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Abstract
In this paper, we introduce the 3-step hedge-based valuation for the valuation of hybrid claims. We consider an
insurance portfolio which is exposed to traded risks, diversifiable risks and non-traded systematic risks. The class
of 3-step hedge-based valuations is equivalent with the class of fair valuations. Closed-form solutions are derived
for a portfolio of unit-linked contracts under the assumption of independence between financial and non-financial
risks. We also consider the additive 3-step valuation and show that this additive valuation is a member of the more
general class of 3-step hedge-based valuations.

1. Introduction
The value of a random future liability should correspond with the amount of money required today to
set up an appropriate risk management strategy and to ensure this strategy leads to a sufficiently large
likelihood to meet the future liability. Insurance liabilities are complex combinations of different types
of risks. There is a pletora of papers proposing valuation frameworks when faced with only a single type
of risk. For example, the field of mathematical finance developed the risk neutral valuation framework
for hedgeable claims, whereas premium principles are introduced in the actuarial literature to deal with
claims depending on diversifiable risks. In this paper, we introduce the 3-step hedge-based valuation
that decomposes a claim into a hedgeable, diversifiable and residual part and determines the value of
the claim by combining appropriate valuation principles.

Traditional insurance liabilities in life and non-life insurance are often assumed to be diversifiable.
For example, the underlying assumptions when determining pure premiums for life insurance and annu-
ity benefits is that the insurer will aggregate a large amount of independent policies. Non-life insurers
employ statistical methods to determine rating variables which are then used to classify policies in homo-
geneous groups. Actuarial valuation principles (or premium principles) such as the standard deviation
principle can be used for valuating such diversifiable claims.

A hedgeable claim is a liability that can be replicated by investing in an appropriate linear combi-
nation of traded assets. For example, stocks, bonds and other traded derivatives are examples of traded
assets that can be used to replicate the payoff of a future liability. If such a replicating portfolio exists,
buying the replicating portfolio eliminates the risks of the liability. The claim is perfectly ‘hedged’, and
the value of such a hedgeable claim should correspond with the market value of the replicating portfolio
to avoid arbitrage opportunities. The value of the replicating portfolio can be observed in the market and
therefore valuation of a hedgeable claim is model free.

In this paper, we propose a 3-step hedge-based valuation principle for insurance claims. We consider
claims that can be expressed as a product between a financial part and a conditional diversifiable part.
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Indeed, given the realization of the traded assets and the non-traded systematic risks, the second part of
the claim is a sum of identical and independent random variables. In a first step, we determine an appro-
priate hedging portfolio. The hedging portfolio will not exactly replicate the hybrid claim. The residual
part of the claim corresponds with the hybrid claim after subtracting the random income generated by
the hedging portfolio. In the second step, we use a conditional actuarial valuation, which delivers a ran-
dom variable that represents the actuarial value of the residual claim for each realization of the traded
and non-traded systematic risks. The third valuation step then consists of valuating this residual claim
using a systematic valuation.

The 3-step hedge-based valuation is a combination of the hedge-based valuation introduced in Dhaene
et al. (2017) and the 2-step valuation introduced in Pelsser and Stadje (2014). Both valuations assume
that a market with actuarial and traded risks and decompose a hybrid claim in a financial and an actuarial
part. These valuations are therefore a combination of financial and actuarial pricing principles. We will
show that our 3-step hedge-based valuation is equivalent with the hedge-based valuation and the 2-step
valuation.

The 3-step hedge-based valuation is a fair valuation, as defined in Dhaene et al. (2017). A fair val-
uation is a valuation which is market, but also model consistent. Market consistency ensures that the
hedgeable part of a claim is valuated at its hedging cost. Model consistency implies that claims which
are independent of the financial market and the systematic risk factors are valuated using an actuar-
ial valuation. In a one-period model, independence of the financial markets implies that observing the
asset prices does not give information about the realization of the claim. Therefore, hedging using a
model-consistent hedger such as the mean-variance hedger will not be able to reduce the risk of the
claims. Independence of the systematic risk factors implies the claim can be managed by diversifica-
tion and therefore an actuarial valuation may be most appropriate. In Neuberger and Hodges (1989), the
authors consider market-consistent valuation using a utility indifference approach; see also Malamud
et al. (2008). Market-consistent valuation requires a combination of actuarial and financial valuation
methods, as was first pointed out by Brennan and Schwartz (1976a), who considered the valuation of
guarantees in unit-linked insurance contracts; see also Embrechts (2000). Recent approaches to define
fair valuations are Pelsser and Stadje (2014), Pelsser and Schweizer (2016), Wuthrich (2016), Dhaene
et al. (2017), Delong et al. (2019a), Barigou and Dhaene (2019), Barigou et al. (2019), Barigou et al.
(2021), Deelstra et al. (2020), Bacinello et al. (2021), Chen et al. (2021).

The idea of decomposing a hybrid claim in a hedgeable, diversifiable and residual part was also
proposed in Dhaene (2022) and Deelstra et al. (2020). In both situations, the diversifiable and financial
risks are assumed to be independent. We generalize these approaches in that the 3-step hedge-based
valuation allows for dependencies between the financial and diversifiable risks. In Deelstra et al. (2020),
the authors use a different 3-step valuation principle. Indeed, after decomposing the hybrid claim into
three parts, the valuation of the hybrid claim is assumed to be the sum of the valuations of the different
parts. We show in this paper that such an additive 3-step valuation is a subset of the larger class of 3-step
hedge-based valuations.

The contributions of this paper are as follows. First, we introduce the 3-step hedge-based valuation,
which takes into account non-traded systematic risks. Second, we show the equivalence between the
class of 3-step hedge-based valuations and the class of fair valuations. This then implies that the class
of 3-step hedge-based valuations is the same as the class of valuations described in Dhaene et al. (2017)
and Pelsser and Stadje (2014). Third, we derive closed-form expressions for a portfolio of unit-linked
contracts under the assumption the financial and non-financial risks are independent. We assume an
incomplete financial market and derive closed-form expressions for the mean-variance hedger. Fourth,
we consider an additive 3-step valuation and show that this valuation is a special case of the 3-step
hedge-based valuations.

This paper is organized as follows. In Section 2, we introduce the valuation of hedgeable and diversi-
fiable claims. The class of fair valuations is discussed in Section 3 as well as the hedge-based valuations.
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We propose our 3-step hedge-based valuation in Section 4, together with important properties and an
illustration. The case where financial and non-financial risks are independent is considered in Section 5.
In Section 6, we introduce the additive 3-step valuation and show that this valuation is a special case of
the more general class of 3-step hedge-based valuations.

2. Valuation of hybrid claims
A claim is a future cashflow which has to be paid by the insurance company to the policyholders. In this
paper we consider a one period valuation where claims are modeled by random variables. We assume
today is time t = 0 and the claim has a deterministic maturity T > 0. No actions (e.g., rebalancing of
investment portfolios) are allowed between the time of valuation and the maturity of the claim. The aim
is to determine the time-0 value of such a future liability. This value should correspond with the amount
of money required to set up an appropriate risk management strategy for the claim. In the remainder of
the paper, we assume there is a risk-free bank account paying a deterministic and constant continuously
compounded interest rate r. We assume that all random variables encountered in this paper are defined
on a common probability space (�, F , P) and have finite first two moments. The set of all random
variables is denoted by C. Similar as in Dhaene et al. (2017), we define the class of valuations for claims
in C as functions ρ : C →R attaching the real number ρ[S] to any claim S ∈ C such that the function ρ

is normalized and translation invariant. The real number ρ[S] can be interpreted as the time-0 value of
a claim S.

2.1. Hedgeable claims
We assume that there is an arbitrage-free financial market with nf traded payoffs with maturity T . The
traded assets can be bought and sold by all market participants at any quantity. The bank account at
time T is denoted by Y0. Since we assume a deterministic rate r, we have that, starting from an initial
investment of 1 at time t = 0, the bank account is given by Y0 = erT . The payoff of asset i at time T is
denoted by Yi. We use the random vector Y = (Y0, Y1, Y2, . . . , Ynf ) to denote the bank account and the
nf traded assets. The unique time-0 price yi of the payoff Yi can be observed in the market. We assume
that y0 = 1. A financial derivative S is a function of the traded assets, that is, S = h (Y), for some Borel-
measurable function h. We denote the set of all financial derivatives by CY . Throughout the paper we
assume that all functions we encounter are Borel measurable.

A claim Sh ∈ C is a hedgeable claim if we have a real vector ν ∈Rnf +1 such that Sh = ν · Y , almost
surely. The set of hedgeable claims is denoted by Ch. The vector ν is called the hedge of the claim Sh.
We assume that the tradeable assets are non-redundant, that is, we cannot use a subset of the traded
assets to replicate the payoff of another traded asset. Assume θ ∈Rnf +1. Then θ · Y = 0 implies θ =
(0, 0, . . . , 0). Since we assume the traded assets to be non-redundant, the hedge ν is unique. Of course, a
hedgeable claim is a financial derivative, that is, we have Ch ⊆ CY . In case both sets coincide, the market is
complete.

A hedgeable claim can be managed by buying at time t = 0 the hedge ν at the market price ν · y. Since
the hedge will replicate the payoff of the liability, the residual liability, that is, the liability after taking into
account the payout of the hedge, is zero. In order to avoid arbitrage opportunities, the price of a hedgeable
claim should be equal to the unique price of the hedge. We assume there is a risk neutral probability
measure. Note that in our setting, the existence of a risk neutral probability measure is equivalent to the
absence of arbitrage. Q which is equivalent to the real-world probability measure P. The time-0 prices
can be expressed as yi = e−rTEQ [Yi] , for i = 0, 1, 2, . . . , nf . The price of a hedgeable claim should be
determined using a discounted risk neutral expectation. The financial market, however, is assumed to be
incomplete, which implies there are different risk neutral measures and there may be financial derivatives
which cannot be perfectly replicated.
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2.2. Diversifiable claims
The claim Sd ∈ C is said to be a diversifiable claim if there exist i.i.d. risks V1, V2, . . . , Vn ∈ C such that

Sd = 1

n

n∑
i=1

Vi, (2.1)

where n > 1. A diversifiable claim is a combination of independent claims Vi in (2.1) which are attributed
to individual policies. An insurer holding a diversifiable claim insures a finite number of individual and
independent policies. However, we assume the insurer can always decide to increase the number of
policies in the portfolio if necessary, that is, we assume there exist more copies of Vi than the insurer
currently holds in its portfolio. Indeed, in order for a claim to be diversifiable, the insurer holding the
claim should be able to diversify, that is, increase the number of policies (n) in its portfolio. The claim
Sd is not perfectly diversified since only a finite number of policies are included. Since we assume that
E[V1] is finite which implies that the weak law of large numbers can be applied if we allow n to grow.
Longevity risk, for example, impacts the future lifetime of a large group of policyholders simultaneously
in the same direction. Although the longevity risk of different groups may be independent (e.g., longevity
in the United States and China), one cannot find a large number of independent copies which means an
insurer may not find enough independent copies to appropriately diversify the risk.

We can determine a value and the corresponding risk management strategy for a diversifiable claim.
A diversifiable claim could be a linear combination of n independent hedgeable claims Vi. In this case,
the diversifiable claim is also hedgeable and one can construct a hedging strategy. The value of the
diversifiable claim then corresponds with the price to set up the hedging strategy, that is, pricing is
based on risk neutral valuation. Assume now the diversifiable claim is not hedgeable. The law of large
numbers states that if n tends to infinity, the claim Sd converges to E[V1], where this expectation is taken
under the real-world distribution P. In reality, an insurer can never hold a portfolio with infinitely many
contracts. Therefore, the realization of Sd fluctuates around the expectationE[V1]. For a sufficiently large
n, the central limit theorem shows that the distribution of Sd is approximately normal distributed, that is

Sd ≈E
[
Sd
]+

√
Var [Sd]�−1(U), (2.2)

where � is the cdf of a standard normal distribution and U is a uniform distribution.
The value of a non-hedgeable diversifiable claim Sd should correspond with the amount of money

required to be able to pay the claim with a sufficiently large likelihood. A possible value for the
diversifiable claim can be determined using the following valuation:

ρa
[
Sd
]= e−rT

(
E
[
Sd
]+ λ

[
Sd
])

, (2.3)

where λ
[
Sd
] ∈R is a risk margin capturing deviations of Sd from the average claim amount. The capital

ρa
[
Sd
]

is invested in the risk-free bank account until the maturity T of the claim. Taking into account
(2.2), the probability of insolvency is expressed as follows:

P
[
Sd > erTρa

[
Sd
]]≈ 1 − �

(
λ
[
Sd
]√

n√
Var[V1]

)
. (2.4)

We conclude that if we have a non-hedgeable diversifiable claim and a valuation with a given risk
margin determined by λ, we can reduce the insolvency probability by increasing the size of the portfolio.
For a given insolvency probability, the risk margin is a decreasing function of the portfolio size.

A valuation ρa which has the form of (2.3) and where λ
[
Sd
]

is P-law invariant is called an actu-
arial valuation. Note that a valuation ρa is P−law invariant if S1

d= S2 implies ρa [S1] = ρa [S2], where
‘ d=’ stands for equality in distribution under the probability measure P. The set with all actuarial valu-
ations is denoted by A. The risk margin λ can be determined using the standard deviation of the claim,
which results in the standard deviation principle. The value of a claim S ∈ C valuated using the standard
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Figure 1. The distribution of the claim S given by S = 1
na

∑na

i=1 Xi, where p0 = 0.75, p1 = 0.85 and
na = 1000. The solid vertical line corresponds with the value of the claim when a standard deviation
principle with β = 1 is used. The dashed lines represent the value of the conditional claims S0 and S1.

deviation principle is then given by

ρa[S] =E[S] + β ×√
Var[S], (2.5)

where β > 0 is called the safety loading. A P−law invariant valuation ρa can always be written as
ρa [S] = e−rT

(
E [S] + (

erTρa [S] −E [S]
))

, which shows we can write the valuation ρa [S] as in (2.3).
Therefore, the class of actuarial valuations can equivalently be defined as the class of all P−law invariant
valuations.

Example 1. Consider an insurance company holding a portfolio of na pure endowment policies. The
claim S denotes the per-policy loss and is given by S = 1

na

∑na

i=1 Xi, where the random variable Xi takes
value 1 if policyholder i survives and 0 otherwise. We assume there is one systematic risk factor denoted
by Z and P[Xi = 1| Z = 0] = p0 and P[Xi = 1| Z = 1] = p1. The random variable Z can be interpreted as
a longevity index for a population and we assume here P[Z = 0] = P[Z = 1] = 0.5. We assume p0 < p1

and given Z , the random variables X1, X2, . . . , Xna are independent. The survival probabilities depend
on the realization of the longevity index Z . The distribution of S is shown in Figure 1, where we use
p0 = 0.75, p1 = 0.85 and na = 1000. The x-axis shows the possible realizations of the random variable
S, that is, the possible claim amounts. The corresponding frequencies are shown on the y-axis. This
distribution is not approximately normal, as was the case for a diversifiable claim; see (2.2). Increasing
the size of the portfolio, that is, increasing na will not result in a normal distribution for the claim.
Moreover, if we use the standard deviation principle given by (2.5), the risk margin will not decrease to
zero if we increase the portfolio size. The vertical solid line corresponds with the value of the claim S
when a standard deviation principle is applied with β = 1. A similar example was considered in Milevsky
et al. (2006) to illustrate that a portfolio of life insurance policies cannot be priced using a standard
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deviation principle in case there is a longevity risk factor affecting the survival probabilities of the
policyholders.

If we condition on the longevity index Z , the claim is diversifiable. Indeed, consider the random
variable Sk = S |Z = k, where k = 0, 1. Then Sk is a diversifiable claim. Moreover, if we use a standard
deviation principle ρa to valuate the claim, we find that ρa [Sk] →E[Sk] if na → +∞. The two dashed
lines in Figure 1 correspond with the value of the claims Sk, when a standard deviation principle is used.
In this paper, we propose a new valuation that takes into account that valuating the claim S using solely a
valuation based on diversification is not appropriate, but will exploit the fact that the conditional claims
S0 and S1 are diversifiable. �

2.3. Hybrid claims
In this paper, we consider an insurance company holding a portfolio with liabilities. The portfolio con-
sists of a total of na policyholders. We assume the random variable Xi is modeling policyholder specific
risks. For example, Xi can be a random variable taking the value 1 if the policyholder survives until time
T and 0 otherwise. We assume that claims depending on the insurer’s policyholder specific risks are not
traded in the financial market and are therefore not perfectly replicable by the traded assets Y . However,
the random variables Xi, i = 1, 2 . . . , na can be dependent on the financial market, meaning that they
may be partially hedgeable.

We assume the portfolio of the insurer is also exposed to a number of non-traded systematic risks.
We denote these non-traded systematic risks by the random vector Z = (Z1, Z2, . . . , Zns). We assume that
the random variables Xi denoting the policyholder specific risks are conditionally independent:

P
[
X1 ≤ x1, X2 ≤ x2, . . . , Xna ≤ xna | Y = y, Z = z

]=
na∏

i=1

P
[
Xi ≤ xi| Y = y, Z = z

]
. (2.6)

We thank the anonymous referee to point out that this condition is a simplifying assumption. The
complexity of some practical situations may distort the conditional independence.

Consider a claim S which can be expressed as S = h (Z) for some function h. This claim is called a
systematic claim, and we denote the set with all such claims by CZ. The set with all claims containing
financial and systematic information is denoted by CY ,Z, that is, if S ∈ CY ,Z, then S = h (Y , Z) for some
function h.

Definition 2.1. A claim S is said to be a pure actuarial claim if S is independent of the financial and
non-traded systematic risks. We denote by C⊥,Y,Z the set of all pure actuarial claims

C⊥,Y,Z = {S ∈ C and S is independent of Y and Z} .

We will investigate a portfolio of policies, where the payoff for policyholder i at maturity T is given
by Sf × g (Xi, Z) . The claim Sf is a financial derivative and g is a known function. Note that the financial
derivative Sf is not necessarily hedgeable, that is, it may be that Sf /∈ Ch.

The per-policy liability to the insurance company is then given by

S = Sf ×
∑na

i=1 g (Xi, Z)

na
. (2.7)

The structure (2.7) together with Condition (2.6) allows to decompose the hybrid claim in three
distinctive parts which individually require a different type of valuation. The aim of this paper is to
propose a valuation that shows how to combine these different type of valuations.

In this paper, we assume that hedgeable claims are valuated using risk neutral valuation and pure
actuarial claims are valuated with a given actuarial valuation; see (2.3). The idea of the 3-step hedge-
based valuation is that we have an actuarial valuation at hand that we want to use for valuating the
diversifiable part of the claim. Consider a claim S of the form (2.7) and define the conditional random
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variable Sy,z which is given by Sy,z = (S| Y = y, Z = z). Then we find from Condition (2.6) that Sy,z is
a diversifiable claim (see (2.1)) and therefore can be valuated using an actuarial valuation. Moreover,
the random vector Z can be interpreted as the non-traded systematic effects. The valuation proposed in
this paper then assumes that the systematic effects should be valuated with a different valuation than the
diversifiable part. We assume that we know how to deal with diversifiable claims through a particular
choice of an actuarial valuation ρa. Since we only have a claim that is diversifiable given the outcomes
of the traded and non-traded systematic effects, we can only determine the value of the claim in each
systematic scenario. Otherwise stated, once we know y and z, we can valuate this claim Sy,z using the
actuarial valuation ρa. Since the outcomes of the systematic scenario are random, we will determine
a value ρa

[
Sy,z
]

for each possible realization of Y and Z. In the last step of our valuation, we apply
a separate valuation that takes into account the uncertainty about the systematic scenario, that is, the
values for y and z, that will eventually unfold.

Note that not all claims in C are product claims of the form (2.7). For such a general hybrid claim,
however, one may not be able to define a diversifiable part which should be valuated with an actuarial
valuation. Indeed, diversifiability of a claim implies the insurer pools many policyholders with the same
policy and is able to increase the size of the portfolio. If the hybrid claim does not contain a diversifiable
part, that is, in case we do not have the part

∑na
i=1 g(Xi ,Z)

na together with the Condition (2.6), it may not be
intuitively clear why one has to combine different valuation principles for the residual part of the claim.
An example of a claim that does not have the structure as in (2.7) are option-type payoffs, for example,
S =

(
Sf ×

∑na
i=1 g(Xi ,Z)

na − K
)

+
, where (x)+ = max (x, 0). Another example is the claim S = Sf ×∏n

i=1 Xi. If
the Xi takes value 1 in case policyholder i survives and 0 otherwise, the claim S only pays the amount Sf

if everyone survives. However, these examples are rather theoretical and by restricting the set of claims
to product claims of the form (2.7), we cover most realistic situations.

By considering claims S which can be expressed as in (2.7), we assume that each of the na policy-
holders receives the same financial benefit Sf . If an insurer sells different types of contracts, we have
that the financial benefit depends on the policyholder i, that is, we have to write Sf

i . In this case, we first
subdivide the contracts in portfolios where each policy receives the same financial benefit and secondly,
we valuate each portfolio separately. In Bacinello et al. (2011), the authors also consider product claims
and describe different choices for Sf , encompassing the most common minimum death and living guar-
antees. Their valuation then assumes a perfectly diversified portfolio, that is, there is no risk margin in
the actuarial valuation and the financial market is independent of the mortality risk, that is, Y is indepen-
dent of Z and X; see also Brennan and Schwartz (1976b), Deelstra et al. (2020) for the one-period case
and Ballotta et al. (2021), Delong et al. (2019b) for the multiperiod case. Product claims with depen-
dent financial and non-financial risks are considered in Deelstra et al. (2016), Salahnejhad and Pelsser
(2020), Barigou et al. (2022).

We write g instead of g(Xi, Z) if no confusion is possible. The claim S is called a hybrid claim, since
it is a combination of different type of risks. The aim of this paper is to determine a valuation framework
to valuate the hybrid claim S.

3. Fair valuations
3.1. Definition
A hybrid claim depends on the information about the traded assets Y . It is then reasonable to impose that
a valuation of a hybrid claim takes into account the market prices y of the traded assets. The valuation of
the hybrid claim should be ‘consistent’ with the available market information. Such valuations are called
market-consistent valuations. However, employing the market information may not be appropriate for a
pure actuarial claim. Therefore, we also require that valuations are model consistent. Combining market
consistency with model consistency leads to the class of fair valuations; see also Dhaene et al. (2017).
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Definition 3.1 (Fair valuation). A valuation ρ is

• market consistent if for any claim S ∈ C and trading strategy ν, we have:

ρ [S + ν · Y] = ρ[S] + ν · y, (3.1)

• model consistent if there exists an actuarial valuation π ∈A such that for any pure actuarial
claim S⊥ ∈ C⊥,Y,Z, we have:

ρ
[
S⊥]= π

[
S⊥] , (3.2)

• fair if it is market consistent and model consistent.

If we decompose a hybrid claim in a hedgeable part ν · Y and a residual part S, then any market-consistent
value is the sum of the value of the hedgeable and residual part. One can buy the hedgeable claim ν · Y at
the price ν · y and therefore the value of the hedgeable part is unambiguously determined by its hedging
cost. The residual part S, on the contrary, has to be valuated using the valuation ρ. If the value of a
hybrid claim is determined with a market-consistent valuation, this value is consistent with the prices
of the available traded financial assets in that it takes into account the market price to buy the hedge.

The set of all model-consistent valuations is denoted by M. Expression (3.2) states that a model-
consistent valuation employs a given actuarial valuation π , which is usually different from ρ, for pricing
a pure actuarial claim. Note that the set of actuarial valuations is a subset of the model-consistent valu-
ations, that is, A⊆M. For general hybrid claims, the valuation ρ will be a combination of the hedging
cost ν · y and a model-consistent valuation.

In Dhaene et al. (2017), the authors consider a slightly different definition of a model-consistent
valuation. Indeed, in their setting, a valuation is model consistent if an actuarial valuation is used for
any claim which is independent of the financial assets. Hence, claims which depend on non-traded
systematic information, but are independent of the financial market are also valuated using an actuarial
valuation. Note, however, that using a less restrictive definition for a model-consistent, and therefore also
a fair valuation does not change the results of Dhaene et al. (2017) which we will need in this paper.

We have to define the notion of a hedger. These concepts were first defined in Dhaene et al. (2017)
and we refer to this paper for a detailed discussion and more properties on hedgers and hedge-based
valuations. A hedger is a function θ : C →Rnf +1 which is normalized, that is, θ 0 = (0, 0, . . . , 0) and
translation invariant, that is, θ S+a = θ S + (

e−rTa, 0, 0, . . . , 0
)
, for S ∈ C and a ∈R. The hedging strategy

θ S =
(
θ

(0)
S , θ (1)

S , . . . , θ(nf )
S

)
is also called the hedge for the claim S. The component θ

(i)
S of the hedge

determines the amount of units to be bought of the traded asset Yi. It is reasonable to assume that the
hedge of a hedgeable claim ν · Y corresponds with ν. Consider the set C⊥,Y ,Z containing the claims that
are independent of the traded assets Y and the non-traded systematic risks Z. It is also reasonable to
assume that the hedge for a claim in C⊥,Y ,Z only consists of a position in the risk-free bank account.
Therefore, we assume that all hedgers we encounter in this paper are fair hedgers, as defined in Dhaene
et al. (2017).

The idea of market-consistent, model-consistent and fair hedgers was first introduced in Dhaene
et al. (2017). The following theorem was proven in Theorem 3 of Dhaene et al. (2017) and characterizes
the class of valuations that are both market and model consistent.

Theorem 3.1. Consider a valuation ρ : C →R. The following two statements are equivalent:

1. The valuation ρ is a fair valuation, that is, it is market consistent and model consistent.
2. The valuation ρ is a hedge-based valuation: there exist a model-consistent valuation π ∈M

and a fair hedger θ such that

ρ[S] = θ S · y + π [S − θ S · Y] . (3.3)

The valuation defined in (3.3) is called a hedge-based valuation and was introduced in Dhaene et al.
(2017) in a one-period setting. In Barigou and Dhaene (2019), Barigou et al. (2019) and Chen et al.
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(2021), the authors consider the hedge-based valuations in a multi-period setting, whereas continuous-
time versions of the hedge-based valuations are considered in Delong et al. (2019a,b).

A hedged-based valuation employs a fair hedger θ to determine the hedgeable part of a hybrid claim.
This hedgeable part can be priced using the available market information. The remaining, residual, part
of the claim is then priced using an appropriate model-consistent valuation. We say that S − θ S · Y is the
residual part of the hybrid claim S.

4. Fair valuations with non-traded systematic risks
4.1. Definition of the 3-step hedge-based valuation
One may argue that, when using the hedge-based valuation, one can use an actuarial valuation to valuate
the residual part. The actuarial valuation should then be determined such that it corresponds with setting
up a sufficiently large capital buffer as the risk management strategy to cope with the residual part. For
example, one may use a standard deviation principle with a sufficiently large safety loading, or the
VaR/TVaR with a confidence level close to 1. An example of such a valuation is explored in Example 2.
Theorem 3.1, however, states that there exist fair valuations which employ a model-consistent, but not
an actuarial, valuation to valuate the residual part. In this paper, we will consider these fair valuations.
A first example of such a valuation is introduced in Example 3.

Example 2 (Capital for the residual part). By decomposing a claim S in a hedgeable part and a
residual part using a hedger θ , we mainly have to focus on the valuation of the residual part. Indeed, the
value of the hedgeable part is uniquely determined by its hedging cost. One possibility to valuate the
residual part is to determine a sufficiently large capital buffer. For example, one could use the following
valuation:

ρ[S] = θ S · y + π [S − θ S · Y] ,

where π is an actuarial valuation. The amount π [S − θ S · Y] is a capital buffer which is invested in the
risk-free asset until the maturity T of the claim. For example, one can use the VaR to determine the
capital buffer. �
Example 3 (The quantile hedging valuation of Barigou et al. (2021)). In Barigou et al. (2021),
the authors start from the hedge-based valuation, but propose to use a quantile hedging approach for
the residual part of the claim. Assume that i ∈ (0, 1) is the cost-of-capital rate. The quantile hedging
valuation is defined as follows:

ρ [S] = θ S · y + i × η
(l)
S−θS ·Y · y, (4.1)

where θ is a fair hedger and η(l) is a hedger defined as follows:

η
(l)
S = arg min

β∈Rnf +1
E [l (S − θ S · Y − β · Y)] , (4.2)

and l : R→ [0, +∞) is a convex function satisfying l(x) = 0 ↔ x = 0. The residual part is valuated using
a model-consistent valuation which is not necessarily actuarial. Instead of using a capital buffer for
coping with the residual part of the hybrid claim, the underlying risk management strategy is buying an
appropriate investment portfolio. Note that the hedger ηl is a fair hedger. �

The difference between Examples 2 and 3 lies in the valuation of the residual part. Example 2 uses a
‘passive’ risk management strategy where the risks of the residual part are covered by a capital buffer.
Example 3, on the other hand, uses an ‘active’ risk management strategy which invests in an appro-
priate investment portfolio. In this section, we will build a valuation framework that incorporates both
approaches.
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We can now define the class of (Y , Z) −conditional valuations, which are valuations that map a hybrid
claim into the set CY ,Z.

Definition 4.1 ((Y, Z)–conditional valuation). A (Y, Z) −conditional valuation is a function
π [·| Y, Z] : C → CY,Z attaching the claim π [S| Y, Z] ∈ CY,Z to a hybrid claim S ∈ C such that

1. π [·| Y, Z] is normalized: π [0| Y, Z] = 0,
2. π [·| Y, Z] is conditionally translation invariant: π

[
S + Sh| Y, Z

]= π [S| Y, Z] + Sh, for
Sh ∈ Ch.

Note that we only require conditionally translation invariance for hedgeable claims. In the remainder
of the paper, we will write ‘conditional valuation’ instead of ‘(Y , Z) − conditional valuation’ if no
confusion is possible.

Assume that we have an actuarial valuation ρa ∈A. In case a claim is independent of the financial
and the non-traded systematic risks, we require that the claim is valuated using ρa. Indeed, since we
consider claims of the form (2.7), independence of the financial market and the systematic risks implies
that the claim is diversifiable, which justifies the use of an actuarial valuation. If a conditional valuation
is consistent with this requirement, we say that the valuation is conditional model-consistent.

Definition 4.2. The conditional valuation π [·| Y, Z] : C → CY,Z is a conditional model-consistent
valuation if pure actuarial claims are valuated with an actuarial valuation:

e−rTπ [S| Y, Z] = ρa [S] , for S ∈ C⊥,Y,Z, (4.3)

where ρa ∈A is a model-consistent valuation.

An example of a conditional model-consistent valuation is the conditional standard deviation
principle, which is defined as follows:

ρa [S| Y , Z] =E [S| Y , Z] + β
√

Var [S| Y , Z]. (4.4)

We can now define the 3-step hedge-based valuation. In a first step, an appropriate hedging strategy θ S

is used to offset a hedgeable part of a hybrid claim S. In the second valuation step, the residual claim
S − θ S · Y is transformed by using a conditional model-consistent valuation. Indeed, since we consider
claims of the form (2.7), conditioning on Y and Z will transform the residual claim in a diversifiable
claim for which the actuarial valuation ρa can be used. The last, and third step valuates the remaining
claim using a model-consistent valuation ρs.

Definition 4.3. (3-step hedge-based valuation). A valuation ρ is said to be a 3-step hedge-based
valuation if for any claim S ∈ C, it can be expressed as follows:

ρ[S] = θ S · y + ρs [ρa [S − θ S · Y| Y, Z]] , (4.5)

where θ is a fair hedger, ρs is a model-consistent valuation principle and ρa is a conditional model-
consistent valuation principle.

The first term in (4.5) corresponds with using risk neutral valuation for the hedgeable part of a claim.
The conditional valuation corresponds with using a valuation which is based on diversification. There
are different choices for the valuation ρs, depending on the risk management strategy one wants to
implement. In the following example, we discuss a possible choice for the systematic valuation ρs.

Example 4 (Linear systematic valuation ρs consistent with the market prices). In this example, we
consider the systematic valuation which was proposed in Deelstra et al. (2020). Assume that ρs can be
expressed as follows:

ρs [S] = e−rTE [ϕ × S] , (4.6)

for some non-negative random variable ϕ, where we assume ϕ to be in CY,Z with E [ϕ] = 1. The valu-
ation ρs uses the expectation of the claim, but only after transforming the claim S with an appropriate
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‘distortion’ ϕ. The distortion allows to use a prudent valuation approach by considering the claim in
a less preferable, or stressed, scenario. The value ρs[S] can then be interpreted as the expected payout
of the claim S in the stressed scenario. If we define the probability measure Q, equivalent to P using
its Radon–Nikodyn derivative dQ

dP = ϕ, then we can write ρs [S] = e−rTEQ [S] . The liability S is priced
using an expectation under a stressed probability measure. This valuation corresponds with a risk man-
agement strategy which provides a sufficient large capital buffer to absorb extreme losses which arise in
less preferable systematic scenarios. In order to determine the distortion ϕ, one can follow the approach
of Deelstra et al. (2020), where the authors require that the valuation ρs should be consistent with the
market prices, that is, ρs[Yi] = yi, for i = 1, 2, . . . , nf . One can employ the Esscher transform, which was
introduced in Esscher (1932) to find the ϕ in this way; see also Gerber and Shiu (1995). �
Example 5 (Modified standard deviation principle). Assume we aim for a valuation ρ which is con-
sistent with risk-neutral valuation for hedgeable claims and with the standard deviation principle for
pure actuarial claims. We can then use the following 3-step hedge-based valuation:

ρ[S] = θ S · y + ρs
[
E [S − θ S · Y| Y , Z] + β

√
Var [S| Y , Z]

]
. (4.7)

Indeed, it is easy to verify that ρ[Sh] = e−rTEQ

[
Sh
]

for Sh ∈ Ch and ρ[S] = e−rT
(
E[S] + β

√
Var[S]

)
for

a claim S ∈ C⊥,Y ,Z. �
It is straightforward to see that the valuation introduced in Example 2 is a 3-step hedge-based valua-

tion. Below, we show that the quantile hedging valuation of Barigou et al. (2021) is also an example of
a 3-step hedge-based valuation.

Example 6 (The quantile hedging valuation (continued)). Consider the valuation introduced in
Example 3. The hedger η(l) defined in (4.2) is a fair hedger, see Theorem 4 in Dhaene et al. (2017).
We can define the conditional valuation as follows ρa [S| Y , Z] = η

(l)
S · Y . Since the hedger η(l) is model

consistent, the valuation ρa [·| Y , Z] is conditional model consistent. The valuation ρs is defined as fol-
lows ρs [S] = i × μS · y, for some fair hedger μ. Indeed, we then find that ρs [ρa [S − θ S · Y| Y , Z]] =
i × η

(l)
S−θS ·Y · y. Moreover, since μ is a fair hedger, the valuation ρs is a model-consistent valuation. We

can then conclude that the quantile hedging valuation is a 3-step hedge-based valuation. �
Example 7 (The two-step valuation of Pelsser and Stadje (2014)). We assume that the financial
market is complete and there exists a pricing measure Q. The 2-step valuation is given by ρ2−step[S] =
e−rTEQ [π [S| Y]] , where π [·| Y] : C → CY is a conditional valuation. We can rewrite this expression as
follows

ρ2−step[S] = e−rTEQ

[
Hh

S

]+ e−rTEQ

[
π
[
S − Hh

S | Y
]]

, (4.8)

where Hh
S = θ S · Y and θ is a fair hedger. This expression shows that the 2-step valuation is also a 3-step

hedge-based valuation provided the conditional valuation π is conditional model consistent. The first
term of (4.8) corresponds to the price to buy the hedge for the claim S when a hedger θ is used. The
conditional valuation is used to separate the financial risks from the non-financial risks in the residual
part of the claim. Since the market is assumed to be complete, the claim π

[
S − Hh

S | Y
]

is hedgeable and
therefore the second term in (4.8) corresponds with the price to buy the investment strategy to replicate
π
[
S − Hh

S | Y
]
. Different choices for the conditional valuation π are considered in Example 3.4 of Pelsser

and Stadje (2014).

4.2. Characterisation
The following theorem shows that the 3-step hedge-based valuation is a fair valuation.

Theorem 4.1. A 3-step hedge-based valuation, is a fair valuation.

https://doi.org/10.1017/asb.2023.8 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.8


ASTIN Bulletin 429

Proof. Consider the 3-step hedge-based valuation ρ given by (4.5). Since θ is a fair hedger, it is also
a market-consistent hedger and we directly find that ρ is market consistent. The hedger is also model
consistent, from which we find that

ρ
[
S⊥]= ρs

[
ρa
[
S⊥| Y , Z

]]
, for S⊥ ∈ C⊥,Y ,Z.

Since ρa [·| Y , Z] is a conditional model-consistent valuation, ρa
[
S⊥| Y , Z

]= ρa
[
S⊥]. Model consis-

tency of the valuation ρ then follows from the model consistency of the valuation ρa.

Theorem 4.2. Consider a fair valuation ρ. Then, there exists a model-consistent valuation ρs and a
conditional model-consistent valuation ρa [·| Y, Z] such that

ρ[S] = θ S · y + ρs [ρa [S − θ S · Y| Y, Z]] .

Proof. Consider a fair hedger θ . Since ρ is market consistent, we can write

ρ[S] = θ S · y + ρ [S − θ S · Y] .

We use Theorem 1 of Dhaene et al. (2017) which states that the fair valuation ρ can be expressed as
follows:

ρ[S] = e−rTEQ

[
μS · Y

]
, (4.9)

where Q is a risk neutral measure and μ is a model-consistent hedger. Define the conditional valuation
as follows:

ρa [S| Y , Z] = μS · Y , (4.10)

and the valuation ρs as follows

ρs [S] =
⎧⎨
⎩

e−rTEP[S] if S ∈ C⊥,Y ,Z,

e−rTEQ[S] if S �= C⊥,Y,Z.
(4.11)

Note that ρs is model consistent. Since μ is model consistent, there exists an actuarial valuation ρa ∈A
such that ρa [S| Y , Z] = ρa [S] for S ∈ C⊥,Y ,Z and therefore it is a conditional model-consistent valuation.
Combining (4.10) and (4.11) together with (4.9) proves the result.

We thank the anonymous referee to point out that the notation of the conditional valuation might be
misleading, since with our choice ρa [S| Y , Z] does not depend on Z.

Theorem 4.2 shows that a fair valuation has to be a 3-step hedge-based valuation. Combining
Theorems 4.1 and 4.2, we find that the class of fair valuations is equivalent with the class of the 3-step
hedge-based valuations:

ρ is a fair valuation ⇔ ρ is a 3-step hedge-based valuation.

It was shown in Dhaene et al. (2017) that the class of hedge-based valuations is equivalent with the
class of fair valuations. Moreover, the 2-step valuation introduced in Pelsser and Stadje (2014) also
characterizes the class of fair valuations. We can conclude that the 3-step hedge-based valuations, the
2-step valuations and the hedge-based valuations are describing the same class of valuations:

ρ is a 2-step valuation ⇔ ρ is a hedge-based valuation ⇔ ρ is a 3-step hedge-based valuation. (4.12)

In this section, we introduced a new valuation for hybrid claims S. Moreover, similar to the 2-step and the
hedge-based valuation, this new valuation is defined on C. However, in our illustrations and examples,
we only consider claims of the form (2.7). This approach is similar to Dhaene et al. (2017) and Barigou
et al. (2021), who also define a general hybrid valuation principle but mainly focus on product claims
of the form (2.7). In this case, conditioning on the vectors Y and Z results in a diversifiable claim, and
we have an actuarial valuation together with a corresponding risk management strategy that we want to
employ for such a diversifiable claim. However, if we have a claim S ∈ C that is not diversifiable after
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Table 1. The joint probabilities for the random
vector (Y1, Z, X1).

Y1 Z X1 Probabilities
1 0 1 0.04
1 0 0 0.10
1 1 1 0.20
1 1 0 0.14
0 0 1 0.05
0 0 0 0.15
0 1 1 0.30
0 1 0 0.02

conditioning on Y and Z, the choice of ρa[ · |Y , Z] may not be intuitive clear. In this case, instead of
first applying a conditional valuation, one may prefer to value the whole residual part S − θ S · Y with
a single model-consistent valuation, which means we use a hedge-based valuation instead. The 3-step
hedge-based valuations and the hedge-based valuations both provide a characterization for the class of
fair valuations. The choice between the two valuations depends on the situation at hand.

4.3. Illustration
Consider a financial market where there is one tradeable asset and a risk-free bank account, that is,
Y = (Y0, Y1). The market prices are denoted by (1, y1). The time-T asset value Y1 can take values 0 or 1
and we assume the risk-free rate r = 0. The claim S is defined as follows:

S = Y1 ×
∑na

i=1 Xi

na
. (4.13)

The random variables X1, X2, . . . , Xna are assumed to be identical, but not independent. Moreover, we
assume that Xi = 1 corresponds with the survival of policyholder i at the maturity T , whereas Xi = 0
otherwise. We assume that Z denotes the systematic longevity risk of an insurance portfolio. The joint
probabilities of the random vector (Y1, Z, X1) are listed in Table 1. There are two longevity scenarios. In
the first scenario, Z = 0 and we experience a decrease in longevity, whereas Z = 1 corresponds with the
scenario where longevity is increasing. Indeed, one can verify that

P [X1 = 1|Z = 0] = 0.26, and P [X1 = 1|Z = 1] = 0.76.

Survival probabilities are larger if Z = 1 compared to the situation where Z = 0. Note that the random
variable Z is dependent on the financial market. Indeed, we have that P [Y1 = 1|Z = 0] = 0.41, whereas
P [Y1 = 1|Z = 1] = 0.51.

4.3.1. The hedgeable part
We assume that the hedge of a claim S is determined by the mean-variance hedger θ S (see also
Theorem 5 of Dhaene et al. (2017)). Using the probabilities listed in Table 1, we then find that
θ

(1)
S = E[Y1X1]

E[Y1]
= 0.5 and θ

(0)
S = 0. The hybrid claim S can be decomposed in two parts:

S = θ
(1)
S Y1 + Y1

(
1

na

na∑
i=1

(
Xi − θ

(1)
S

))
. (4.14)

The first term is the hedgeable part of the hybrid claim and can be valuated using the corresponding
hedging strategy, which consists of buying 0.5 units of the stock Y1. The second term is the residual
part, which is the part that remains after we take into account the income from the hedging strategy.
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Figure 2. Histogram of the residual part S − θ
(1)
S Y1 of the claim S given by (4.13). The red dotted lines

correspond with the actuarial value of the residual part of the claim given that Z = 0 and Z = 1.

Figure 2 shows a histogram of the residual part for different values of the portfolio size na. The residual
part is not diversifiable since the random variables X1, X2, . . . , Xna are dependent and each term includes
the asset value Y1. The histogram shows that the variance does not converge to zero as we increase the
portfolio size. Note also that the expected value is approximately zero.

4.3.2. 3-step valuation with the conditional standard deviation principle
The histogram shows there are three different ‘scenarios’. There is a positive probability mass in zero,
which corresponds with the event where Y1 = 0. There is a scenario where the residual part is positive,
that is, we are underhedging the claim. This scenario corresponds with the situation where Y1 = 1 and
Z = 1. Indeed, in this case there is a strongly increasing longevity and therefore more policyholders
survive than anticipated when determining the hedge θ

(1)
S . The negative scenario corresponds with the

situation where Y1 = 1 and Z = 0. In this scenario, we are overhedging the claim since there are less
survivors than initially anticipated. Note that P [Y1 = 1, Z = 0] = 0.14 whereas P [Y1 = 1, Z = 1] = 0.34,
which explains why there is more probability mass in the positive part than in the negative part of the
histograms.

Given a particular scenario of the asset and the longevity risk, one has a diversifiable claim. Indeed,
consider, for example, the case where Y1 = 1 and Z = 1, which corresponds with the positive part of the
histograms shown in Figure 2. Given that we are in this positive scenario, applying an actuarial valuation
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principle is justified. For example, applying the conditional standard deviation principle gives

ρa
[
S − θ

(1)
S Y1| Y1 = 1, Z = 1

]= 0.09 + β

√
0.24

na
. (4.15)

For the negative scenario, applying a standard deviation principle results in

ρa
[
S − θ

(1)
S Y1| Y1 = 1, Z = 0

]= −0.21 + β

√
0.20

na
. (4.16)

The vertical dashed lines in Figure 2 correspond with the location of the values (4.15) and (4.16) on the
x-axis.

The 3-step hedge-based valuation takes into account that given the realization of Y1 and Z , an actuarial
valuation ρa is appropriate. Otherwise stated, given the financial and the systematic scenario, one can
determine an appropriate risk management strategy based on diversification for the residual claim and
therefore valuate the residual claim accordingly. A valuation ρs is used to cope with the uncertainty
about the particular scenario that will eventually unfold.

We assume, for simplicity, that the safety loading for the conditional standard deviation principle is
equal to one, that is, β = 1. The 3-step hedge-based valuation for S is then given by

ρ[S] = θ
(1)
S y1 + ρs [ε] ,

where y1 is the market price of the traded asset, ρs is a model-consistent valuation and the random
variable ε is given by

ε =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−0.21 + β

√
0.20
na if Y1 = 1, Z = 0,

0 if Y1 = 0,

0.09 + β

√
0.24
na if Y1 = 1, Z = 1.

4.3.3. Choice 1 for the systematic valuation: risk-free capital buffer
A possible choice for the valuation ρs is a prudent valuation, such as the Value-at-Risk, Tail Value-
at-Risk or another P-law invariant risk measure. This corresponds with a risk management strat-
egy where one builds a sufficiently large capital buffer. In our particular example, we have that
P

[
ε < 0.09 + β

√
0.24
na

]
= 0.66, from which we find that

ρs [ε] = VaR0.95 [ε] = 0.09 + β

√
0.24

na
. (4.17)

Otherwise stated, we prepare for the worst-case scenario. One can also use a cost-of-capital approach
resulting in a value for ρs [ε] which corresponds with the cost of borrowing the amount 0.09 + β

√
0.24
na .

4.3.4. Choice 2 for the systematic valuation: Esscher transform
The random variable ε is dependent on the financial market. Therefore, one may consider a systematic
valuation that takes into account the market prices of the traded assets. For example, if we use the
valuation of Example 4, we consider a probability measure Q and define the following probabilities
under this new probability measure

Q [Y1 = 0, Z = 0] = q1, Q [Y1 = 0, Z = 1] = q2

Q [Y1 = 1, Z = 0] = q3 and Q [Y1 = 1, Z = 1] = q.

The probability measure Q should satisfy the following conditions:
EQ [Y1] = y1 and EQ [Z] =E [Z] + γ ,
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for some 0 < γ < 1 −E[Z]. The first condition states that the valuation should take into account the
market prices. The second condition states that the valuation of the longevity index should take into
account a pre-specified longevity risk margin γ . Solving these equations leads to q3 = y1 − q, q2 =
E[Z] + γ − q and q1 = 1 − q2 − q3 − q, for some q ∈ (E[Z] + γ + y1 − 1, min {y1, E[Z] + γ }). We
then find that

ρs [ε] = (y1 − q) ×
(

−0.21 + β

√
0.20

na

)
+ q

(
0.09 + β

√
0.24

na

)
, (4.18)

for some q ∈ (0, y1). Note that this valuation principle is a linear combination between the best and the
worst-case situation.

5. Independence between financial and non-financial risks
5.1. A closed-form expression
In this section, we assume that financial risks are independent of the non-financial risks, that is, the
random vector Y is independent of both Z and X. We will use the mean-variance hedger, which is a fair
hedger (see Dhaene et al. (2017)), to determine the hedgeable part of a hybrid claim. The mean-variance
hedger is defined as follows:

θ S = arg min
μ∈�

E
[
(S − μS · Y)

2
]

. (5.1)

Proposition 1. Assume the random vector Y is independent of Z and X. The mean-variance hedger θ S

for the product claim (2.7) can be expressed as follows:

θ S = θ Sf ×E
[
g
]

, (5.2)

where θ Sf is the mean-variance hedge for the financial derivative Sf . The hedgeable part of the claim is
given by

Hh
S =E

[
g1

]× Hh
Sf , (5.3)

where Hh
Sf = θ Sf · Y.

Proof. One can show that the mean-variance hedger can be determined by solving the following
system of equations

nf∑
m=1

Cov [Yk, Ym] θ
(m)
S = Cov [S, Yk] , for k = 1, 2, . . . , nf , (5.4)

θ
(0)
S = e−rT

⎛
⎝E[S] −

nf∑
i=1

θ
(i)
S E[Yi]

⎞
⎠ . (5.5)

We have that Cov[S, Yk] =E[g]Cov[Sf , Yk]. Denote by  the matrix containing all the covariances
Cov[Yi, Yj], that is, ()i,j = Cov[Yi, Yj]. Moreover, use the notation θ̃ S =

(
θ

(1)
S , θ (2)

S , . . . , θ (nf )
S

)
and β =(

Cov[Sf , Y1], . . . , Cov[Sf , Ynf ]
)

. Then we can write (5.5) as θ̃ S
′ = β ′E[g], from which we find that

θ̃ S
′ = (

−1β
)
E[g].

Note that −1β corresponds with the mean-variance hedge of the financial derivative Sf . Indeed, we
have that

θ Sf =
(
θ

(0)
Sf , θ̃ Sf

)
.
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It remains to prove that θ
(0)
S = θ

(0)
Sf E[g]. We can write

θ
(0)
S = e−rT

⎛
⎝E[S] −E[g]

nf∑
i=1

θ
(i)
Sf E[Y1]

⎞
⎠

= e−rT
(
E[S] −E[g]

(
E[Sf ] − θ

(0)
Sf erT

))
= e−rT

(
E[S] −E[g]E[Sf ] + θ

(0)
Sf erT

)
.

Taking into account that E[S] =E[g]E
[
Sf
]

then proves the result.

In case the financial derivative in (2.7) is hedgeable, the hedgeable part can be expressed as follows
Hh

S =E
[
g
]× Sf . The hedger for the claim S invests in E

[
g
]

units of the hedgeable financial derivative.
Note also that the mean-variance hedge does not depend on the portfolio size na. A similar result was
derived in Møller (2001), where the authors determine the mean-variance hedger in the situation where
there is a risky stock and a bank account. To be more precise, a hybrid claim where Sf = Y1 is used in
their example; see Section 3 in Møller (2001).

We can prove the following result which provides an explicit expression for the 3-step value of the
product claim.

Proposition 2. Assume the random vector Y is independent of Z and X. The modified standard deviation
principle, introduced in Example 5, for the product claim S given by (2.7) can be expressed as follows

ρ3−step[S] = e−rTEQ

[
Hh

S

]+ ρs

⎡
⎣Sf

⎛
⎝E

[
g| Z

]+ β

√
Var

[
g| Z

]
na

⎞
⎠− Hh

Sf E
[
g
]⎤⎦ . (5.6)

Proof. The modified standard deviation principle of the claim S can be expressed using Expression
(4.5) as follows:

ρ [S] = e−rTEQ

[
Hh

S

]+ ρs
[
ρa
[
S − Hh

S | Y , Z
]]

, (5.7)

where Hh
S is given by (5.3) and

ρa
[
S − Hh

S

]=E
[
S − Hh

S | Y , Z
]+ β

√
Var

[
S − Hh

S | Y , Z
]
.

We can write:

E
[
S − Hh

S | Y , Z
] = E [S| Y , Z] − Hh

S

= SfE

[
na∑

i=1

g (Z, Xi) | Y , Z

]
− Hh

S

= SfE
[
g| Z

]− Hh
S .

For the conditional variance, we find

Var
[
S − Hh

S | Y , Z
] = Var [S| Y , Z]

= (
Sf
)2 Var

[
na∑

i=1

g (Z, Xi) | Y , Z

]

= (
Sf
)2 Var

[
g| Z

]
na

.

Plugging these expressions in (5.7) gives the desired result.
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The first term in (5.6) corresponds to the price we have to pay if we buy the mean-variance hedge.
The amount we receive from the hedging portfolio is Hh

S . However, the hedging portfolio assumes the
expected number of units of Sf needed is equal to E[g]. If we have information about the longevity
risk, this number will be updated. There are two sources that cause hedging errors: systematic and
unsystematic deviations from the mean E

[
g
]
. The systematic part is captured by the random variable

E
[
g| Z

]
whereas the unsystematic fluctuations are captured by Var[g| Z]

na .

5.1.1. Systematic valuation with the Esscher transform
In this subsection we consider the valuation using the 3-step hedge-based valuation when an Esscher
transform is used; see Example 4. In order to determine the distortion ϕ, we follow the approach of
Deelstra et al. (2020) and employ the Esscher transform

Esscher distortion: ϕ = e−∑ns
i=1 wiZi−∑nf

i=1 viYi

E

[
e−∑ns

i=1 wiZi−∑nf
i=1 viYi

] , (5.8)

for some constants w1, w2, . . . , wns and v1, v2, . . . , vnf . In order to determine the valuation (4.6) with
Esscher transform (5.8), we need a joint calibration of the weights w1, w2, . . . , wns and v1, v2, . . . , vnf . In
this section, we assume financial risks to be independent from Y and Z. The valuation ρs can then be
expressed as

ρs [S] = e−rTE
[(

ϕf × ϕs
)

S
]

. (5.9)

From (5.9), we find that for financial derivatives Sf , we can write ρs
[
Sf
]= e−rTE

[
ϕf Sf

]
, which means

that ϕf is the financial distortion. In this paper, we assume that the distortion ϕf is tuned in such a way
that the valuation ρs is using risk neutral valuation for all financial claims. The risk neutral measure Q

may be estimated from available market information. However, there are only finitely many traded assets
and infinitely many possible risk neutral measures. The choice of the risk neutral measure is therefore
not always straightforward. The distortion ϕs can be calibrated solely using the non-traded systematic
claims. Indeed, for claims Ss which are functions of only the vector Z, we find that ρs[Ss] = e−rTE [ϕsSs].
In Zeddouk and Devolder (2019), for example, the authors propose to calibrate the distortion ϕs based
on a given risk margin imposed on longevity products. We conclude that in this special situation where
non-traded systematic and financial risks are independent, we can determine the valuation defined in
(5.9) in two steps. The traded assets will result in an estimate for ϕf whereas one can impose conditions
on the risk margin of the non-traded systematic risks to calibrate the distortion ϕs.

It is straightforward to verify that the value of the 3-step hedge-based valuation when using the
Esscher transform can be expressed as follows

ρEsscher[S] = e−rTEQ

[
Sf
] ⎛⎝ρs

[
E
[
g| Z

]]+ βρs

⎡
⎣
√

Var
[
g| Z

]
na

⎤
⎦
⎞
⎠ .

The 3-step hedge-based value considers the price of the financial derivative Sf , which has to be deter-
mined under a pricing measure Q. The expression between brackets represents the number of financial
derivatives needed, taking into account the information contained in Z. Since the Esscher transform is
linear, the two terms are valuated separately. The term between brackets only depends on the vector Z,

which means the distortion ϕs is used to determine ρs
[
E
[
g| Z

]]
and ρs

[√
Var[g| Z]

na

]
. Note that in case

we use the Esscher transform, the value is independent on the choice of the hedger. However, since the
market is incomplete and the claim Sf may be not perfectly replicable, the 3-step value depends on the
choice of the risk-neutral pricing measure. In case the claim Sf is hedgeable, the financial part can be
determined in a model-free way using only prices of traded assets, that is, in this case we do not need
to make any subjective choice about the hedger or the risk-neutral measure.
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5.1.2. Systematic valuation with the VaR
A drawback of the systematic valuation explained in the previous subsection is the choice of the pricing
measure Q in case the claim is not hedgeable. Therefore, in this subsection, we consider a prudent
approach which determines an appropriate capital buffer:

ρVaR[S] = e−rTEQ

[
Hh

S

]+ e−rTVaRp

⎡
⎣Sf

⎛
⎝E

[
g| Z

]+ β

√
Var

[
g| Z

]
na

⎞
⎠− Hh

Sf E
[
g
]⎤⎦ . (5.10)

The amount ρVaR[S] can be decomposed in two parts. The first term corresponds with the price to
buy the hedging portfolio. The second term is the amount of cash invested in the risk-free bank account
to cover the residual part. One can also include a cost-of-capital rate γ in the valuation, which implies
the capital buffer is borrowed and the valuation only takes into account the cost to borrow this amount.
In our case, only the real-world probability measure P is used to valuate the residual part of the claim.
However, one now has to make a choice about the confidence level p. We use the VaR but one may
decide to use another risk measure (e.g., Tail Value-at-Risk).

5.1.3. The valuation proposed in Møller (2002)
In Møller (2002) Section 5.2, the author considers the valuation of hybrid claims by transforming the
standard deviation principle, under the assumption there are no systematic risks and the financial risks Y
are independent of the actuarial risks X. The financial market is assumed to be complete and there exists
a pricing measure Q. The distribution of X is not affected by the change of measure and the random
vectors X and Y are independent under Q. Consider the product claim (2.7) and assume that we start
from the valuation ρ defined in Example 5 where θ is the mean-variance hedger and ρs[S] = e−rTE[S].
One can then write

ρ[S] = e−rT
(
EQ[S] + βE [Var [S|Y]]

)
, (5.11)

where we used Proposition 1 together with the fact that completeness implies that Sf is hedgeable. In
this particular case, our 3-step hedge-based valuation coincides with the valuation proposed by Møller
(2002) in Section 5.2.2. Since X and Y are independent (under both the real world and the risk-neutral
world) and the distribution of X is unchanged when moving to the Q-measure, we can interpret the first
term in (5.11) as the cost to buy the hedging portfolio for the claim S. The second term is an extra buffer
because the claim is not perfectly hedgeable.

Instead of defining ρs as the real-world expectation, one can also define ρs as theQ expectation. Since
EQ [S|Y] =E [S|Y], we find that the modified standard deviation can then be expressed as follows

ρ[S] = e−rT
(
EQ[S] + βEQ [Var [S|Y]]

)
. (5.12)

Comparing (5.11) and (5.12), we observe that both valuations start from the mean-variance hedge
for the claim S and adjust its value by taking into account the conditional variance of the claim. The
valuation (5.11) considers the real-world expectation, implying a capital buffer is used for covering
future losses. The valuation (5.12) takes into account that the market is complete and therefore Var [S|Y]
is hedgeable. We can rewrite (5.12) as ρ[S] = e−rTEQ[Sf ]

(
E[g] + βVar

[
g
na

])
. The mean-variance hedge

for S invests in E[g] units of Sf . The valuation (5.12) increases the number of units invested in the claim
Sf by βVar

[
g
na

]
to account for the hedging error.

In Section 5.1.1, we use the Esscher transform with distortion (5.9) for the valuation ρs. This combines
the approaches discussed in (5.11) and (5.12) in that we use the risk-neutral measure for the financial
part of the claim and the real-world measure for the actuarial part.
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5.2. Numerical illustration
We will provide a numerical illustration of the 3-step valuation under the assumption that Xi takes the
value 1 if the policyholder survives until time T and zero otherwise. The policyholder i will pay an
initial premium equal to P at time t = 0 and receives the amount Sf at time T provided the policyholder
is alive. The claim S is then given by

S = Sf

∑na

i=1 Xi

na
. (5.13)

The premium is invested in a stock (or risky fund) and the amount Sf the policyholder receives at
time T depends on the performance of this risky fund. If we denote the time-T value of this investment
by Y1, we assume that Sf can be expressed as follows:

Sf = 1 + α
(
Y1 − P(v + 1)T

)
+ , (5.14)

where α is the bonus share and v is an internal rate of return. If the policyholder survives, he will always
receive the amount 1 at maturity, however, this amount can be increased if the risky fund performs well.

We assume that the stock Y1 follows a geometric Brownian motion, which implies that the time-T
value has a lognormal distribution:

log
Y1

P
d= N

((
μf − 1

2

(
σ f
)2
)

T ,
(
σ f
)2

T

)
, (5.15)

for some μf ∈R and σ f ≥ 0. The spot price of the stock is equal to P, since we invest the full premium in
the risky asset. We assume here that we can only trade in one risky asset to hedge the claim. We assume
that the conditional survival probabilities can be expressed as follows:

P [X1 = 1|Z] = eZ . (5.16)

The random variable Z models the longevity risk among the policyholders. If Z is large, the prob-
ability of surviving goes up for each policyholder, whereas the survival probability goes down if Z
goes down. If we assume that the dynamics of the systematic longevity risk can be modeled using an
Ornstein–Uhlenbeck process, we find a normal distribution for the random variable Z . However, from
(5.16), we find that the random variable Z should be negative since eZ is a probability. Therefore, define
the random variable Z̃ as follows:

Z̃
d= N

(
μs, (σ s)

2
)

, (5.17)

for some μs ∈R and σ s ≥ 0. Note that μs and σ s depend on the maturity T of the contract. More details
are given in the online Appendix. The random variable Z is then defined as follows

Z =
⎧⎨
⎩

Z̃, if Z̃ < 0

0, if Z̃ ≥ 0.
(5.18)

The survival probability for a policyholder is given by E[X1] and assuming (5.18) we can derive a
closed-form expression for this probability.

Proposition 3. Consider the random variable Z defined in (5.18). We have that

E[X1] = eμs+ 1
2 (σ s)2

�

(
−
(

μs

σ s
+ σ s

))
+ �

(
μs

σ s

)
,

E
[
(E [X1|Z])2

] = e2μs+2(σ s)2
�

(
−
(

μs

σ s
+ 2σ s

))
+ �

(
μs

σ s

)
,

E [Var [X1|Z]] = E[X1] −E
[
(E [X1|Z])2

]
,

where � is the distribution function of a standard normal distribution.
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Proof. We have that E[X1] =E[eZ] and we can write

E
[
eZ
]=

∫ 0

−∞
ezfZ̃(z)dz + P

[
Z̃ ≥ 0

]
,

where fZ̃ is the density of Z̃. The integral and the probability can be derived since Z̃ is normal distributed.
In order to prove the second equality, we note that E

[
(E [X1|Z])2

]=E

[(
eZ
)2
]

and therefore we can
write

E
[
(E [X1|Z])2

]=
∫ 0

−∞
e2zfZ̃(z)dz + P

[
Z̃ ≥ 0

]
.

We can then derive the desired expression using the same approach as we did in the first part of this
proof.

We have that Var [X1|Z] = eZ
(
1 − eZ

)
which proves the last equality.

5.2.1. Systematic valuation with the Esscher transform
We start with a linear valuation for the valuation ρs. To be more precise, the valuation ρs is given by
(5.9) where ϕs = e−θsZ

E[e−θsZ] , for some θ s < 0. The financial distortion ϕf is determined such that financial

claims are valuated using a risk-neutral distribution Q. Therefore, we have ϕf = e
−
(

μf −r
σ f

)2
T− μf −r

σ f W
, where

W = log
Y1
P −

(
μf − 1

2 (σ f )
2)

T

σ f .
If we use the modified standard deviation principle introduced in Example 5, the 3-step hedge-based

valuation method gives the following value:

ρEsscher [S] = e−rTEQ

[
Sf
] (

E [X1] e−θ s(σ s)2 + βE

[
e−θ sZ

√
Var [X1| Z]

na

])
. (5.19)

A closed-form expression for e−rTEQ

[
Sf
]

can easily be obtained since the risky fund follows a lognor-
mal distribution. The expectation E [X1] is given in closed-form in Proposition 3. Note that in order to
determine the 3-step value, one needs numerical simulation to determine the value of the diversifiable
part of the claim. This term, however, tends to zero if the portfolio size increases. Therefore, in case one
deals with a sufficiently large portfolio, this term may be neglected and the approximate 3-step value
is given in closed-form. The parameter θ s is assumed to be negative, since it implies that increasing
longevity (and its volatility) leads to larger prices. Since we are valuating a unit-linked portfolio, the bad
scenarios are those where longevity increases, that is, where there are more survivors than expected.

5.2.2. Systematic valuation with the VaR
The valuation using the VaR (see Section 5.1.2) depends on the choice of the hedger, which is assumed
to be the mean-variance hedger. In order to determine the hedgeable part of the claim S, we use
Proposition 1 and determine the hedge for the financial derivative Sf . Note that Sf is not perfectly
hedgeable. The mean-variance hedge

(
θ

(0)
Sf , θ (1)

Sf

)
is given by

θ
(1)
Sf = Cov

[
Sf , Y1

]
Var [Y1]

(5.20)

θ
(0)
Sf = e−rT

(
E
[
Sf
]− θ

(1)
Sf E [Y1]

)
. (5.21)

If the financial derivative Sf is given by (5.14) and the stock Y1 is described by (5.15), we have that
E [Y1] = PeμT . Using standard techniques for lognormal distributions, we find

E
[
Sf
]= 1 + αE [Y1] � (d1) − P(1 + v)T� (d2) (5.22)
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Cov
[
Sf , Y1

]= αE [Y1]
(
E [Y1]

(
e(σ f )

2
T� (d3) − �(d1)

)
− K (�(d1) − �(d2))

)
, (5.23)

Var [Y1] = P2e2μf T
(
e(σ f )

2
T − 1

)
, (5.24)

and

d1 =
log P

K
+
(
μf + 1

2

(
σ f
)2
)

T

σ f
√

T
, d2 = d1 − σ f

√
T , and d3 = d1 + σ f

√
T ,

where K = P (1 + v)T .

Proposition 4. Consider the claim S given by (5.13). The dynamics of the risky fund are given by (5.15).
The longevity risk is independent of the risky fund and modeled using (5.18). If the hedgeable part Hh

S

of the hybrid claim S is determined using the mean-variance hedger, we find that

Hh
S = (θ Sf · Y) × E [X1]

where θ Sf is given by (5.20), (5.21) and E [X1] is given in Proposition 3.

Proposition 4 is important because it allows to determine the hedgeable part of the claim in closed-
form while explicitly taking into account that the financial derivative Sf is not perfectly replicable. In
order to determine the 3-step hedge-based value using Expression (5.10), we can determine the first
term using Proposition 4. Indeed, we have that e−rTEQ

[
Hh

S

]=E [X1]
(
θ

(0)
Sf + θ

(1)
Sf P

)
. The second term of

(5.10), however, needs to be determined using Monte Carlo simulation.

5.2.3. The hedge-based valuation
We also determine values for our unit-linked portfolio when a hedge-based valuation is used where π is
an actuarial valuation. The hedge-based valuation is given by ρHB[S] = e−rTEQ

[
Hh

S

]+ π
[
S − Hh

S

]
, and

we assume π is the standard-deviation principle with β = 0.2. We can express the hedge-based value as
follows

ρHB[S] = e−rTEQ

[
Hh

S

]+ e−rTβ
√

A, (5.25)

where

A = E

[(
Sf
)2
] (E [Var [X1| Z]]

na
+E

[
e2Z
])+ Var

[
Hh

S

]+E[S]2 − 2E [X1] E
[
Sf Y1

]
.

Note that all terms of A are given in closed-form. Indeed, Proposition 3 can be used to determine
E [Var [X1| Z]], E [X1] and E

[
e2Z
]
. The closed-form expression for the covariance Cov

[
Sf , Y1

]
shown in

(5.23) leads to a closed-form expression for E
[
Sf Y1

]
. Taking into account E[S] =E[Sf ]E[X1], a closed-

form expression for E[S] can be derived by combining Proposition 3 and (5.22). Finally, Var
[
Hh

S

]
can be

determined in closed-form using (5.24) since Hh
S is a linear combination between the risk-free bond and

the risky fund. An expression for ρHB[S] was also derived in Exercise 12 of Dhaene (2022), but under
the assumption the financial derivative Sf is hedgeable.

The numerical values and a discussion are provided in the online appendix.

6. The additive 3-step valuation
The idea of the 3-step hedge-based valuation is to determine a valuation which combines the risk neu-
tral valuation principle, the conditional actuarial valuation principle ρa for diversifiable claims and the
model-consistent valuation principle ρs for the remaining part. In this section, we take a different route
to define 3-step valuations. We start by decomposing a hybrid claim in 3 different parts and valuate
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each part separately. This leads to an additive valuation. We show that this additive 3-step valuation is a
subset of the more general 3-step hedge-based valuations.

We assume that a hedger for the hybrid claim S ∈ C is available and denoted by θ S. We assume that
θ S is a fair hedger (e.g., the mean-variance hedger). The claim Hh

S is defined as

Hh
S = θ S · Y . (6.1)

The claim Hh
S is a hedgeable claim, in the sense that there exists a trading strategy consisting of

positions in the traded assets Y that can replicate the payoff of Hh
S . We thus have that Hh

S ∈ Ch. The claim
S can be decomposed in a hedgeable part and a residual part. The residual part

(
S − Hh

S

)
is what remains

of S after we apply the hedger θ S. The claim Hs
S is defined as follows:

Hs
S =E

[
S − Hh

S | Y , Z
]

. (6.2)

The claim Hs
S only depends on the evolution of the traded assets and the non-traded systematic risks

and we have that Hs
S = h (Y , Z) , for some function h. Note, however, that if the hedge Hh

S is adequate,
then S − Hh

S should not depend ‘too strongly’ on the traded risks Y , meaning that Hs
S is mainly driven by

the non-traded systematic risks Z. Therefore, we also refer to Hs
S as the systematic part of the claim S.

Roughly speaking, Hs
S is what remains in S after we first apply an appropriate hedge and then consider

the average loss for different scenarios of the financial and non-traded systematic risks. We define the
claim Ha

S as follows

Ha
S = (

S − Hh
S − Hs

S

)
. (6.3)

The random variable Ha
S denotes the part of the claim S that remains after the hedgeable and the

systematic parts are removed. Combining (6.1), (6.2) and (6.3), we can decompose the hybrid claim S
as follows:

S = Hh
S + Hs

S + Ha
S . (6.4)

Expression (6.4) decomposes the hybrid claim S into three parts. This decomposition was also intro-
duced in Dhaene (2022) for product claims and Deelstra et al. (2020) for the situation where financial
and actuarial risks are independent.

In order to value a hybrid claim S which can be decomposed in 3 different parts, one may wish to
value the different parts separately using a different, appropriate valuation for each type of claim. This
approach leads to an additive three-step valuation.

Definition 6.1 (Additive 3-step valuation). Consider the model-consistent valuations ρs and ρa and a
fair hedger θ . The additive 3-step valuation ρ+ is defined as follows

ρ+[S] = θ S · y + ρa
[
Ha

S

]+ ρs
[
Hs

S

]
, (6.5)

for any hybrid claim S ∈ C, where Hh
S , Hs

S and Ha
S are given by (6.1), (6.2) and (6.3), respectively.

Theorem 6.1. The additive valuation ρ+ is a 3-step hedge-based valuation.

Proof. It is straightforward to prove that ρ+ is market and model consistent. From Theorem 4.2, we
then find that the additive 3-step is a 3-step hedge-based valuation.

The additive 3-step valuation ρ+ is similar to the valuation proposed in Deelstra et al. (2020). Indeed,
in Deelstra et al. (2020), the authors also consider an additive 3-step valuation for pricing hybrid claims
by decomposing the hybrid claim in a hedgeable, diversifiable and residual part. However, the addi-
tive 3-step valuation introduced in this paper does not always coincide with their additive valuation. In
Deelstra et al. (2020), the authors consider product claims of the following form:
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S = 1

na

na∑
i=1

gi(Xi, Z) × hi (Y1) , (6.6)

where gi is a function of the policyholder specific risk Xi and the systematic longevity risk Z , whereas
Y1 is the time-T value of a traded stock or index. However, in Deelstra et al. (2020), the authors only
consider a complete financial market, which implies that hi (Y1) is hedgeable. The hedgeable part of the
valuation in Deelstra et al. (2020) is given by

Hedgeable part = 1

na

na∑
i=1

E
[
gi

]× hi (Y1) . (6.7)

In case the financial market is incomplete and the financial market consists of the traded stock and the
risk-free bank account, the hedgeable part defined in (6.7) is not necessarily hedgeable, since it may
not be possible to replicate the payoff hi (Y1). In the online appendix, we provide two examples. Each
example defines the hedgeable part (6.7) for a product claim. The first example assumes a complete
market, whereas the second example considers an incomplete market. We also determine the hedgeable
part as in (6.1) using the mean-variance hedge. The example shows that the claim defined in (6.7) is not
necessarily hedgeable, whereas the claim defined in (6.1) is always hedgeable by construction.

7. Conclusion
In this paper, we introduced a new class of fair valuations, which we called the 3-step hedge-based
valuations, for the valuation of hybrid claims that depend on hedgeable, diversifiable and non-traded
systematic risks. This new valuation principle uses traded assets to construct a hedging portfolio for
the hybrid claim. The value of this portfolio can be determined using the observable market prices.
Equivalently, we express this price as a risk neutral expectation. We then employ a 2-step valuation for
the residual part of the claim. The 3-step hedge-based valuation is a market-consistent valuation and
can therefore be used to determine regulatory capital for complex insurance liabilities. Moreover, our
valuation takes into account that systematic risks are fundamentally different from diversifiable risks
and therefore require a different valuation principle. We follow Dhaene et al. (2017) and Deelstra et al.
(2020) to decompose a hybrid claim in three different parts. We then define an additive 3-step valuation
by applying an appropriate valuation to each of these parts. We show that this valuation is similar to
the valuation defined in Deelstra et al. (2020). Moreover, we show that the additive 3-step valuation is
a 3-step hedge-based valuation.

The idea of a fair valuation was introduced in Dhaene et al. (2017). A fair valuation finds a balance
between pricing through hedging and pricing through modelling. Hedgeable claims should be priced
using the replicating portfolio approach. Since we can observe the prices of the traded assets, pricing
hedgeable claims through replication is model free. Market consistency of the valuation ensures that
while valuating a hybrid claim, the hedgeable part is always consistent with the observable market prices.
However, the incompleteness of the market requires a model to assess the risks of the unhedgeable
part of the claim.The underlying model should be such that pure actuarial claims are priced using an
actuarial valuation. We show that the class of 3-step hedge-based valuations coincides with the class
of fair valuations. We can then conclude that the 3-step hedge-based valuations are equivalent with the
hedge-based and the 2-step valuations.
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