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ABSTRACT. Englacial and basal temperature data for the Greenland ice sheet (GrIS) are sparse and
mostly limited to deep interior sites and ice streams, providing an incomplete representation of the
thermal state of ice within the ablation zone. Here we present 11 temperature profiles at five sites along
a 34 km east–west transect of West Greenland. These profiles depict ice temperatures along a flowline
and local temperature variations between closely spaced boreholes. A temperate basal layer is present
in all profiles, increasing in thickness in the flow direction, where it expands from �3% of ice height
furthest inland to 100% at the margin. Temperate thickness growth is inconsistent with modeled heat
contributions from strain heating, heat conduction, and vertical extension of the temperate layer. We
suggest that basal crevassing, facilitated by water pressures at or near ice overburden pressure, is
responsible for the large temperate ice thicknesses observed. High-temperature kinks at 51–85m depth
are likely remnants from the thermal influence of partially water-filled crevasses up ice sheet. Steep
horizontal temperature gradients between closely grouped boreholes suggest the recent thermal
influence of a moulin. These profiles demonstrate the ability of meltwater to rapidly alter ice
temperatures at all depths within the ablation zone.
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INTRODUCTION
Quantification of the physical forces that control Greenland
ice velocities is an important step to refine modeled mass-
loss predictions (Alley and Joughin, 2012) and relies on
continued monitoring and measurements within the Green-
land ice sheet (GrIS) ablation region. Particularly lacking are
measurements of ice temperature, which governs both basal
sliding and internal deformation. Fast basal sliding requires
a temperate bed (Cuffey and Paterson, 2010). Numerical
simulations of frozen/melted bed conditions for the GrIS
(Greve, 2005; Brinkerhoff and others, 2011) approximate
basal sliding prevalence, but have only seldom been
measured through ground-based observation. Deformation
rates rapidly and nonlinearly increase with increased ice
temperature, represented in the creep parameter, A, of the
Nye–Glen flow law. This parameter is most sensitive to ice
temperature, although it also varies with water content,
grain size and impurities within the ice. Higher temperatures
can soften the ice by an order of magnitude or more, where
A increases by a factor of five to ten from –10°C to the
melting point (Cuffey and Paterson, 2010). Deformational
heating can create an important positive feedback on
ice flow (Robin, 1955; Ren and Leslie, 2011), where ice
deformation creates strain heating, and the warmed ice
deforms more quickly, producing even more heating. This
feedback is the most important near the base of the ice
sheet, where stresses are at their largest.

Though ice-core temperature measurements near the ice
divide of the GrIS exist (Weertman, 1968; Gundestrup and
Hansen, 1984; Alley and Koci, 1990; Gundestrup and
others, 1993), direct measurements of englacial tempera-
tures in the ablation zone are limited to several borehole
measurements within and adjacent to Jakobshavn Isbræ
(Iken and others, 1993; Lüthi and others, 2002) and along
the adjoining Sermeq Avannarleq outlet glacier (Thomsen,

1988; Thomsen and others, 1991). However, these profiles
do not provide a consistent picture of the thermal structure
of ice in the ablation zone. Jakobshavn Isbræ temperature
data, while important, are not representative of typical ice-
sheet conditions. No Sermeq Avannarleq profiles exhibit a
temperate bed, limiting basal sliding as a mechanism for ice
velocity and contrasting with typical model assumptions of
sliding within the ablation zone. Additional full-depth
temperature measurements for the GrIS within the ablation
zone are required to further develop our understanding of its
thermal state and will prove useful for input and comparison
with numerical models.

Ice temperatures are indicative of controlling englacial
and subglacial heat sources. Geothermal heat flux has been
inferred from temperature gradients near a cold bed (Hansen
and Langway, 1966), and enhanced vertical stretching has
been suggested as a mechanism for unexpected temperate
basal thicknesses within the Jakobshavn Isbræ channel
(Funk and others, 1994). Recent work investigating heating
from the presence and refreezing of meltwater within the
englacial hydrologic system suggests that this heating
mechanism may greatly reduce the time required to warm
the ice within the ablation zone of the GrIS (Phillips and
others, 2010; Colgan and others, 2011). Direct measure-
ment of this phenomenon is so far absent but is crucial for
validation of that theory.

Here we present 11 temperature profiles, collected at five
sites along a 34 km east–west transect extending inland from
the margin of Isunnguata Sermia, an outlet glacier on the
western GrIS. Horizontal borehole spacing of 20–35m at
several sites along an ice flowline allows for the study of
both local heat effects and the broader thermal structure
within the ablation zone. We also discuss the implications
of three specific regions of anomalous warming in the
temperature profile data.
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FIELD SITES AND METHODS
Isunnguata Sermia is a land-terminating outlet glacier of the
western GrIS, located �25 km northeast of Kangerlussuaq,
Greenland. It terminates in a deep bedrock trough, which
extends under the ice sheet up-glacier for �20 km before
deviating south and transverse to ice flow. Subglacial
topography is dominated up-glacier by both troughs and
ridges. Many of these features are not aligned with ice flow
but apparently do not exert significant control on flow
direction (Jezek, 2013). Boreholes were drilled during the
2010–12 field seasons using hot-water methods at five sites
(Fig. 1), where each site is characteristic of a different
glaciological setting. Site names, S#, are ordered by distance
from the terminus (Table 1). Specific boreholes at a site are
labeled alphabetically.

S1 is located directly adjacent to the margin (300–830m)
and composed of shallow ice depths less than 150m. This
region is heavily crevassed and surface streams quickly
enter the englacial system through moulins or crevasses. S2
is drilled within the deepest bedrock trough, �4 km from the
margin. Here drilling did not penetrate the full ice thickness,
reaching 700m depth. S3 and S4 are 15 km inland, where
S4 is �1 km north of S3 and along a parallel flowline (Jezek,
2013). S4 is drilled within a subglacial trough, so ice
thickness here (�700m) is much greater than at S3
(�460m). Large supraglacial streams cross this area, and
numerous moulins and crevasses have been observed up-
glacier. Furthest inland, S5 is 45.5 km from the terminus and
815m thick. No crevasses and one large moulin 1 km north
have been observed. S3, S4 and S5 are all located in the
region of draining supraglacial lakes.

Following drilling, boreholes were immediately instru-
mented with sensor strings. Temperature data were col-
lected from dedicated temperature-sensing semiconductor
chips. Sensor resolution is �0.062°C, calibrated to �0.1°C,
and typically spaced at 20m intervals. Data collection
occurred during the September subsequent to the summer
field season, and then a second time the following summer.

Table 1 documents the number of boreholes with tempera-
ture profiles, ice thickness, surface elevation and distance
from terminus.

Neighboring borehole profiles at S3, S4 and S5 are
spaced 20–35m apart. Unexpected ice thickness at the time
of drilling for S2 hindered drilling to the bed and left
insufficient sensor string lengths for the borehole depth. The
S2 profile was only instrumented to 577m depth. Data
capture from S3-A did not yield the upper half of the profile.

RESULTS
Temperature measurements collected 1 year after installa-
tion are shown in Figure 2. Temperature profiles exhibit
higher temperatures with shorter distance to the margin.
Cold interior ice warms from a minimum of –13.9°C at S5 to
–5.9°C at S4 and –3.8°C at S3. The minimum temperature,
at 400m depth, at S2 is –4.2°C. S1 measurements, 300 and
830m from the margin, are entirely temperate aside from
evidence of the winter surface cold wave at 15m depth in
S1-B.

A basal temperate layer is observed in all profiles
reaching the bed (Fig. 2). Furthest up-glacier, at S5,

Fig. 1. Location of five drilling sites. Inset boxes show spacing of temperature profiles at each site. Flow directions for this region available in
Jezek and others (2013).

Table 1. Number of profiles, ice thickness, surface elevation and
distance from terminus at five sites

Site Temperature
profiles

Ice thickness Surface
elevation

Distance from
terminus

m m km

S1 2 92, 145 525, 555 12.3
S2 1 – 618 13.6
S3 3 458, 466, 460 850 27
S4 3 701, 692, 698 849 27.1
S5 2 821, 815 1090 45.5
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temperate ice thicknesses are �20m. S3 profiles exhibit
temperate thicknesses �100m, >20% of the total ice height.
At S4, 1 km north, temperate thicknesses are also �100m
despite the dissimilarity in total ice thicknesses between S3
and S4 (S4 is >50% thicker).

A high-temperature kink is present at shallow depths in
all profiles at S2, S3 and S4. Sensor spacing of 20m restricts
identifying the exact shape and temperature minimum of
this feature, though it persists below the influence of the
seasonal temperature wave in all profiles. This disparity is
best exemplified at S2, where the seasonal temperature
wave effect is evident in the upper 20m and the kink persists
at 60m depth at –2.1°C. At S3, warm kinks are present at
depths of 60 and 85m. S4 profiles A, B and C show similar
features at 51, 78 and 58m respectively, where the depths
indicate the warmest sensor locations and may not be the
location of the temperature maximum due to the 20m
sensor spacing.

Closely spaced boreholes (20–35m) at both S3 and S4
show notable temperature differences from the surface
down to 100m from the bed, where the ice becomes
temperate. The exception to this is S4-A and S4-C, which
contain near-identical temperatures for the lower 300m and
then diverge in temperature up to the surface. Temperature

differences of >1°C are observed between S3-A and S3-C, as
well as S4-A and S4-B, at large depths within the ice. These
steep horizontal temperature gradients are generally not
expected within ice sheets (Cuffey and Paterson, 2010).

ANALYSIS AND DISCUSSION
Basal temperate ice
Temperate ice at the bed up to 45.5 km inland from the
terminus, along with observed surface velocity variations
(Sole and others, 2013), implies that basal sliding is an active
contributor to overall glacier flow in this region. The only
other full-depth temperature measurements in the ablation
region of the GrIS, outside of an ice stream, suggest the
opposite. Basal temperatures collected along Sermeq Avan-
narleq show ice to be below the melting point (Thomsen,
1988; Thomsen and others, 1991). Our data provide an
alternative depiction of the thermal state of the bed within
the ablation zone of the GrIS, and confirm the assumed
thermal state in this region (Doyle and others, 2014).

In addition to the basal temperate layers observed in S3,
S4 and S5 profiles, we suspect a large temperate layer is also
present at S2. Although the borehole was only instrumented
to 577m, subsequent airborne radar (Allen, 2010) has

Fig. 2. Temperature profiles at each site. S2 did not reach the bed. S3 did not yield the upper half of the profile.
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indicated that depths in this region are likely >900m. The S2
profile shows significant warming at depth, and comparison
with the shapes of the other profiles up-glacier suggests that
the temperature in the ice reaches the melting temperature
well above the inferred bed at >900m.

Temperate ice thicknesses 22% (S3) and 14% (S4) of total
ice height are observed in profiles 27 km from the terminus.
To investigate the development of these 100m thick
temperate layers, we apply one-dimensional (1-D) thermal
modeling to estimate englacial heat source contributions to
ice temperature along the flowline from S5 to S3. Because
data are only available at two sites in the region, we make
the basic assumption that various parameters (e.g. ice
velocity) vary smoothly between the two sites. Subglacial
heat sources, including geothermal heat flux and heat of
sliding friction, will contribute entirely to melting at the bed
between study sites. This is because the temperature
structure in the temperate layer cools slightly towards the
bed, as a result of the Clausius–Clapeyron slope. This
adverse temperature gradient prevents any basal heat
sources from conducting into the ice.

To model relevant heat sources, we use the 1-D transient
vertical heat equation

@Tz
@t
¼

k
�c
@2Tz
@z2
þ
�

�c

where Tz is the ice temperature at some depth, z, t is time, k
is thermal conductivity of ice, � is the density of ice, c is the
heat capacity and � is the heat production from strain
heating. In the first term, the cold ice above the temperate
layer creates a thermal gradient that extracts heat from the
top of the temperate layer.

In the second term, heat production from strain heating
will regionally add heat to the ice, changing the ice
temperature field. This heat production, �, is given by

� ¼ A�n� 1eff �2xz

where A is the temperature-dependent creep parameter, �eff
is the effective deviatoric stress, accounting for the additional
longitudinal and vertical stresses, and �xz is the shear stress
(Hooke, 1998). Measured surface slopes averaging <1° over
1 km are used for stress calculations. Strain heating from
longitudinal compression and vertical extension are an order
of magnitude less than the shear strain heating and thus are
ignored. Creep parameter values, A, are assigned by

A ¼ A0 exp �
Q
R

1
Tz
�

1
T�

� �� �

where A0, the constant prefactor, is 3.5�10–25 s–1 Pa–3, Q is
the temperature-dependent activation energy, R is the gas
constant and T* is the pressure-dependent temperature
�–10°C (Cuffey and Paterson, 2010). This reference relation-
ship contains large uncertainties; however, it remains the
best estimate of the effect of ice temperature on deformation
rates. The feedback loop between ice temperature and
deformation rates necessitates the creep parameter be
recalculated for each time step. Within the existing temper-
ate layer, strain heating does not produce any temperature
change, contributing only to melting of the ice. However,
this model does not calculate any phase changes and solely
considers the temperature change in the ice itself.

Comparing the annual change in site position from 2011
to 2012 for multiple dates between 1 August and 1 Septem-
ber from GPS stations emplaced at S3 and S5 yields annual

surface velocities of �100ma–1 and �117ma–1 respect-
ively. The ice velocity reduction from S5 to S3 prompts
longitudinal compression of the ice. Under assumptions of
incompressibility and negligible lateral extension/compres-
sion, all longitudinal compression must be balanced by
vertical extension

"’zz ¼
�Vx
�X

where "’zz is the vertical strain rate, �Vx is the change in
velocity between the upper and lower sites, and �X is the
flow distance (�18.6 km). This will expand the full ice
thickness, including any pre-existing temperate layer. As we
have no knowledge of the variation of extension rate with
depth, we apply vertical extension homogeneously through-
out the full ice thickness. The new ice thickness, Hn,
follows:

Hn ¼ H0 þ "’zzH0dt

where H0 is the initial ice thickness. This vertical stretching
plays a minimal role in temperate thickness growth, where a
10m temperate layer at S5 will grow by �1.5m by the time
it reaches the location of S3. Implementing measured
surface ablation rates (2.5ma–1) at S5 and S3, along with
the estimated vertical stretching over the total flow distance,
produces the approximate ice thickness observed at S3. We
run this model for �171 years, corresponding to the time
required for the ice to travel from S5 to S3, based on
present-day flow rates. Initial conditions are set using S5
temperature data.

Model results indicate that strain heating (�10–6Wm–3)
and stretching of the temperate layer from longitudinal
compression are unable to counteract the conduction of
heat into the colder ice above (�10–4Wm–3), removing the
initial 20m S5 temperate thickness before reaching S3.
A substantial difference, then, persists between modeled
temperate thickness evolution using a simplified thermo-
mechanically coupled model and the temperature records.
For this reason, unexpected heat sources must be con-
sidered. We propose that heat from the storage and
refreezing of water within basal crevasses is a reasonable
mechanism for this growth.

Basal crevassing requires abundant basal water, suffi-
ciently high water pressures and a tensile longitudinal stress
to balance the weight-induced lithostatic stress (Van der
Veen, 1998a). In this region of the ablation zone, numerous
surface-to-bed connections have been observed and mod-
eled (C.M. Clason and others, unpublished information),
indicating efficient routing of meltwater to the bed. In situ
water-pressure records in S3, S4 and S5 boreholes demon-
strate high water pressures, between 82% and >100% of ice
overburden with an average water pressure close to over-
burden (Meierbachtol and others, 2013). Finally, despite
overall longitudinal compression between S5 and S3/S4,
segments of extensional stresses due to the undulating bed
are likely and are ideal sites for basal crevassing. Surface
crevassing is observed between the upper and lower sites,
indicating regions of extension.

Grounded basal crevasses have been observed within
temperate Bench Glacier, Alaska, extending up to 70m
above the bed (Huzurbazar and Humphrey, 2008; Harper
and others, 2010), and inferred elsewhere (Ensminger and
others, 2001; Woodward and others, 2002). To create the
temperature change observed in the lower 100m from S5 to
S3, purely by phase change of water, only requires on the
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order of 1% of the volume to be refrozen water. The storage
and refreezing of meltwater creates a strong thermal gradient
between the basal crevasses and the colder surrounding ice,
allowing for substantial heat transfer into this ice. Simul-
taneously, strong deformational gradients present near the
bed will deform these features as the ice flows down-glacier,
increasing the extent of the ice thermally altered by the basal
crevassing. This, along with strain heating and the vertical
extension of this temperate layer, may allow for the temper-
ate thicknesses observed at S3 and S4. Additionally, the
similar temperate layer thickness at S3 and S4, despite the
>235m thickness disparity, is best explained by a mech-
anism such as basal crevassing.

Basal crevasses under the GrIS may dampen the effect of
abrupt connections to the bed, such as supraglacial lake
drainage. It may also act as a storage system for meltwater
over winter. Intersection of these features while drilling is
unlikely; however, GPR surveys and seismic analysis have
proven useful for basal fracture identification (Bradford and
others, 2013).

Shallow temperature kinks
Steep vertical temperature gradients in the shallow, high-
temperature kinks present in S2, S3 and S4 profiles, ranging
from 51 to 85m depths, suggest that these features are
temporally recent and rapidly diffusing. The kinks persist
below depths affected by the seasonal temperature wave
(Cuffey and Paterson, 2010), and strain heating in the upper
half of ice sheets is negligible. We suggest that these features
are remnants of the thermal influence from partially water-
filled surface crevasses up-glacier.

A similar shallow anomalous warm layer between 30 and
50m depth was observed on Steele Glacier, Canada (Jarvis
and Clarke, 1974). Infilling and refreezing of meltwater
within deep crevasses initiated during a 1966 surge of Steele
Glacier were identified as the source of this high-temperature
kink. Meltwater within a crevasse facilitates further propa-
gation of the crevasse towards the bed (Van der Veen, 1998b)
while simultaneously providing heat to the surrounding ice
(Boon and Sharp, 2003). East–west directional flow (Joughin
and others, 2010; Jezek, 2013) and ice velocity measure-
ments (100ma–1) suggest S3 occupied a southwest–north-
east-trending crevasse field for�20 years and has since been
removed for �20 years. S4 occupied the same crevasse field

for �11 years and has been removed �29 years. Lack of
high-resolution surface imagery and necessary site data
inhibits investigation of the S2 temperature kink.

Here we use a 1-D, transient vertical heat conduction
model to simulate S3 and S4 borehole occupation of the
crevasse field and post-crevasse field. This first-order ap-
proach is used because numerous uncertainties (e.g. the
presence and number of surface-to-bed connections through
moulins/crevasses) pose a problemwith poorly defined initial
boundary conditions; we are most concerned with whether
water-filled crevasses can create temperature kinks similar to
those observed, not the exact conditions under which this
occurred. To simulate an initial temperature profile, we re-
scale and shift an S5 profile, which is devoid of this shallow
thermal kink. Crevasse depths (20–120m) are assigned,
under the assumption that crevasses are able to penetrate to
great depths when water-inundated (Van der Veen, 1998b,
2007), and set to the pressure-melting point temperature
while in the crevasse field. Measured and modeled ablation
rates in this region of the western GrIS highlight the vast
amount of available meltwater at the surface (Van As and
others, 2012). Once the ice exits the crevasse field, the
pressure-melting point boundary is removed. A seasonal
temperature wave surface boundary condition is then imple-
mented as a sinusoidally varying average surface tempera-
ture of –10°C with 10° amplitude (Harper and others, 2012).
A total of 2.5m of ice ablates at the end of each melt season.

Model results for sites S3 and S4 exhibit shallow
temperature kinks similar to those observed. Figure 3 depicts
the S3-C profile against the modeled final temperature from
a crevasse depth of 80m. Crevasse depths that best fit our
model to the profiles may not be indicative of true depths
because of the potential thermal influence of more recent
surface-to-bed connections, which warm the full depth
profile. However, thermal effects from water-filled crevasses
are the most probable source for these anomalous features.
This is best exemplified by profiles S4-A and S4-C, where
temperatures are nearly identical for the lower 300m but
then deviate, with higher temperatures for S4-A persisting to
near the surface. This distinct shallow temperature differ-
ence between the S4-A temperature profile and the S4-C,
located 34m adjacent, suggests a stronger thermal source
from the up-glacier crevasse field, which has since
conducted down through the ice.

Fig. 3. Left: Crevasse field is shaded with white outline. Location of S3-C is a circled C. Right: Initial model profile (rescaled S5) with 80m
crevasse depth, model output and S3-C profile.
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Closely spaced temperature profile offsets
Full-depth temperature offsets, aside from the basal temper-
ate layer, within closely grouped boreholes (20–35m) at S3
and S4 demonstrate steep horizontal thermal gradients
present within the ice (Fig. 2). Englacial temperature
differences >1°C from profiles <30m apart suggest the heat
source must be a recent thermal feature. Simple thermal
models show that the presence and refreezing of meltwater
within one or multiple moulins is capable of creating this
offset. Water pressures near ice overburden (Meierbachtol
and others, 2013) allow the moulin to close by inward
freezing, radially releasing latent heat into the surrounding
ice. Assuming vertically oriented moulins (Catania and
others, 2008), this process will locally affect ice tempera-
tures at all depths. Active moulins, up to 3m in diameter,
have been mapped within this region. Data are insufficient
to isolate the exact parameters of the scenario; however,
moulins remain the only vertically uniform heat source able
to provide observed full-depth temperature offset.

CONCLUSIONS
We see the thermal influence of meltwater manifest itself in
three ways within our temperature profiles. Basal crevas-
sing enables thick temperate layers of ice near the bed,
softening the ice and potentially increasing deformation
rates. Shallow temperature kinks were caused by heat
released from meltwater within crevasses up-glacier. Tem-
perature offsets between closely spaced boreholes are
thermal remnants of both nearby moulin occupation and
these meltwater-filled crevasses. Though the exact condi-
tions under which these scenarios occurred remain
uncertain, the ability of meltwater to rapidly alter ice
temperatures at all depths within the ablation zone of the
GrIS is evident. Rising GrIS melt rates (Mote, 2007; Fettweis
and others, 2011), along with a rising equilibrium-line
altitude (Howat and others, 2013), increase the amount and
spatial extent of meltwater available for supraglacial,
englacial and subglacial heating. Additionally, increased
crevasse extents as the ice sheet thins could increase the
extent to which englacial warming from meltwater occurs
(Colgan and others, 2011). Rapid discharge accelerations
observed at Jakobshavn Isbræ caused by thermal weaken-
ing of the ice in the lateral shear margins from meltwater
warming (Van der Veen and others, 2011) represent one of
numerous potential effects on flow dynamics from this heat
source. Particularly important aspects of this temperature
profile analysis are the indication of the importance of
surface crevassing in creating a temperature structure in the
upper ice, and the strong implication that basal crevasses
may be an under-appreciated part of the basal and
englacial hydrologic system in the ablation region of the
GrIS. Further ground-based measurements of englacial
temperatures will elucidate both the significant heat
sources within the ablation zone of the GrIS, as well as
the thermal state of the ice.
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