption, there is
a strictly increasing sequence {Ng } geq,n Such that g, ;, (T) divides

e1N, eM,Ng | — do+diei, N, ++dmemn,
Fi(ToNa, L TN ) = > Cjsdosdryonnd) T
(dosdyenordpg)e{0,1,..., D} MH

for any j € {1,...,J}. Thus, by Lemma 3.1, for any a € goN and any j € {1,...,]},
there is some &; , € €; such that for each set Q € &; ,, each (do,d,,...,dym) and
(dg,di,....,dy) in Q, any i € {1,...,M} and any n > N,, we have that ab, di-
vides both do — dy + (dy — d{)eyn, + - + (dm — d}y)em,n,. Consider the subset
{I1%/"i:neN} c aoN. For each j € {1,...,]} the collection %; is finite, while
{I1%°/™ i : n € N} is infinite; thus, there is an infinite subset A of {[]{%"i:n € N}
that is contained in aoN, such that for each j € {1,..., J} the collection { #; , : a € A}
consists of only one partition, denoted by #;. Since A c {[1%/" i : n € N} is an in-
finite subset, it has the property that for each m € N, there is some a € A divisible
by m.

Forany a € A, any j € {1,...,]}, we observe that (e n,,...,enm,n,) satisfies the
condition that for each set O € &;, each (do, dy,...,dy) and (dg, df,...,d},) in Q,
we have that a divides do — dy + (dy — d])ein, + - + (dy — djyy)em,n,. Applying
Lemma 3.2, we obtain some ny € A with the following property: for each a € A
divisible by o, there are some ¢; v, i € {l,..., M}, such that % divides e; n, -
e; n, and that for each j € {1,...,]}, each set Q € &}, each (do,d,,...,dym) and
(dg.di,...,d};) in Q, we have

d() - d(,) + (dl - d{)e'LN“ R o (dM - d;w)elM)Nu =0;

thus, we canlet m, j o = do + die'y N, + -+ dye’u,n, forany (do, dy, ..., dy) € Q.
Letting N = {N, : a € A n noN}, which is an infinite subset of N, since A c aoN
and the sequence {N, } seq,N is strictly increasing, we now show that the constructed
sequence {(e] ,,...€) ) }nex satisfies the desired properties. To verify property (i),
we fix some j € {1,...,J} and n = N, € N'with a € A n noN. From construction, we
have

Fi(T%n, .., T

- Z C(j:dO)dl ,,,,, dM)
(do,drs... dm)e{0,1,...,D}M+1

—_ m ,)hQ _
B Z L Z C(jdosdise.rdnr) = 0,
Qe (do,d1,....dy)eQ

4 7
Tdo +die’ N, ++dme mN,

as desired. To verify property (ii), we fix some Q(T) € k[ T], not divisible by T. Since
each zero of Q(T) is in (k*'8)* and thus has a finite order, we can use the property
that for each m € N there is some element of A n 1N divisible by m and get some
a € A nngN such that Q(T) divides T — 1. Using this property again yields some
ag € A n noN divisible by ang. Let ﬁa = Nag and fix some n € N with n > NG =
Nag. Then n = N, € N with some a’ € A n nN; the latter condition implies, by
construction, that a’/ng divides e; n,, — eg)Na, =ejn—e;,foreachie{l,...,M}.
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Since the sequence { N, }aeq,n is strictly increasing, this implies that a’ > ag; by
construction, both a’ and ag are in the set {T]{°" i : n € N}; thus, we get that a’ is

divisible by ag. Because ag/ny is divisible by a, we conclude that a divides a’/n,

and thus divides e;,, — e; , for each i € {1,..., M}; equivalently, we have shown that
T¢n — T¢u is divisible by T — 1 and thus by Q(T) as desired. This completes the
proof. ]

A Appendix

Recall that we say that an affine variety W ¢ AM is a homogeneous linear K-variety
if its vanishing ideal is generated by linear forms over K. A homogeneous linear
K-variety is called a coset if its vanishing ideal is generated by linear forms over K
with at most two nonzero terms. The following result is proved in [DM12, Section 9].

Theorem A.I (Derksen-Masser [DM12]) LetT c K* be a finitely generated subgroup
and let W ¢ AM be a homogeneous linear K-variety whose dimension is at least two.
Suppose that W is not a coset.

(i) IfWisnot VT-isotrivial, then there exists a finite union V of proper homogeneous
linear K-subvarieties of W such that W(T) = V(T).

(i) IfWis VT-isotrivial, ie., there is some (x15...,xp) € AM( f/f) such that the
multiplicative translate (x1,...,xpy) - W is a k-variety, then there exists a finite
union V of proper homogeneous linear K-subvarieties of W such that

(o) WY@ = U (Goreorran)- V) (@)

eeNu{0}

Example A.2 Proposition 2.1 provides an “adelic analog” of Theorem A.1(i). How-
ever, there is no such analog of Theorem A.1(ii). To see this, consider the example
where W = Hy c A’ with f(X,X;) = Xi + X, - X5 € F,[X;,X,]. Note that
W is an irreducible homogeneous I, -variety of dimension two. By Theorem A.1(ii),
there exists a finite union V of proper homogeneous linear K-subvarieties of W such
that W(T) = UEENU{O}(V(F))PE. Nevertheless, in the case where K = F,(T) and
[ ={cT"(1-T)": ceF},(n,m)eZ} and T is the maximal subset of T such that
' c O; for each v € X, we claim that

pa— p— Pe
wI¢ U (vD)
eeNU{0}
for any finite union V of proper homogeneous linear K-subvarieties V of W. To see
this, assume for the contradiction that there exists such V satisfying

wIe U (VD).
eeNU{0}
Since the subvariety V. ¢ W = Hy must have dimension one, it follows that the
K-variety ¢3(V), where ¢3:A> — A? given by (x1,%5,x3) = (31, 32), is a zero-

dimensional subvariety of ¢3( W), which is the line in A? defined by X; + X, —1=0.
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On the other hand, the sequence (Tpn! )uso converges to some element o =
(ay)yes € T c T, where I'r c T is the cyclic subgroup generated by T [Sunl3, Exam-
ple1]. Similarly, we see that 1-« € T;_1 c T, where I;_r c T is the cyclic subgroup gen-
erated by 1 T. Thus we have that (a,1 - a) € ¢3(W)(T) c UeeNU{O}(%(V)(f))PE.
Based on these facts, our claim can be proved by either of the following two argu-
ments.

* Example Lin [Sunl3] also shows that a ¢ K*, thus (a,1-a) ¢ A%(K*). However,
since ¢3(V') has dimension zero, we have that ¢3(V)(T) = ¢3(V)(T) by [Sunl4,
Theorem 2]. This leads to

e

@wi-a)e U (6(MD)" = U (:(V)(ID)" cA(K),

eeNU{0} eeNU{0}
a contradiction that proves our claim.

* For each v € %, note that «, € O and let P,(T) € F,[T] be the unique irre-
ducible polynomial such that P, (T) € m,; thus we have that

P(T?"Y = P,(T)"" em?"

for each n > 0, which implies that P, (a,) € nnzomfn! = {0}; it follows that P, is the
minimal polynomial for a, over F,. On the other hand, for any « € k*'8 and any e €
Nu{0}, the element & is a zero of the minimal polynomial for & over Fp. As Z c A2
is a zero-dimensional K-variety, it follows that the degrees of minimal polynomials of
torsion pointsin (¢3(V)(T,))?" are uniformly bounded overall (v, e) € Zx (Nu{0}).
Because the degree of P, can be arbitrarily large as v ranges over X, there must be
some vo € X such that (a,,,1 - a,) ¢ Ueenugoy (¢3(V) (T,,))?"; since ¢3(V)(T) c
[Tyes ¢3(V)(T,), this proves our claim.
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