AN INEQUALITY FOR GAMMA FUNCTIONS

BY
D. G. KABE

Abstract

By using Bellman-Wishart distribution, Bellman [1], an inequality for gamma functions is derived. This inequality generalizes a recent inequality given by Selliah [4].

1. Introduction. Selliah [4] proves that

$$
\begin{equation*}
\left[\Gamma_{p}^{2}(\delta+\alpha) / \Gamma_{p}(\delta) \Gamma_{p}(\delta+2 \alpha)\right] \leq \delta /\left(\delta+p \alpha^{2}\right), \tag{1}
\end{equation*}
$$

where $\delta+\alpha>2 t(p-1)+1, \delta>0, p>0, t=\frac{1}{4}, \frac{1}{2}$, and

$$
\begin{equation*}
\Gamma_{p}(\delta)=\pi^{t p(p-1)} \prod_{i=1}^{p} \Gamma(\delta-2 t(i-1)) \tag{2}
\end{equation*}
$$

When $t=\frac{1}{4}$ the result (1) holds for the real Wishart distribution and when $t=\frac{1}{2}$ it holds for the complex Wishart distribution.

The Bellman-Wishart density of a $p \times p$ positive definite Hermitian ($p d H$) matrix S, with N degrees of freedom, is defined as follows. Let S be a $p \times p$ $p d H$ matrix and

$$
\begin{equation*}
S_{k}=\left(S_{i j}\right), \quad 1 \leq i, \quad j \leq k, \tag{3}
\end{equation*}
$$

and for convenience $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{p}\right)$. Then the Bellman-Wishart density $\phi(S, \Lambda)=\phi$ of S is

$$
\begin{align*}
& \left(\Gamma_{p}^{*}(a)\right)^{-1} \prod_{i=1}^{p} \lambda_{i}^{-a_{p-i+1}}|S|^{a_{\mathrm{p}}-2 t(p-1)-1} \tag{4}\\
& \quad \exp \left\{-\operatorname{tr} \Lambda^{-1} S\right\} \prod_{j=2}^{p}\left|S_{j}\right|^{-k_{i-1}},
\end{align*}
$$

where $a_{p}=2 N T, a_{j}=k_{p-j+1}+\cdots+k_{p}, k=\left(k_{1}, \ldots, k_{p}\right), a=\left(a_{1}, \ldots, a_{p}\right)$ and $a_{j}>2 t(p-1)+1$, and

$$
\begin{equation*}
\left.\Gamma_{p}^{*}(a)=\pi^{t p(p-1}\right) \prod_{i=1}^{p} \Gamma\left(a_{1}-2 t(i-1)\right) \tag{5}
\end{equation*}
$$

When $t=\frac{1}{4}$ we assume S in (4) to be a real $p \times p$ positive definite symmetric matrix, and when $t=\frac{1}{2}$ it is a $p d H$ matrix.

Received by the editors June 1st, 1977.

Now to derive an inequality for (4) similar to (1), we need a modification of Cramer-Rao multiparameter lower bound for the variance of an unbiased estimate. We state the result as follows.

Let $E(T)=\psi\left(\lambda_{1}, \ldots, \lambda_{p}\right)=\psi$, then the multiparameter Cramer-Rao lower bound is

$$
\begin{equation*}
V(T) \geq \sum_{i=1}^{p} \sum_{j=1}^{p} j^{i j} \frac{d \psi}{d \lambda_{1}} \frac{d \psi}{d \lambda_{j}} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(J_{i j}\right)=\left(J^{i j}\right)^{-1}=\operatorname{cov}\left(\frac{\partial \log \phi}{\partial \lambda_{i}}, \frac{\partial \log \phi}{\partial \lambda_{j}}\right) \tag{7}
\end{equation*}
$$

Now consider the matrix

$$
\Delta=\left[\begin{array}{cc}
V(T) & \sigma^{\prime} \tag{8}\\
\sigma & \left(J_{i j}\right)
\end{array}\right], \quad \sigma^{\prime}=\left(\frac{\partial \psi}{\partial \lambda_{1}}, \ldots, \frac{\partial \psi}{\partial \lambda_{p}}\right)
$$

then the squared multiple correlation coefficient between T and

$$
\frac{\partial \log \phi}{\partial \lambda_{1}}, \frac{\partial \log \phi}{\partial \lambda_{2}}, \ldots, \frac{\partial \log \phi}{\partial \lambda_{p}}
$$

is

$$
\begin{equation*}
\theta^{2}=\left(\sigma^{\prime}\left(J_{i j}\right)^{-1} \sigma\right) / V(T) \tag{9}
\end{equation*}
$$

If θ_{1} and θ_{2} are the smallest and largest roots of Δ, then Eaton [2] shows that

$$
\begin{equation*}
\sigma^{2}=\left(\sigma^{\prime}\left(J_{i j}\right)^{-1} \sigma\right) / V(T) \leq \frac{\left(\theta_{2}-\theta_{1}\right)^{2}}{\left(\theta_{2}+\theta_{1}\right)^{2}} \tag{10}
\end{equation*}
$$

Now it follows from (10) that

$$
\begin{equation*}
V(T) \geq\left[\left(\theta_{1}+\theta_{2}\right)^{2} /\left(\theta_{1}-\theta_{2}\right)^{2}\right]\left(\sigma^{\prime}\left(J_{i j}\right)^{-1} \sigma\right) . \tag{11}
\end{equation*}
$$

We use (11) in the next section to generalize the gamma function inequality given by Selliah [4].
2. Gamma function inequality. From (4) an unbiased estimate T of $|\Lambda|^{\alpha}$, $\alpha>0$, is

$$
\begin{equation*}
T=C_{\alpha}|S|^{\alpha}, \quad C_{\alpha}=\left(\Gamma_{p}^{*}(a+\alpha)\right)^{-1} \Gamma_{p}^{*}(a), \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
V(T)=|\Lambda|^{2 \alpha}\left(\left[C_{\alpha}^{2} / C_{2 \alpha}\right]-1\right) \tag{13}
\end{equation*}
$$

Further, we have that

$$
\begin{gather*}
J_{i j}=\operatorname{cov}\left(\frac{\partial \log \phi}{\partial \lambda_{i}}, \frac{\partial \log \phi}{\partial \lambda_{j}}\right)=0, \quad i \neq j, \tag{14}\\
J_{i i}=E\left(-\frac{\partial^{2} \log \phi}{\partial \lambda_{i}^{2}}\right)=\left(a_{p-i+1}\right) \lambda_{i}^{-2}, \tag{15}\\
\partial|\Lambda|^{\alpha} / \partial \lambda_{i}=\alpha|\Lambda|^{\alpha} / \lambda_{i}, \quad i=1, \ldots, p, \tag{16}
\end{gather*}
$$

and hence from (11) it follows that

$$
\begin{align*}
& {\left[\Gamma_{p}^{* 2}(a+\alpha) / \Gamma_{p}^{*}(a) \Gamma_{p}^{*}(a+2 \alpha)\right]} \\
& \quad \leq\left(1+\frac{\left(\theta_{1}+\theta_{2}\right)^{2}}{\left(\theta_{1}-\theta_{2}\right)^{2}} \sum_{j=1}^{p}\left(a_{p-j+1}\right)^{-1} \alpha^{2}\right) \tag{17}
\end{align*}
$$

Note that (17) is a sharper upper bound than one given by Selliah [4] by assuming $a_{1}=\cdots=a_{p}=\delta$.

It is possible to derive similar inequalities for beta functions by using Olkin's [3] modified multivariate beta distributions.

Let

$$
\left[\begin{array}{ll}
1 & p_{1}^{\prime} \tag{18}\\
p_{1} & p_{22}
\end{array}\right]
$$

be the correlation matrix corresponding to the covariance matrix Δ of (8), then $\boldsymbol{\theta}^{2}$ of (9) equals

$$
\begin{equation*}
\theta^{2}=p_{1}^{\prime} p_{22}^{-1} p_{1} \tag{19}
\end{equation*}
$$

Since $p_{22}^{-1}-I$ is known to be at least positive semidefinite, as $I-p_{22}$ is at least positive semidefinite, we have that

$$
\begin{equation*}
\theta^{2}=p_{1}^{\prime} p_{22}^{-1} p_{1} \geq p_{1}^{\prime} p_{1} \leq 1 \tag{20}
\end{equation*}
$$

Thus we find that

$$
\begin{equation*}
\operatorname{Min} p_{1} p_{22}^{-1} p_{1}, \text { subject to } p_{1}^{\prime} p_{1} \leq 1 \tag{21}
\end{equation*}
$$

is λ, where λ is the smallest root of p_{22}^{-1}. It follows

$$
\begin{equation*}
\lambda \leq \theta^{2}=\left(\sigma^{\prime}\left(J_{i_{j}}^{-1}\right) \sigma\right) / V(T) \leq\left(\theta_{2}-\theta_{1}\right)^{2} /\left(\theta_{2}+\theta_{1}\right)^{2} \tag{22}
\end{equation*}
$$

Now by using (22) we may set a lower brand for the left hand side of (17).

References

1. R. Bellman, A generalization of some integral identities due to Ingham and Siegel, Duke Math. J. 23 (1956), 571-577.
2. Morris L. Eaton, A maximization problem and its applications to canonical correlations, J. Multi. Anal. 6 (1976), 422-425.
3. Ingram Olkin, A class of integral identities with matrix argument, Duke Math. J. 26 (1959), 207-213.
4. J. B. Selliah, An inequality satisfied by the gamma function, Canad. Math. Bull. 19 (1976), 85-87.

St. Mary's University and Dalhousie University
Halifix, N.S., Canada,
B3H 3C3

