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Abstract. We prove that a refinement of Stark’s Conjecture formulated by Rubin inAnn. Inst.
Fourier 46 (1996) is true up to primes dividing the order of the Galois group, for finite, Abelian ex-
tensions of function fields over finite fields. We also show that in the case of constant field extensions,
a statement stronger than Rubin’s holds true.
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0. Introduction

Let LK/k(s, χ) be the ArtinL-function associated to a finite, Galois extensions

of global fieldsK/k, and a characterχ ∈ Ĝ(K/k). In the 1970’s and early
1980’s, Stark [15] developed a conjecture concerning the leading coefficient of
the Taylor expansion ofLK/k(s, χ), at s = 0. The classical formulae for the
case of a Dedekind Zeta-function provide good hints: if the order of vanishing
is r, then the coefficient in question should be a rational number multiplied by a
regulator, obtained as a determinant of anr × r matrix involving character values
and logarithms of absolute values of units inK.

The examples, however, suggest that at least in the case ofAbelianL-functions,
the denominator of the above-mentioned rational number could be specified. In the
last paper of [15], Stark proposed a refined conjecture, which makes this denom-
inator specific, in the case ofAbelianL-functions of order of vanishingr = 1 at
s = 0. This is what Tate (see [16]) calls a conjecture ‘overZ’ and he asks for such
a refined statement for AbelianL-functions of any order of vanishingr. In [14]
Rubin formulates a refined version of Stark’s conjecture, for AbelianL-functions
of number fields, of any order of vanishingr at s = 0. Rubin’s statement can be
easily extended to the more general case of abelian extensions of global fields of
any characteristic.

In this paper we study Rubin’s conjecture in the case of finite, Abelian exten-
sions of global fields of characteristicp > 0 (i.e. function fields). The caser = 1 in
this situation was independently solved by Deligne (see [17, Chpt. V]) and Hayes
(see [6]), with methods relying oǹ-adic homology of 1-motives and rank 1 sign-
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normalized Drinfeld modules respectively. We adopt methods similar to Deligne’s
in order to treat the arbitrary order of vanishing case.

In Section 1 we set the notation, define the objects involved and some of their
properties, and state the conjecture. Section 2 is concerned with the ‘dynamics’ of
Rubin’s conjecture. In particular we show that, in certain cases, one can derive the
conjecture at any levelr from a stronger form of the conjecture at levelr = 0 (see
Corollary 2.2). This fact turns out to be of crucial importance in Sections 3 and
4. In Section 3 we prove Rubin’s conjecture, up to primes dividing the order of
the Galois groupG(K/k), for any Abelian extensionK/k of function fields (see
Theorems 3.1.1 and 3.2.1). In Section 4 we prove that a stronger statement than
Rubin’s holds true for constant field extensions of function fields (see Theorems
4.2.9 and 4.3.1).

We use these results in [13] in order to formulate and prove Gras-type Conjec-
tures for global fields of characteristicp > 0.

The main technique employed in this is the`-adic homological (or, equivalently,
the `-adic étale cohomological) (` 6= p) interpretation ofL-functions, due to
Grothendieck. However, in order to deal with thep-part of the conjecture, we had
to rely on thep-adic homology groups, which are known not to give a good theory
ofL-functions. Therefore, we needed a ‘bridge’ between the`-adic étale and thep-
adic étale cohomology theories, and that is provided by the crystalline cohomology
theory. The fact that the Frobenius actions on the`-adic étale and the crystalline
cohomology groups have the same characteristic polynomials has been known for
quite some time (see [8]). However, we needed the slightly stronger statement that
the characteristic polynomials of the Frobenius actions on theχ-components of the
`-adic étale and crystalline cohomology groups are the same, for every characterχ

of G(K/k). Due to lack of a good reference, we provide a proof of this fact (see
Proposition A.1) along with a proof of Theorem 1.7.4.1, in the Appendix.

1. The Objects Involved and Their Properties

1.1. GENERAL NOTATION

Let us fix a function fieldk of characteristicp > 0 and of transcendental degree
1 over a finite field. LetK be a finite, Abelian extension ofk, of Galois group
G = G(K/k), and letg = |G|. We denote byFq and Fqν the exact fields of
constants ofk andK respectively, whereq is a power ofp, andν is a positive
integer. For primesv in k andw in K, such thatw|v, we denote byFq(v) and
by Fqν (w) their corresponding residue fields, and bydv anddw their degrees over
Fq andFqν , respectively (dv = [Fqν (v):Fq] anddw = [Fqν (w):Fqν ]). Let Nv =
|Fq(v)|, Nw = |Fqν (w)|, and letGv be the decomposition group associated tov in
K/k. The normalized absolute value| · |w:K× 7→ qZ associated tow is defined
by: |α|w = (Nw)−ordw(α), for everyα ∈ K.

Let S andT be two finite, nonempty and disjoint sets of primes ink, S contain-
ing all primes which ramify inK/k. Let us define:
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• SK = {primes inK lying above primes inS}
• TK = {primes inK lying above primes inT }
• OS = {α ∈ K: |α|w 6 1, for allw 6∈ SK}
• US = O×S (the group ofS-units inK).
• US,T = {α ∈ US:α ≡ 1 modw, for all w ∈ SK} (This is a freeZ-module.)
• AS = the ideal class group ofOS

• AS,T = {Fractional ideals ofOS,prime toTK}
{fOS : f ≡ 1 modw,∀w ∈ TK} .

AS,T is a finite ideal class group, isomorphic via the Artin reciprocity map with
the Galois group of the maximal Abelian extension ofK, of conductor dividing∏
w∈TK w, in which all primes inSK split completely.

• XS =
{∑

w∈SK aww: aw ∈ Z,
∑

w∈SK aw = 0
}

• λS,T :US,T → R
⊗
XS, is theG-morphism defined byλS,T (α) = ∑w∈SK f −

log(|α|w) · w, for any α ∈ US,T . This induces anR[G]-isomorphismR ⊗
US,T

∼−→ R⊗XS .
• RS,T is the absolute value of the determinant ofλS,T , with respect toZ-bases of
US,T andXS .

There is an exact sequence ofZ[G]-modules:

0→ US,T → US →
⊕
w∈TK

Fqν (w)× → AS,T → AS → 0, (1)

which, together with the usual class-number formula, implies that, if

ζS,T (s) =
∏
w 6∈SK

(1− Nw−s)−1 ·
∏
w∈TK

(1− Nw1−s)

is the(S, T )-zeta function associated toK, then:

ords=0ζS,T (s) = |SK | − 1,

lim
s→0

s1−|SK |ζS,T (s) = (−1)|TK |−1|AS,T | · RS,T . (2)

(see [4] for (1) and (2) above).

1.2. THE L-FUNCTIONS

Let Ĝ be the group of irreducible, complex valued characters ofG. For anyχ ∈ Ĝ,
L(s, χ)will denote the ArtinL-function associated toχ , andeχ = 1/g

∑
σ∈G χ(σ )·

σ−1 ∈ C[G]. The Stickelberger function is defined by2(s) =∑χ∈Ĝ L(s, χ)·eχ−1,

and it can be thought of as a complex meromorphic function, with values inC[G].
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Rather than working with theL and Stickelberger functions as defined above,
Rubin [14] works with the(S, T )-modified objects, defined by

LS,T (s, χ) =
∏
v∈T
(1− χ(σv) · Nv1−s) ·

∏
v 6∈S
(1− χ(σv) · Nv−s)−1,

2S,T (s) =
∑
χ∈Ĝ

LS,T (s, χ) · eχ−1,

whereσv is the Frobenius morphism associated to (the unramified)v in G. Due to
the conditions imposed onS andT ,LS,T (s, χ) and2S,T (s) are holomorphic on the
whole complex plane. For an integerr > 0, such thats−r2S,T (s) is holomorphic
at s = 0, let

2
(r)
S,T (0) = lim

s→0
s−r2S,T (s) =

∑
χ∈Ĝ

lim
s→0

s−rLS,T (s, χ) · eχ−1 ∈ C[G].

For S andT fixed, andχ ∈ Ĝ, let rχ = ords=0LS,T (s, χ). These numbers do
not depend onT , but they depend onS in the following way:

rχ =
{

#{v ∈ S:χ |Gv = 1Gv }, if χ 6= 1G,

#S − 1, if χ = 1G,
(3)

or, equivalently (and more elegantly),

rχ = 〈χ, χXS 〉, for allχ ∈ Ĝ, (4)

whereχXS is the character associated to the Galois representationρXS given by the
C[G]-moduleC⊗XS, and〈 , 〉 is the usual inner product on the space of characters
Ĝ. (See [17] for (3) and (4) above.)

1.3. GROUP RINGS ANDG-MODULES

For a subringR of C, and aZ[G]-moduleM, R[G] denotes the group ring with
coefficients inR, andRM denotes theR[G]-moduleR ⊗Z M. Forχ ∈ Ĝ, R[χ]
denotes the minimal ring extension ofR, containing the values ofχ .

If L is a field of characteristic 0, then̂G(L) will denote the set of characters
associated toL-irreducible representations ofG. (In particular, ifL = C, then
Ĝ(C) = Ĝ.) If L̄ is an algebraic closure ofL, thenĜ(L̄/L) acts canonically on
Ĝ(L̄) andĜ(L) can be viewed as the set of orbits with respect to this action. For
ψ ∈ Ĝ(L) andχ ∈ Ĝ(L̄), we writeχ |ψ if χ belongs to the orbit represented by
ψ . If S andT are fixed, (3) above implies thatrχ = rχτ , for anyχ ∈ Ĝ(L̄), and
anyτ ∈ G(L̄/L). We can therefore definerψ asrψ = rχ , for anyψ ∈ Ĝ(L) and
anyχ ∈ Ĝ(L̄), such thatχ |ψ .
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If r is a positive integer andS is fixed, letĜ(L, r) = {ψ ∈ Ĝ(L): rψ = r}. If R
is a ring whose field of fractions isL, andM is anR[G]-module, let

Mr,S = {m ∈ M: eψ ·m = 0, for allψ ∈ Ĝ(L)\Ĝ(L, r)},

whereeψ = 1/g
∑

σ∈G ψ(σ ) · σ−1. This is obviously anR[G]-submodule ofM.

Remark1. Let R be a Dedekind domain containingZ[1/g], and letL be its
field of fractions. Then one has a decompositionR[G] = ⊕

ψ∈Ĝ(L) Dψ, where
Dψ = R[G] · eψ . TheDψ ’s are finite extensions ofR (and therefore Dedekind

domains themselves), andDψ
∼−→ R[χ] via the mapR[G] χ−→ R[χ], defined

asχ(
∑

σ∈G aσ · σ ) =
∑

σ∈G aσχ(σ ), for anyχ ∈ Ĝ(L̄), χ |ψ . This implies that,
if M is anR[G]-module, then one can decompose it into itsψ-componentsM =⊕

ψ∈Ĝ(L) M
ψ, whereMψ = M⊗

R Dψ = {m ∈ M: eχ ·m = 0 in L̄M, if χ - ψ}.
For a finitely generatedR[G]-moduleM, the following are therefore equivalent:

(i) M is a projectiveR[G]-module.
(ii) Mψ is a projectiveDψ -module, for anyψ .
(iii) Mψ has noDψ -torsion, for anyψ .
(iv) M has noR-torsion.

1.4. FITTING IDEALS

If A is a commutative, Noetherian ring, andM is a finitely generatedA-module,

then FittA(M) denotes its Fitting ideal. IfAn
φ−→ Am → M → 0 is a finite

presentation ofM, one can consider the composition ofA-morphisms
m∧ An

m∧φ- m∧
Am

det∼- A.

By definition, we have FittA(M) = Im(det◦ m∧ φ). We will use the following
properties of Fitting ideals:

(a) If M is a cyclicA-module then FittA(M) = AnnA(M).

(b) If A
f−→ B is a morphism of Noetherian rings, andM is a finitely generated

A-module, then FittB(M
⊗
A

B) = f (FittA(M))B.

(c) If R is a Dedekind domain,M is a finitely generatedR[G]-module, and
a ∈ R[G], then

a ∈ FittR[G](M)⇔ a ∈ FittRλ[G]

(
M
⊗
R

Rλ

)
, ∀λ,

whereλ runs through the set of prime ideals ofR.
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(d) If A is a finite, direct sum of Noetherian ringsA = ⊕i Ai , N =
⊕

i Ni is

anA-module, withNi
∼−→ A

ni
i , for some positive integersni, and

N =
⊕
i

Ni

f=⊕
i

fi

- N =
⊕
i

Ni → M → 0

is an exact sequence ofA-modules, then det(f ) =def
∑
i

detAi (fi) ∈ FittA(M).

(Here detAi (fi) is the determinant offi with respect to anAi basis ofNi .)
Let 0→ M ′ → M → M ′′ → 0 be an exact sequence of finitely generated

A-modules. Then:
(e) FittA(M ′) · FittA(M ′′) ⊆ FittA(M) ⊆ FittA(M ′′).
(f) If A is a Dedekind domain andM,M ′ andM ′′ are finite, then

FittA(M) = FittA(M
′) · FittA(M

′′) and [A:FittA(M)] = |M|.
In particular, ifA = Z, then FittZ(M) = |M| · Z.

(g) If A = Z[G], andG is cyclic, then FittA(M) ⊆ FittA(M ′).
Proofs for all the properties above, except (c) and (d), can be found in the Ap-

pendix of [9]. (c) is a consequence of (b), and (d) follows easily from the definition
of the Fitting ideal.

1.5. THE MODULES XS , US,T AND 3S,T

Let K/k, S, T be as above, and letr be a positive integer. From now on we are
going to assume that the set of data(K/k, S, T , r) satisfies the following extended
set of hypotheses:

(H)


S 6= ∅, T 6= ∅, S ∩ T = ∅,
S contains all primes which ramify inK/k,

S contains at leastr primes which split completely inK/k,

|S| > r + 1.

Hypotheses (H) imply that, for anyχ ∈ Ĝ, we haverχ > r (see (3) above) and
therefore2(r)

S,T (0) ∈ C[G] makes sense. From the definitions, we have2
(r)
S,T (0) ∈

C[G]r,S.
Let us choose anr-tuple (v1, . . . , vr ) of r distinct primes inS, which split

completely inK/k. Let us fixW = (w1, . . . , wr), wherewi is a prime inK lying
abovevi, for any 16 i 6 r, and letw ∈ SK , such thatw6 |vi, for any 16 i 6 r.

All the exterior powers considered in this paper are overZ[G], unless otherwise

specified. We will be interested in theZ[G]-modules
r∧ US,T and

r∧ XS . Let x =def

(w1− w) ∧ · · · ∧ (wr − w) ∈ r∧ XS .
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LEMMA 1.5.1. LetR be a discrete valuation ring, or a field, containingZ[1/g],
let L be its field of fractions and letR[G] = ⊕ψ∈Ĝ(L)Dψ be the direct sum
decomposition described in Remark1 in Section1.3. Then

(1) RUS,T ' RXS ' ⊕ψ∈Ĝ(L)Drψ
ψ , asR[G]-modules.

(2) (R
r∧ US,T )r,S ' (R r∧ XS)r,S ' R[G]r,S, asR[G]-modules.

(3) (R
r∧ XS)r,S = R[G]r,S · x.

Proof. (1) is a consequence of Remark 1, Section 1.3, equality (4) and the fact
thatRUS,T andRXS are isomorphic asR[G]-modules (see Section 1.1).

(2) and (3) follow from Remark 1, Section 1.3 and Lemma 2.6 of [14]. 2
For everyφ1, . . . , φr ∈ HomZ[G](US,T ,Z[G]), one can define aQ[G]-morphism:

Q
r∧ US,T φ1∧···∧φr- Q[G]

by lettingφ1 ∧ · · · ∧ φr(u1 ∧ · · · ∧ ur) = deti,j (φi(uj )), for everyu1 ∧ · · · ∧ ur ∈
r∧ US,T .

DEFINITION 1.5.2. Let3S,T be theZ[G]-submodule ofQ
r∧ US,T defined by

3S,T =
{
ε ∈

(
Q

r∧ US,T
)
r,S

∣∣∣∣∣ φ1 ∧ · · · ∧ φr(ε) ∈ Z[G],
∀φ1, . . . , φr ∈ HomZ[G](US,T ,Z[G])

}
.

LEMMA 1.5.3. The lattice3S,T defined above satisfies the equalitites:

(1) Z[1/g]3S,T = (Z[1/g] r∧ US,T )r,S.
(2) If r = 1, then3S,T = (US,T )1,S.
(3) If r = 0, then3S,T = Z[G]0,S .

Proof.See [14], Proposition 1.2. 2

1.6. THE CONJECTURES

For every componentwi of the r-tupleW , chosen in Section 1.5, one can define

a Z[G]-morphismXS
w∗i- Z[G], by defining it first on

⊕
w∈SK Zw asw∗i (w) =∑

σ∈G,wσ=wi σ,∀w ∈ SK, and by taking the restriction toXS . One obtains this way
aC[G]-morphism

C
r∧ XS w∗1∧···∧w∗r- C[G],
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defined byw∗1 ∧ · · · ∧w∗r (x1 ∧ · · · ∧ xr) = deti,j (w∗i (xj )), ∀x1 ∧ · · · ∧ xr ∈ r∧ XS .

Remark1. If x = (w1− w) ∧ · · · ∧ (wr − w) is the element of
r∧ XS , defined

in Section 1.5, thenw∗1 ∧ · · · ∧ w∗r (x) = 1, as one can easily see.

Let C
r∧ US,T

λ
(r)
S,T∼- C

r∧ XS be theC[G]-isomorphism defined byλ(r)S,T (u1 ∧
· · · ∧ ur) = λS,T (u1) ∧ · · · ∧ λS,T (ur), for everyu1 ∧ · · · ∧ ur ∈ r∧ US,T .

DEFINITION 1.6.1.

(1) The regulator map associated to ther-tupleW is defined to be theC[G]-
morphism:C

r∧ US,T RW- C[G], given byRW = (w∗1∧ · · · ∧w∗r ) ◦λ(r)S,T .

(2) For everyχ ∈ Ĝ, we defineC
r∧ US,T RW,χ- C byRW,χ = χ ◦ RW .

Remark2. Let us observe thatRW |
(C

r∧US,T )r,S : (C
r∧ US,T )r,S → C[G]r,S is

an isomorphism ofC[G]-modules. Indeed, sinceλ(r)S,T is an isomorphism (Lemma
1.5.1), all we have to check is that

(w∗1 ∧ · · · ∧ w∗r )|(C r∧XS)r,S : (C
r∧ XS)r,S → C[G]r,S

is an isomorphism. According to Lemma 1.5.1 (3),(C
r∧ XS)r,S = C[G]r,S · x, and

therefore our statement follows from Remark 1 above.

CONJECTURE A (‘overQ’) (Stark, Tate). If the set of data(K/k, S, T , r) sat-

isfies hypotheses(H), then there exists a uniqueεS,T ∈ (Q r∧ US,T )r,S, such that
RW(εS,T ) = 2(r)

S,T (0).

Remark3. As Rubin shows (see [14], Prop. 2.3), Conjecture A above is equiv-
alent to Stark’s original conjecture ‘overQ’, for the L-functions associated to
charactersχ ∈ Ĝ(C, r). As Tate points out (see [17], Chpt. V), Stark’s Conjecture
‘over Q’ is always true in the function field case. Therefore Conjecture A is a
theorem in the setting we are considering in this paper. We will refer to Conjecture
A asQ · St(K/k, S, T , r) in the sequel.

The following is the refinement Rubin [14] proposes for Conjecture A:

CONJECTURE B (‘overZ’) (Rubin). If the set of data(K/k, S, T , r) satisfies
hypotheses(H), then there exists a uniqueεS,T ∈ 3S,T , such thatRW(εS,T ) =
2
(r)
S,T (0).
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Remark4. If r = 0, this statement is equivalent to2S,T (0) ∈ Z[G]0,S (see
Lemma 1.5.3(3)). This was proved by Deligne in the function field case (see [17],
Chpt. V).

If r = 1, as Rubin points out (see [14], Prop. 2.5), Conjecture B above, for
a fixedS and for allT , is equivalent to Stark’s own refined conjecture for allL-
functions associated to charactersχ ∈ Ĝ(C, r). In the function field case, this
was proved independently and with very different methods by Deligne (see [17],
Chpt. V) and Hayes [6]. (Also see [13 Section 3] for more details on the equi-
valence between Rubin’s Conjecture forr = 1 and the classical Brumer–Stark
Conjecture.)

The main goal of this paper is the study of Conjecture B above (which will be
referred to as St(K/k, S, T , r)), for any value ofr.

Remark5. Remark 2 above implies that the uniqueness ofεS,T in both Conjec-
ture A and B is automatic, once one proves its existence in the appropriate vector
space or lattice.

1.7. GEOMETRIC BACKGROUND(SEE [17])

1.7.1. The Corresponding Schemes

Let X1 → Y1 be a finite morphism of projective, irreducible, smooth curves,
defined overFq, corresponding to the inclusionk ↪→ K. Let F be an algebraic
closure ofFq and letX = X1×Spec(Fq) Spec(F), andY = Y1×Spec(Fq) Spec(F) be
the smooth, projective curves associated toX1 andY1 respectively, by extending
scalars fromFq to F. SinceFq is algebraically closed ink, k ⊗Fq F is a field
and, correspondingly,Y is an irreducible, smooth, projective curve, defined over
F. Since the algebraic closure ofFq in K is Fqν ,K ⊗Fq F

∼−→ ⊕06i6ν−1K
(i), with

K(i) mutually isomorphic fields. Correspondingly,X = ∐06i6ν−1X
(i), where the

X(i)’s are irreducible, smooth, projective curves, defined overF, whose fields of
rational functions are theK(i)’s respectively. TheX(i)’s are mutually isomorphic
over F, and therefore their generagX(i) are equal. We will denote the common
value of these numbers bygX. We will also denote by[X(i)] the generic point of
the schemeX(i), for every 06 i 6 ν − 1.

Everyσ ∈ G gives isomorphisms

σ−1: K ∼- K, σ−1⊗ 1F: K ⊗ F
∼- K ⊗ F,

which induce the isomorphisms

σX1: X1
∼- X1, σX: X ∼- X

of Fq-schemes andF-schemes respectively. This way,G acts on the sets of points
of X and it permutes the generic points[X(i)] transitively. We emphasize the fact
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thatσX1 andσX are associated toσ−1 ∈ G. This way, ifw is a prime inK, and[w]
is the associated closed point on the schemeX1, thenσX1([w]) = [wσ ].

1.7.2. The Geometric Frobenius

Let FX1:X1 → X1 be the geometric Frobenius endomorphism ofX1, relative to
Fq. If U is an affine open subset ofX1, thenFX1|U corresponds to theq-power map
on theFq-algebra0(U,OX1), of U -sections of the structural sheafOX1.

DEFINITION 1.7.2. LetF = FX1 ×Spec(Fq) 1Spec(F):X → X be the Spec(F)-
scheme morphism obtained fromFX1 by extending scalars toF. F is called the
geometric Frobenius endomorphism ofX relative toFq.

Remark1. F permutes transitively the generic points[X(i)] of X, andFν fixes
each of these. We can therefore suppose from now on that[X(i)] = F i([X(0)]), for
every 06 i 6 ν − 1.

Remark2. The simple fact thatσ (xq) = σ (x)q , ∀x ∈ K, ∀σ ∈ G, implies
thatFX1 ◦ σX1 = σX1 ◦FX1 and therefore, by extending scalars,F ◦ σX = σX ◦ F,
∀σ ∈ G.

1.7.3. The`-adic Homology Groups ofX

We first give explicit descriptions of the homology groups Hi(X,Z) of X, with
coefficients inZ, and of the actions ofG and of the geometric Frobenius mapF
on each of these. For anyi > 0 and anyσ ∈ G, we will denote byσ∗,1 andF∗,i the
maps induced on Hi(X,Z) by σ andF respectively.

• Hi(X,Z) = 0 for i > 3.
• H0(X,Z) = the free Abelian group generated by[X(i)],06 i 6 ν − 1.

The mapsσ∗,0 andF∗,0 act on H0(X,Z) by simply permuting the[X(i)]’s as de-
scribed in Section 1.7.2. Remark 1 in Section 1.7.2 also implies thatFν∗,0 = 1H0(X,Z).

• H1(X,Z) = Pic0(X), where Pic0(X) is the Jacobian variety associated toX.
We have Pic0(X) = ∐

i Pic0(X(i)), and each Pic0(X(i)) is an Abelian variety of
dimensiongX, whose underlying group is isomorphic to the quotient of the group
of divisors of degree zero onX(i), by the subgroup of principal divisors:

Pic0(X(i)) = Div0(X(i))

{div(f ): f ∈ K(i)×} , Pic0(X) = Div0(X)

{div(f ): f ∈⊕
i

K(i)×} .

Here Div0(X) is the group of divizors ofmultidegreezero onX, i.e. of degree zero
if restricted to each component(X(i)).
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The mapsσ∗,1 andF∗,1 are naturally induced by the actions ofσ andF on the
set of closed points of the schemeX.
• H2(X,Z) = H0(X,Z)

⊗
F×, with σ∗,2 = σ∗,0⊗ 1F× , andF∗,2 = F∗,0 ⊗ σq ,

whereσq : F× → F× is theq-power mapσq(x) = xq .
If M is an Abelian group and̀is a prime number, we give the following ad-hoc

definition of the`-adic Tate module ofM:

T`(M) =


M ⊗ Z`, if M has noZ-torsion,

lim←−
n

M[`n], otherwise,

whereM[`n] is the group of̀ n-torsion points ofM, and the projective limit is

taken with respect to the multiplication by` mapsM[`n+1] `−→ M[`n].

DEFINITION 1.7.3.1. Let̀ be any prime number. Thè-adic homology groups
Hi(X,Z`) of X are defined by Hi(X,Z`) = T`(Hi(X,Z)), ∀i > 0.

TheZ-linear actions ofG andF on Hi(X,Z) induce in a natural wayZ`-linear
actions on Hi(X,Z`). According to the definition above, we have

• Hi(X,Z`) = 0,∀i > 3.
• H0(X,Z`) = H0(X,Z)⊗Z` is the freeZ`-module generated by[X(i)], for all

06 i 6 ν − 1.
• H1(X,Z`) = T`(Pic0(X)) =⊕

i

T`(Pic0(X(i)))
∼−→ Zνn` , wheren = 2gX, if

` 6= p, and 06 n 6 2gX, if ` = p.
• H2(X,Z`)

∼−→ H0(X,Z`)⊗ T`(F×). Since T̀(F×) = lim←− µ`
n , whereµ`n =

{ζ ∈ F×: ζ `n = 1}, we have T̀(F×) ∼−→ Z` if ` 6= p, and Tp(F×) = {1}. We
therefore have H2(X,Z`) ' H0(X,Z`), if ` 6= p, and H2(X,Zp) = 0. It is worth
noticing that H2(X,Z`) and H0(X,Z`) areG-isomorphic, but notF∗-isomorphic.
In fact, the action ofF∗,2 is taken into the action ofq · F∗,0 by the isomorphism
above.

If ` is a prime number, andR is any ring containingZ`, then, by definition,
Hi(X,R) = Hi(X,Z`)

⊗
Z` R. In what follows,σ∗,i andF∗,i will also denote the

R-linear actions induced byσ andF on Hi(X,R), for any i > 0, and anyR as
above.

Remark1. The Hi(X,Z`)’s as defined above are in fact the functorial duals of
the étale cohomology groups Hiét(X,Z`) of X (see Appendix).

1.7.4. Homological Interpretation of2S,T (s)

LetR be a commutative ring, andV a finitely generated projectiveR[G]-module.
Let W be a finitely generatedR[G]-module so thatV ⊕ W

∼−→ R[G]n, for
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some integern > 0. Let f ∈ EndR[G](V ). If u is a variable, one can define the
polynomial inu, with coefficients inR[G]:

detR[G](1− f · u|V ) def= detR[G](1− (f ⊕ 0W) · u|V ⊕W),
where the determinant on the right is taken with respect to a basis of the freeR[G]-
moduleV ⊕ W . Schanuel’s Lemma easily implies that this definition does not
depend onW .

In particular, ifR andL are as in Remark 1, Section 1.3, then one can consider
the decompositionsR[G] = ⊕ψ∈Ĝ(L)Dψ , andV = ⊕ψ∈Ĝ(L)V ψ , with V ψ free
Dψ -modules of finite rank. It is easy to see that, in this case,

detR[G](1− f · u|V ) =
∑

ψ∈Ĝ(L)
detDψ (1− f · u|V ψ),

in R[G][u] = ⊕ψ∈Ĝ(L)Dψ [u].

Remark1. If R′ is an R-algebra,V is a projectiveR-module, andf ∈
EndR[G](V ), thenV ′ = V ⊗R R′ is a projectiveR′[G]-module,f ′ = f ⊗ 1R′ ∈
EndR′[G](V ′), and detR′[G](1− f ′ · u|V ′) = detR[G](1− f · u|V ).

For every prime number̀, and everyi = 0,1,2, let

Pi,`(u)
def= detQ`[G](1− F∗,i · u|Hi (X,Q`).

The following theorem will play an important role in our future arguments.

THEOREM 1.7.4.1.For anyi = 0,1,2:

(1) Pi,p(u) ∈ Zp[1/g][G][u], and if` 6= p, thenPi,` ∈ Z[1/g][G][u].
(2) If ` 6= p, thenPi,`(u) does not depend oǹ.

LetPi(u)
def= Pi,`(u), for any` 6= p. Then:

(3) There exist polynomialsQi(u) ∈ Zp[1/g][G][u], such thatPi(u) =
Pi,p(u) ·Qi(u).

(4) If K/k is a constant field extension, thenQi(u) ∈ Zp[G][u].
Proof.See Appendix. 2
The link between the polynomialsPi(u) defined above and the Stickelberger

function2(s) is given by the following:

THEOREM 1.7.4.2. There is an equality of complex, meromorphic functions
2(s) =∏06i62Pi(q

−s)(−1)i+1
.

Proof.See [17], Chapter V. 2
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The natural question which arises is to give a similar homological interpretation
for 2S,T (s). This was done by Deligne (see [17], Chpt. V). We are going to briefly
describe his constructions below, as they will be needed in Sections 3 and 4.

Let SX be the finite set of closed points onX, lying above points corresponding
to primes inS, and let Div(SX) be theZ[G]-module of divisors onX, supported
onSX. There is an exact sequence ofZ[G]-modules:

0→ kerαS → Div(SX)
αS- H0(X,Z)→ 0 (5)

whereαS is the multidegree map given by

αS

 m∑
j=1

njPj

 = ∑
06i6ν−1

 ∑
Pj∈X(i)

nj

 [X(i)],

for every
∑m

j=1 njPj ∈ Div(SX).

Remark2. Obviously kerαS is a freeZ-module of finite rank and, by definition,
T`(kerαS) = kerαS ⊗ Z`, for any prime number̀. αS is F∗,0-invariant and there-
foreF acts on both kerαS and T̀ (kerαS). We denote the induced endomorphisms
by F∗,0.

Let TX be the finite set of closed points onX, lying above points associated to
primes inT , and let H0(TX,Z) be the free Abelian group generated byTX. There
is an exact sequence ofZ[G]-modules

0→ H0(X,Z)⊗ F× βT- H0(TX,Z)⊗ F× → coker(βT )→ 0, (6)

where

βT

 ∑
06i6ν−1

[X(i) ⊗ fi
 = ∑

06i6ν−1

 ∑
P∈TX∩X(i)

P

⊗ fi,
for any

∑
06i6ν−1[X(i)] ⊗ fi ∈ H0(X,Z)⊗ F×.

Remark3. From the definition ofβT , one can easily see that, as a group.
coker (βT ) is a torus, i.e. coker(βT )

∼−→ F×m, for some positive integerm.
Therefore we have T̀(coker(βT ))

∼−→ Zm` , if ` 6= p, and Tp(coker(βT )) = {1}.
SinceF induces an isomorphismF∗,2 = F∗,0⊗ σq on both H0(X,Z)⊗ F× and

H0(TX,Z) ⊗ F×, andβT is F∗,2-invariant,F induces aZ-linear isomorphism on
coker(βT ), and aZ`-linear isomorphism on T̀(coker(βT )). We will denote both
these isomorphisms byF∗,2.

THEOREM 1.7.4.3.If S andT are two finite, nonempty, disjoint sets of primes in
k, S containing all primes which ramify inK/k, andu = q−s , then
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(1) 2S,T (s) ∈ Z[G][u].
(2) For every prime number̀, such that̀ 6= p, we have

2S,T (s) = detQ`[G](1− F∗,0 · u|T`(kerαS)⊗Q`)×
×detQ`[G](1− F∗,1 · u|H1(X,Q`))×
×detQ`[G](1− F∗,2 · u|T`(coker(βT ))⊗Q`).

Proof.See [17], Chapter V. 2
Remark4. The theorem above implies in particular that, if the set of data

(K/k, S, T ,0) satisfies hypotheses (H), then2S,T (0) ∈ Z[G], and therefore (by
definition)2S,T (0) ∈ Z[G]0,S. This is the proof of St(K/k, S, T , r), for r = 0.

LEMMA 1.7.4.4. Let` be a prime number, such thatgcd(`, g) = 1. Then
(1) If ` 6= p,

2S,T (s) = detZ`[G](1− F∗,0 · u|T`(kerαS))×
×detZ`[G](1− F∗,1 · u|H1(X,Z`))×
×detZ`[G](1− F∗,2 · u|T`(coker(βT ))).

(2) If gcd(p, g) = 1, there exists a polynomialQ(u) ∈ Zp[u] such that

2S,T (s) = Q(u) detZp[G](1− F∗,1 · u|H1(X,Zp))×
×detZp [G](1− F∗,0 · u|Tp(kerαS)).

Proof. Let us first notice that, for̀ satisfying gcd(`, g) = 1, H1(X,Z`),
T`(kerαS) and T̀ (coker(βT )) areZ`-free and thereforeZ`[G]-projective modules
(see Remark 1, Section 1.3). This shows that the determinants on the right-hand
side of (1) make sense. Statement (1) in the lemma is now a direct consequence of
Remark 1 above and Theorem 1.7.4.3(2).

The fact that T̀(kerαS) = (kerαS⊗Z[1/g])⊗Z[1/g]Z` and that kerαS⊗Z[1/g]
is Z[G]-projective imply that

detZ[1/g][G](1− F∗,0 · u|kerαS ⊗ Z[1/g])
= detZ`[G](1− F∗,0 · u|T`(kerαS)), (7)

for all prime numbers̀ , such that gcd(`, g) = 1, in particular for̀ = p. Equal-
ity (7) shows that the polynomial on the right is independent of`, as long as
gcd(`, g) = 1.

As Deligne shows (see [17], Chpt. V), the exact sequence (6) implies that, if
` 6= p, gcd(`, g) = 1, we have an equality

detZ`[G](1− F∗,2 · u|T`(coker(βT )))
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=
∏
v∈T (1− σ−1

v (qu)dv )

detZ`[G](1− qF∗,0 · u|H0(X,Z`))
. (8)

On the other hand, H0(X,Z`) = H0(X,Z[1/g]) ⊗ Z`, and H0(X,Z[1/g]) is a
projectiveZ[1/g][G]-module. Remark 1 therefore implies that

detZ`[G](1− qF∗,0 · u|H0(X,Z`))

= detZ[1/g][G](1− qF∗,0 · u|H0(X,Z[1/g])).
This implies that the right-hand side of equality (8) is an element in the power series
ring Z[1/g][G][[u]]. On the other hand, the left-hand side of the same equality
belongs toZ`[G][u]. We therefore have

detZ`[G](1− F∗,2 · u|T`(coker(βT ))) ∈ Z[1/g][G][u],

for all `, such that gcd(`, g) = 1.

LetQ(u)
def= Q1(u) · detZ`[G](1− F∗,2 · u|T`(coker(βT ))), whereQ1(u) is the

polynomial defined in Theorem 1.7.4.1 (3), and` is a prime number, such that
` 6= p and gcd(`, g) = 1. According to the arguments above,Q(u) ∈ Zp[G][u].
Part (1) of the lemma, in addition to Theorem 1.7.4.1(3) and equality (7) imply that

2S,T (s) = Q(u) · detZp[G](1− F∗,1 · u|H1(X,Zp))×
×detZp [G](1− F∗,0 · u|Tp(kerαS)),

which concludes the proof of (2). 2

2. Dynamics (ChangingSand r)

Let us suppose that the set of data(K/k, S, T , r) satisfies hypotheses (H). Let
r ′ > r, and letvr+1, . . . , vr ′ be r ′ − r distinct primes ink, not belonging toS
or T , and splitting completely inK/k. If S ′ = S ∪ {vr+1, . . . , vr ′ }, then the set
of data(K/k, S ′, T , r ′) satisfies hypotheses (H) as well. SinceT remains fixed
throughout this section, we will denote byεS andεS ′ the elementsεS,T andεS ′,T
whose existence is predicted byQ · St(K/k, S, T , r) and Q · St(K/k, S ′, T , r ′)
respectively. We will also make the notationsAS = AS,T , US = US,T etc.AS,S ′
will denote the subgroup ofAS generated by primes inK, lying abovevi, for all
r + 16 i 6 r ′. All the Fitting ideals and exterior powers involved from now on in
this paper are considered overZ[G], unless otherwise specified, and therefore we
will suppress the group ringZ[G] from the notation.

In this section we will list some relations between statements St(K/k, S, T , r)

and St(K/k, S ′, T , r ′), which will be needed in Sections 3 and 4. For most proofs,
we refer the reader to [14], Section 5.
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There is an exact sequence ofZ[G]-modules:

0→ AS,S ′ → AS → AS ′ → 0. (9)

PROPOSITION 2.1.If εS andεS ′ are the elements defined above, then

(1) εS ∈ Z[1/g]Fitt(AS)3S ⇔ εS ′ ∈ Z[1/g]Fitt(AS ′)3S ′.
(2) If G is cyclic, thenεS ∈ Fitt(AS)3S ⇔ εS ′ ∈ 3S ′ .

Proof. (see also Theorem 5.3 in [14]) According to [14], Section 5, there exist
Q[G]-morphisms:

Q
r ′∧US ′ 8- Q

r∧US, Q
r ′−r∧ US ′

8′- Q[G],
satisfying the following properties:

(a) 8 is injective if restricted toQ3S ′.
(b) 8(Z[1/g]3S ′) = Z[1/g]Fitt(AS,S ′)3S .
(c) Fitt(AS,S ′)3S ⊆ 8(3S ′).
(d) 8(εS ′) = εS .
(e) 8′(∧r ′−rUS ′) = Fitt(AS,S ′).
(f) 8(u1 ∧ u2) = 8′(u1) ∧ u2, for everyu1 ∈ Q ∧r ′−r US ′ andu2 ∈ Q ∧r US.

(1) The exact sequence (9) and the fact thatZ[1/g][G] is a finite, direct sum of
Dedekind domains (see Section 1.3) imply that there is an equality ofZ[1/g][G]-
ideals (see Section 1.4(f)):

Z[1/g]Fitt(AS) = (Z[1/g]Fitt(AS,S ′)) · (Z[1/g]Fitt(AS ′)). (10)

Let us suppose thatεS ∈ Z[1/g]Fitt(AS)3S . (10) implies thatεS can be written
as a finite sumεS = ∑

i γiδiλi, with γi ∈ Z[1/g]Fitt(AS ′), δi ∈ Fitt(AS,S ′) and
λi ∈ 3S . According to (c) above, this implies thatεS ∈ 8(Z[1/g]Fitt(AS ′)3S ′).
Thus (a) and (d) imply thatεS ′ ∈ Z[1/g]Fitt(AS ′)3S ′ .

Let us suppose now thatεS ′ ∈ Z[1/g]Fitt(AS ′)3S ′ . This implies thatεS =
8(εS ′) ∈ Fitt(AS ′)8(Z[1/g]3S ′). On the other hand, according to (b) and (10)
above, we have the equalities:

Fitt(AS ′)8(Z[1/g]3S ′) = Z[1/g]Fitt(AS,S ′)Fitt(AS ′)3S

= Z[1/g]Fitt(AS)3S.

This concludes the proof of (1).
(2) If G is cyclic, Section 1.4 (g) and the exact sequence (9) imply that Fitt(AS) ⊆

Fitt(AS,S ′), and therefore (a) and (c) imply (2). 2
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COROLLARY 2.2. Let us suppose that, in the context above,r = 0. Then

(1) 2S,T (0) ∈ Z[1/g]Fitt(AS)⇔ εS ′ ∈ Z[1/g]Fitt(AS ′)3S ′ .
(2) If G is cyclic,2S,T (0) ∈ Z[G]0,SFitt(AS)⇒ εS ′ ∈ Z[G]r ′,S ′ · ∧r ′US ′.

Proof.(1) In order to prove (1), one has to rely on the fact that, in the caser = 0,
3S = Z[G]0,S (see Lemma 1.5.3(3)), and that

Z[1/g]Fitt(AS) · Z[1/g][G]0,S = Z[1/g]Fitt(AS) ∩ Z[1/g][G]0,S .

This last equality follows from the fact thatZ[1/g][G] = ⊕ψ∈Ĝ(Q)Dψ and that,
with respect to this decomposition,Z[1/g][G]0,S = ⊕ψ∈Ĝ(Q,0)Dψ (see Section
1.3).

Proposition 2.1 (1), in addition to the fact that2S,T (0) ∈ C[G]0,S , implies
therefore that

2S,T (0) ∈ Z[1/g]Fitt(AS)⇔ 2S,T (0) ∈ Z[1/g]Fitt(AS) · Z[1/g][G]0,S
⇔ εS ′ ∈ Z[1/g]Fitt(AS ′)3S ′ .

(2) Let us suppose that2S,T (0) ∈ Z[G]0,S · Fitt(AS). One can therefore write
2S,T (0) as a finite sum2S,T (0) = ∑

i αi · fi, whereαi ∈ Z[G]0,S, andfi ∈
Fitt(AS). Property (e) above together with Section 1.4(g) imply that there exist
elementsui ∈ ∧r ′US ′ so thatfi = 8′(ui), for every indexi, and therefore (f)
implies thatεS = 2S,T (0) = 8(∑αi · ui). The obvious fact that, in our context,
Z[G]0,S = Z[G]r ′,S ′ therefore implies that

∑
i αi · ui ∈ Z[G]r ′,S ′ · ∧r ′US ′ ⊆ 3S ′ .

Properties (a) and (d) imply then thatεS ′ =∑αi · ui ∈ Z[G]r ′,S ′ · ∧r ′US ′. 2
We conclude this section with the following statement, whose proof can be

found in [14], Section 5 (see Corollary 5.4). For a more detailed proof, see [12],
Chapter II.

PROPOSITION 2.3.Let us suppose that the set of data(K/k, S, T , r) satisfies
hypotheses(H), and thatεS,T is the element satisfyingQ · St(K/k, S, T , r). If
εS,T ∈ Z[1/g]3S,T , then the following statements are equivalent:

(1) εS,T ∈ Z[1/g]Fitt(AS,T )3S,T .
(2) Z[1/g][G]εS,T = Z[1/g]Fitt(AS,T )3S,T .

We will actually prove that statement (1) in Proposition 2.3 is always satisfied in
the function field case (see Theorem 3.2.1(2)) and, therefore, (2) is always satisfied
(see Corollary 3.2.2). This fact turns out to be of crucial importance in proving that
Gras-type Conjectures hold true in the function field setting (see [13]).
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3. Conjecture B up to Primes Dividing |G(K/k)|
3.1. THE r=0 CASE

In the context described in Section 1.7, let us suppose that the set of data(K/k,
S, T ,0) satisfies hypotheses (H). The goal of this section is the proof of the fol-
lowing:

THEOREM 3.1.1. If the set of data(K/k, S, T ,0) satisfies hypotheses(H), then
2S,T (0) ∈ Z[1/g]FittZ[1/g][G](AS,T ).

Remark1. Before starting to prove the theorem above, let us first notice that, ac-
cording to Section 1.4 (c), its statement is equivalent to2S,T (0) ∈ FittZ`[G](AS,T ⊗
Z`), for all primes`, such that gcd(`, g) = 1. We will therefore prove the Theorem
‘prime by prime’.

LetSX1 andSX be the finite sets of closed points onX1 andX respectively, lying
above points inY1 associated to primes inS. TX1 andTX have similar meanings.
If Z is a subset of closed points ofX1 orX, then Div(Z) and Div0(Z) will denote
the groups of divisors and respectively divisors of degree 0, supported onZ. (If
Z ⊆ X, degree 0 meansmultidegree0, i.e. degree 0 on each connected component
X(i).) Let

Pic0(X1) = Div0(X1)

{div(f ): f ∈ K×} , Pic0(X) = Div0(X)

{div(f ): f ∈ ⊕06i6ν−1K
(i)×}

be the Picard groups associated toX1 andX respectively. As explained in Section
1.7.3, Pic0(X) is the underlying group of an Abelian variety of dimensiongX,
on which the geometric Frobenius map induces a bijective endomorphismF∗,1.
Pic0(X1) can be naturally viewed as a finite subgroup of Pic0(X), and it is precisely
the part of Pic0(X) fixed by the action ofF∗,1.

We will also consider the following groups:

Pic0(X1)T = Div0(X1\TX1)

{div(f ): f ∈ K×, f ≡ 1 modw,∀w ∈ TX1}
,

Pic0(X)T = Div0(X\TX)
{div(f ): f ∈⊕

i

K(i)×, f ≡ 1 modw,∀w ∈ TX} .

It can be shown that Pic0(X)T is the underlying group of an algebraic group
as well. We will not use this fact in what follows. Pic0(X1)T sits inside the part
of Pic0(X)T fixed by the actionF∗,1 of the geometric Frobenius morphism and, as
Lemma 3.1.4 below shows, it is in fact equal to this. There obviously are surjective
group homomorphismsπX1:Pic0(X1)T → Pic0(X1), πX:Pic0(X)T → Pic0(X).

There is a commutative diagram ofZ[G]-modules, with exact rows
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0 - K×/F×qν
div - Div0(X1) - Pic0(X1) - 0

0 - K×/US

πK

?
divS- Div(X1\SX1)

φS

?
- AS

ψS

?
- 0,

(11)

where

• πK is the usual projection (F×qν ⊆ US).
• φS is the ‘forgetful’ map defined byφ(

∑
wi∈X1

niwi) =∑wi∈X1\SX1
niwi.

• ψS is the map induced byφS .
• div is the usual divisor map.
• divS is the ‘forgetful’ divisor map defined by divS(f ) = ∑

w∈X1\SX1

ordw(f ) · w, for anyf ∈ K.

The snake lemma applied to (11) and the surjectivity ofπK give an isomorph-

ism of Z[G]-modules coker(φS)
∼−→ coker(ψS). Let dZ = Im(Div(SX1)

deg−→
Z), where ‘deg’ is the divisor degree map onX1. It is an easy observation that
coker(φS)

∼−→ Z/dZ asZ[G]-modules, withG acting trivially onZ/dZ. There-
fore we obtain the following isomorphism ofZ[G]-modules

coker(ψS)
∼−→ Z/dZ, (12)

with G acting trivially onZ/dZ.
There is a commutative diagram ofZ[G]-modules with exact rows

0 -

⊕
w∈TX1

Fqν (w)×
 /F×qν iT- Pic0(X1)T

πX1- Pic0(X1) - 0

0 -

⊕
w∈TX1

Fqν (w)×
 /US

πT ?

iS,T - AS,T

ψS,T

?
- AS

ψS

?
- 0,

(13)

where

• The lower row comes from the exact sequence (1).
• iT ( ̂(aw)w∈TX1

) = d̂iv(f ), for every(aw)w∈TX1
∈ ⊕w∈TX1

Fqν (w)× andf ∈
K, satisfyingf ≡ aw modw,∀w ∈ TX1.
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• ψS,T ( ̂∑
i ni ·wi) = the ideal class corresponding to

∏
i w

ni
i in AS,T .

The snake lemma applied to (13) and the surjectivity ofπT imply that
coker(ψS,T )

∼−→ coker(ψS). (12) therefore gives an isomorphism ofZ[G]-modules

coker(ψS,T )
∼−→ Z/dZ, (14)

with G acting trivially onZ/dZ.

PROPOSITION 3.1.2.If ` is a prime number, such thatgcd(`, g) = 1, then

detZ`[G](1− F∗,0|T`(kerαS)) ∈ FittZ`[G](coker(ψS,T )⊗ Z`).

Before starting to prove the proposition, let us observe that the determinant in
the statement makes sense due to theZ`[G]-projectivity of T̀ (kerαS) (see Remark
2, Section 1.7.4 and Remark 1, Section 1.3). In what follows, ifM is an Abelian
group andf ∈ End(M), thenMf denotes the subgroup ofM fixed byf .

Proof. SinceαS is F∗,0-equivariant, we have a commutative diagram ofZ[G]-
modules, with exact rows

0 - kerαS - Div(SX)
αS- H0(X,Z) - 0

0 - kerαS

(1−F∗,0)1

?
- Div(SX)

(1−F∗,0)2

?
- H0(X,Z)

(1−F∗,0)3

?
- 0 .

Obviously, we have the following equalities:

• ker(1− F∗,0)2 = Div(SX)F∗,0 = Div(SX1),
• ker(1−F∗,0)3 = the rank 1, freeZ-module generated byA =∑06i6ν−1[X(i)],

with trivial G-action.

The snake lemma therefore gives a long exact sequence ofZ[G]-modules

0→ ker(1− F∗,0)1→ Div(SX1)
A·deg- Z · A→

→ coker(1− F∗,0)1→ coker(1− F∗,0)2→ coker(1− F∗,0)3→ 0.

Since Im(A · deg) = dZ · A, andG fixesA, we get an injective morphism of
Z[G]-modules

Z/dZ ↪→ coker(1− F∗,0)1, (15)
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withG acting trivially onZ/dZ. Since for̀ - g, Z`[G] is a direct sum of Dedekind
domains, (14), (15) and (f), Section 1.4 imply that

FittZ`[G](coker(1− F∗,0)1⊗ Z`) ⊆ FittZ`[G](coker(ψS,T )⊗ Z`),∀`, ` - g. (16)

If one considers the decompositionZ`[G] = ⊕ψ∈Ĝ(Q`)
Dψ , as in Section 1.3,

then the fact that T̀(kerαS) is a projectiveZ`[G]-module implies that one has an
isomorphism T̀(kerαS)

∼−→ ⊕ψDnψ
ψ , for some positive integersnψ (see Remark

1, Section 1.3). The exact sequence

T`(kerαS)
(1−F∗,0)1- (kerαS)→ coker(1− F∗,0)1⊗ Z` - 0

gives therefore a situation similar to the one described in Section 1.4 (d), with
R = Z`[G] andN = T`(kerαS). We therefore have

detZ`[G](1− F∗,0|T`(kerαS)) ∈ FittZ`[G](coker(1− F∗,0)1⊗ Z`). (17)

Relations (16) and (17) imply the statement in Proposition 3.1.2. 2
PROPOSITION 3.1.3.If ` is a prime number, such thatgcd(`, g) = 1, then

detZ`[G](1− F∗,2|T`(coker(βT ))) · detZ`[G](1− F∗,1|H1(X,Z`))

∈ FittZ`[G](Pic0(X1)T ⊗ Z`).

Proof.Let us recall that we have an exact sequence ofZ[G]-modules

0→ H0(X,Z)⊗ F× βT- H0(TX,Z)⊗ F× → coker(βT )→ 0. (18)

The q-power geometric Frobenius morphism induces isomorphismsF∗,2 =
F∗,0 ⊗ σq on each term of (18), whereσq:F× → F× is the q-power map, and
βT is F∗,2-invariant (see Section 1.7.4).

Let 6 = G(F/Fq) (topologically generated byσq), let 6ν be the closed sub-
group of6 (topologically) generated byσ νq , and let00 be the finite subgroup of
AutZ(H0(TX,Z)) generated byF∗,0. Then obviously the profinite group00 × 6
acts continously on each term of (18), considered with the discrete topology.

LetH be the closed subgroup of00 × 6, (topologically) generated byF∗,2 =
F∗,0⊗σq. LetHν be the closed subgroup ofH generated byFν∗,2 = Fν∗,0⊗σ νq . Since
the actions ofH andG on H0(TX,Z)⊗ F× commute, (18) is an exact sequence of
H ×G-modules.

We also have an exact sequence ofG-modules

0→ coker(βT )→ Pic0(X)T → Pic0(X)→ 0, (19)

which preserves the Frobenius action on each of its terms (see [17], Chapter V).
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Let ` be a prime number. Remark 3, Section 1.7.4 shows that the multiplication

by ` maps coker(βT )[`n+1] `−→ coker(βT )[`n] are surjective for everyn > 0.
The definition of Pic0(X1)T , combined with the weak approximation theorem for
valuations onK(i), for all 0 6 i 6 ν − 1, easily implies that the natural maps
Pic0(X1)T [`n] → Pic0(X1)[`n] are surjective as well, for everyn > 0. These two
facts show that (19) gives short exact sequences ofG-modules

0→ coker(βT )[`∞] → Pic0(X)T [`∞] → Pic0(X)[`∞] → 0

0→ T`(coker(βT ))→ T`(Pic0(X)T )→ T`(Pic0(X))→ 0
(20)

which are also Frobenius action preserving. (HereM[`∞] =⋃i>0M[`i], for every
Z`-moduleM.) We will need two lemmas:

LEMMA 3.1.4. For every prime number̀ we have the following:

(1) T`(Pic0(X)T ) is a freeZ`-module of finite rank, andPic0(X)T [`∞] is a divis-
ible Z`-module of finite corank. (i.e. isomorphic to a finite direct sum of copies
of Q`/Z`.)

(2) Pic0(X)
F∗,1
T

∼−→ Pic0(X1)T asZ[G]-modules, wherePic0(X)
F∗,1
T is the part of

Pic0(X)T fixed byF∗,1.

Proof.Statement (1) follows directly from the exact sequences (20) and Remark
3, Section 1.7.4.

(2) The fact thatFν∗,0 = 1H0(X,Z) implies that there is anH -isomorphism

H0(X,Z)⊗ F× ∼−→ (Z · [X(0)] ⊗ F×)
⊗
Z[Hν ]

Z[H ]. (21)

Shapiro’s Lemma and Hilbert’s Theorem 90 imply therefore that, at the level of
Galois cohomology groups, we have

Hi(H,H0(X,Z)⊗ F×) ∼−→ Hi(Hν,Z · [X(0)] ⊗ F×)

= Hi(6ν,F×) = 0, (22)

for i = 1,2.
The fact thatH/Hν is finite cyclic and (21) above imply that there are isomorph-

isms ofG-modules

(H0(X,Z)⊗ F×)H ∼−→ (Z · [X(0)] ⊗ F×)Hν ∼−→ F×
6ν = F×qν . (23)

In a similar fashion one can prove that

H1(H,H0(TX,Z)⊗ F×) = 0 (24)
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and that there is an isomorphism ofG-modules

(H0(TX,Z)⊗ F×)H ∼−→
⊕
w∈TX

Fqν (w)×. (25)

As a consequence of (22)–(25), the long exact sequence ofH -cohomology groups
associated to the short exact sequence (18) starts as

0→ F×qν →
⊕
w∈TX1

Fqν (w)× → (coker(βT ))
H →

→ 0→ 0→ H1(H, coker(βT ))→ 0→ · · · .
This implies that we have the followingG-isomorphisms:

H1(H, coker(βT )) = 0 and

(coker(βT ))
H ∼−→

⊕
w∈TX1

Fqν (w)×
/F×qν .

(26)

Let H be the subgroup of AutZ(Pic0(X1)T ) generated byF∗,1. As we mentioned
above, the restriction ofF∗,1 to coker(βT ) via the injective morphism coker(βT )→
Pic0(X1)T coincides withF∗,2. This observation and (26) show that the short ex-
act sequence (19) gives a long exact sequence ofH -cohomology groups which
starts as 0→ (coker(βT ))F∗,2 → Pic0(X)

F∗,1
T → Pic0(X)F∗,1 → 0.

We therefore have a commutative diagram with exact rows

0 -

⊕
w∈TX1

Fqν (w)×
 /F×qν iT- Pic0(X1)T

πX1- Pic0(X1) −→ 0

0 - (coker(βT ))
F∗,2

i1?
- Pic0(X)

F∗,1
T

i2?
- Pic0(X)F∗,1

i3?
−→ 0,

(27)

wherei2 and i3 are the natural inclusions andi1 is the isomorphism in (26). We
already know thati3 and i1 are isomorphisms (see comments at the beginning of
this section and (26) above, respectively). The snake lemma therefore implies that
i2 is an isomorphism as well, and this concludes the proof of (2). 2
LEMMA 3.1.5. Let M be aZ[G]-module which has no nontrivialZ-torsion, let
f ∈ EndZ[G](M), and` a prime number such that

(1) M[`∞] is a divisibleZ`-module of finite corank.
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(2) M[`∞]f def= {m ∈ M: f (m) = m} is finite.

Then there is an isomorphism ofZ`[G]-modules

M[`∞]f ∼−→ T`(M)/(1− f )T`(M).
Proof.Hypothesis (1) implies thatM[`∞] is an injectiveZ`-module and there-

fore there is an exact sequence ofZ`[G]-modules:

0→ Hom(Q`/Z`,M[`∞])→ Hom(Q`,M[`∞])→ Hom(Z`,M[`∞])→ 0.

The map(1− f ) restricted toM[`∞] gives aZ`[G]-morphism of this exact se-
quence into itself:

0→ Hom(Q`/Z`,M[`∞]) - Hom(Q`,M[`∞]) - Hom(Z`,M[`∞])→ 0

0→ Hom(Q`/Z`,M[`∞])
(1−f )1

?
- Hom(Q`,M[`∞])

(1−f )2
?

- Hom(Z`,M[`∞])
(1−f )3

?
→0 .

Hypothesis (2) implies that(1− f )1 is injective and(1− f )2 is an isomorphism.
The snake lemma applied to the diagram above therefore gives:

ker(1− f )3 ∼−→ coker(1− f )1. (28)

On the other hand, there are canonical isomorphisms Hom(Q`/Z`,M[`∞]) ∼−→
Hom(Q`/Z`,M)

∼−→ T`(M) and Hom(Z`,M[`∞]) ∼−→ M[`∞], which com-
bined with (28) conclude the proof of Lemma 3.1.5. 2

We now return to the proof of Proposition 3.1.3. Lemma 3.1.4 and the finiteness
of Pic0(X1)T (see the upper row of commutative diagram (27) and keep in mind
that Pic0(X1) is finite) imply that Pic0(X)T together with its endomorphismF∗,1,
and any prime number̀, satisfy the hypotheses in Lemma 3.1.5. We therefore have
an isomorphism ofZ`[G]-modules

T`(Pic0(X)T )/(1− F∗,1)T`(Pic0(X)T )
∼−→ Pic0(X1)T ⊗ Z`, (29)

for any prime number̀. The exact sequence (20) gives a commutative diagram of
Z`[G]-modules with exact rows

0 −→ T`(coker(βT )) - T`(Pic0(X)T ) - T`(Pic0(X)) −→ 0

0 −→ T`(coker(βT ))

(1−F∗,2)
?

- T`(Pic0(X)T )

(1−F∗,1)1?
- T`(Pic0(X))

(1−F∗,1)2?
−→ 0
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The finiteness of Pic0(X)
F∗,1
T = Pic0(X1)T and Pic0(X)F∗,1 = Pic0(X1) respectively

implies that the maps(1−F∗,1)1 and(1−F∗,1)2 are both injective. The snake lemma
applied to the diagram above, and (29), give an exact sequence ofZ`[G]-modules

0→ coker(1− F∗,2)→ Pic0(X1)T ⊗ Z`→ coker(1− F∗,1)2→ 0.

Property (e) Section 1.4 implies that

FittZ`[G](coker(1− F∗,1)2) · FittZ`[G](coker(1− F∗,2)) ⊆
∈ FittZ`[G](Pic0(X1)T ⊗ Z`). (30)

On the other hand, both T` (coker(βT )) and T̀ (Pic0(X)) are freeZ`-modules,
and therefore projectiveZ`[G]-modules (see Remark 1, Section 1.3). An argument
similar to the one used in proving (17) shows that

detZ`[G](1− F∗,2|T`(coker(βT ))) ∈ FittZ`[G](coker(1− F∗,2))
and

detZ`[G]((1− F∗,1)1|T`(Pic0(X))) ∈ FittZ`[G](coker(1− F∗,1)2).
(31)

According to (30) and (31) we can finally conclude that Proposition 3.1.3 is true.2
Proof of Theorem3.1.1. Let us consider a primè, such that gcd(`, g) = 1, and

the exact sequence ofZ`[G]-modules

Pic0(X1)T ⊗ Z`
ψS,T ⊗1Z-̀ AS,T ⊗ Z` - coker(ψS,T )⊗ Z` - 0

(see diagram (21) for the definition ofψS,T ). Property (e) Section 1.4 implies that

FittZ`[G](coker(ψS,T )⊗ Z`) · FittZ`[G](Pic0(X1)T ⊗ Z`) ⊆
⊆ FittZ`[G](AS,T ⊗ Z`). (32)

Step1. Let us first suppose that` 6= p. Then Propositions 3.1.2 and 3.1.3, in
addition to (32) above, and Lemma 1.7.4.4 (1) fors = 0 (and thereforeu = 1),
imply that

2S,T (0) = detZ`[G](1− F∗,0|T`(kerαS)) · detZ`[G](1− F∗,1|H1(X,Z`))×
×detZ`[G](1− F∗,2|T`(coker(β))) ∈ FittZ`[G](AS,T ⊗ Z`).

Step2. Let us suppose now that` = p, and gcd(p, g) = 1. The first observation
we have to make is that Tp(coker(βT )) = 1 and therefore Proposition 3.1.3 implies
that

detZp[G](1− F∗,1|H1(X,Zp)) ∈ FittZp[G](Pic0(X1)T ⊗ Zp). (33)
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Proposition 3.1.2, (32) and (33) above, in addition to Lemma 1.7.4.4 (2) imply
therefore that

2S,T (0) = Q(1) · detZp [G](1− F∗,0|Tp(kerαS))×
×detZp[G]((1− F∗,1)1|H1(X,Zp)) ∈ FittZp[G](AS,T ⊗ Zp).

According to Remark 1, Step 1 and Step 2 above conclude the proof of Theorem
3.1.1. 2

3.2. ARBITRARY r

The following theorem shows that, for general Abelian extensions of function
fields, Conjecture B is true, up to primes dividing the order of the Galois group.

THEOREM 3.2.1. If the set of data(K/k, S, T , r) satisfies hypotheses(H),
then

(1) There exists a unique elementεS,T ∈ Z[1/g]3S,T satisfying2(r)
S,T (0) =

RW(εS,T ).

(2) The elementεS,T above satisfiesεS,T ∈ Z[1/g]Fitt(AS,T )3S,T .

Proof.Let {v1, . . . , vr} be the distinguished set ofr distinct primes inS, which
split completely inK/k, and letS0 = S \ {v1, . . . , vr }. Then obviously the set of
data(K/k, S0, T ,0) satisfies hypotheses (H). Theorem 3.1.1 implies that2S0,T (0) ∈
Z[1/g]Fitt(AS0,T ). Corollary 2.2 (1), withS ′ = S and S = S0, implies there-
fore that the elementεS,T satisfying Q · St(K/k, S, T , r), also satisfiesεS,T ∈
Z[1/g]Fitt(AS,T )3S,T . This settles the proof of both (1) and (2) above, as the
uniqueness ofεS,T is a consequence of Remark 5, Section 1.6. 2
COROLLARY 3.2.2 (Raw form of Gras’ Conjecture).The elementεS,T , whose
existence is proved in the Theorem3.2.1, satisfies

Z[1/g][G] · εS,T = Z[1/g]Fitt(AS,T )3S,T = Fitt(AS,T )(Z[1/g] r∧US,T )r,S.
Proof. This is a direct consequence of Theorem 3.2.1 (2), Proposition 2.3 and

Lemma 1.5.3(1). 2
In [13] it will become apparent that Corollary 3.2.2 implies Gras-type conjec-

tures for function fields.

4. Proof of a Stronger Form of Conjecture B for Constant Field Extensions

Throughout this sectionK/k is a constant field extension of function fields of
characteristicp.
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4.1. PRELIMINARY CONSIDERATIONS

LetFq andFqν be the exact fields of constants ofk andK respectively. Then clearly

G(K/k)
∼−→ G(Fqν/Fq) is cyclic of orderν, with a distinguished generator

σ , satisfyingσ (ζ ) = ζ q , for every ζ in Fqν , andK/k is everywhere unrami-
fied. We remind the reader that for primesv in k, andw in K, such thatw|v,
σv denotes the Frobenius morphism ofv relative toK/k, dv = [Fq(v):Fq] and
dw = [Fqν (w):Fqν ]. Simple arithmetic considerations show thatσv = σ dv , that
there are preciselyrv = gcd(dv, ν) primes inK lying abovev, and thatdw = dv/rv.
(This implies in particular thatv splits completely inK/k if and only if ν|dv.)

LEMMA 4.1.1. For any prime number̀, there areZ`[G]-isomorphisms

(1) H0(X,Z`)
∼−→ Z`[G], which sends the action ofF∗,0 on H0(X,Z`) into

multiplication byσ−1 onZ`[G].

(2) H2(X,Z`)
∼−→

{
Z`[G], if ` 6= p,
0, if ` = p,

which sends the action ofF∗,2 on H2(X,Z`) into multiplication byqσ−1 on
Z`[G].

(3) H1(X,Z`)
∼−→

{
Z`[G]2gX , if ` 6= p,
Zp[G]n, if ` = p,

for some integern, 06 n 6 2gX.

Proof.Let us first notice that

F∗,0([X(i)]) = σ−1
∗,0([X(i)]), for every 06 i 6 ν − 1. (34)

(1) We know that H0(X,Z) is Z-free of basis{[X(i)]:0 6 i 6 ν − 1}, thatG
is cyclic of orderν and it permutes the elements[X(i)] transitively. We have also
chosen the indicesi so that[X(i)] = F i∗,0([X(0)]). (34) implies therefore that we
can define an isomorphism ofZ[G]-modules

H0(X,Z)
ρ∼- Z[G], (35)

given byρ([X(i)]) = σ−i, ∀0 6 i 6 ν − 1. Obviously, under this isomorphism,
the action ofF∗,0 on the left corresponds to multiplication byσ−1 on the right.
Statement (1) in the lemma can now be obtained by tensoring (35) withZ`.

(2) We already know (see Section 1.7.3) that there is an isomorphism

H2(X,Z`)
f∼- H0(X,Z`) which takes the action ofF∗,2 on the right-hand side

into the action ofqF∗,0 on the left-hand side. The map(ρ⊗1Z` )◦f gives therefore
aZ`[G]-isomorphism satisfying the requirements in (2).

comp4188.tex; 8/04/1999; 9:55; p.27

https://doi.org/10.1023/A:1000833610462 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000833610462


348 CRISTIAN D. POPESCU

(3) The fact that|G| = ν and thatG permutes transitively and isomorphically
theν irreducible componentsX(i) of X, and therefore their corresponding Picard
groups Pic0(X(i)), implies that there is an isomorphism ofZ[G]-modules

H1(X,Z) =
⊕

06i6ν−1

Pic0(X(i))
∼−→ Z[G]

⊗
Z

Pic0(X(0)),

with G acting trivially on Pic0(X(0)). Passing tò -adic Tate modules, one obtains
the desiredZ`[G]-isomorphisms. 2

4.2. THE r=0 CASE

Throughout this section we will assume that the set of data(K/k, S, T ,0) satisfies
hypotheses (H).

LEMMA 4.2.1. If u = q−s , we have the following:

(1) For any prime number̀ 6= p

2S,T (u) =
∏
v∈S
(1− (σ−1u)dv )

(1− σ−1u)
×

×
∏
v∈T
(1− (qσ−1u)dv )

(1− (qσ−1u))
· detZ`[G](1− F∗,1 · u|H1(X,Z`)).

(2) There exists a polynomialQ(u) ∈ Zp[G][u], such that

2S,T (u) = Q(u) ·
∏
v∈S
(1− (σ−1u)dv )

(1− σ−1u)
·
∏
v∈T
(1− (qσ−1u)dv )

(1− (qσ−1u))
×

× detZp[G](1− F∗,1 · u|H1(X,Zp)).

Proof. (1) Let ` 6= p be a prime number. The freeness of the Hi(X,Z`)’s as
Z`[G]-modules implied by Lemma 4.1.1, and Theorem 1.7.4.2, show that

2(s) =
∏

06i62

detZ`[G](1− F∗,i · u|Hi (X,Z`))(−1)i+1
, (36)

for any prime number̀ 6= p. Lemma 4.1.1 (1) and (2) and equality (36) give

2(s) = detZ`[G](1− F∗,1 · u|H1(X,Z`))
(1− σ−1u) · (1− qσ−1u)

. (37)

On the other hand, sinceK/k is unramified everywhere, we have

2S,T (s) =
∏
v∈S
(1− σv−1Nv−s) ·

∏
v∈T
(1− σv−1Nv1−s) ·2(s).
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This equality and (37) give (1) in Lemma 4.2.1.
(2) This follows directly from (1) and Theorem 1.7.4.1 (3), withi = 1 and

Q(u) = Q1(u). 2
PROPOSITION 4.2.2.Under the assumptions above, we have the following:

(1) 2S,T (0) ∈ FittZ[G](AS,T ) ∩ Z[G]0,S .
(2) If ` is a prime number, such thatgcd(`, g) = 1, or gcd(`, dw) = 1, for some

w ∈ SK , then2S,T (0) ∈ FittZ`[G](AS,T ⊗ Z`) · Z`[G]0,S .
Proof. Let us fix a primev0 ∈ S and letS0 = {v0}. Obviously the set of

data(K/k, S, T ,0) still satisfies hypotheses (H). (Recall thatK/k is everywhere
unramified.) There is a surjective morphism ofZ[G]-modulesAS0,T → AS,T (see
(9)), which gives aZ`[G]-surjectionAS0,T ⊗Z`→ AS,T ⊗Z`, for every` as above.
These imply that

FittZ[G](AS0,T ) ⊆ FittZ[G](AS,T ),

FittZ`[G](AS0,T ⊗ Z`) ⊆ FittZ`[G](AS,T ⊗ Z`)

(see Section 1.4(f)). These relations together with

2S,T (0) =
∏

v∈S\{v0}
(1− σ−1

v ) ·2S0,T (0),

and ∏
v∈S\{v0}

(1− σ−1
v ) · Z[G]0,S0 ⊆ Z[G]0,S,

imply that it is enough to prove the proposition above in the case|S| = 1. From
now on we will assume thatS = {v0}, and we will fix a primew0 ∈ SK . We will
need three lemmas.

LEMMA 4.2.3. Let us consider theZ[G]-moduleZ/dw0Z with trivial G-action.
Then

1− σ−dw0

1− σ−1
∈ FittZ[G](Z/dw0Z).

Proof.SinceG acts trivially on

Z/dw0Z,
1− σ−dw0

1− σ−1
∈ AnnZ[G](Z/dw0Z).

On the other hand,Z/dw0Z is a cyclicZ[G]-module, and therefore Section 1.4(a)
shows that FittZ[G](Z/dw0Z) = AnnZ[G](Z/dw0Z). 2
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LEMMA 4.2.4. For anyv ∈ T , the following hold true:

(1) (1− (qσ−1)dv ) ∈ FittZ[G]

⊕
w|v

Fqν (w)×
.

(2)
(1− (qσ−1)dv )

1− qσ−1
∈ FittZ[G]

⊕
w|v

Fqν (w)×
 /F×qν

,

whereF×qν is embedded in⊕w|vFqν (w)× diagonally(x →⊕w|v(x modw)).

Proof. Let us fix a primew0 in K, such thatw0|v. There is an isomorphism of
Z[G]-modules⊕

w|v
Fqν (w)×

∼−→ Fqν (w0)
×⊗

Z[Gv ]
Z[G],

whereGv is the decomposition group ofv relative toK/k. SinceFqν (w0)
× is a

cyclic Z[Gv]-module, both⊕w|vFqν (w)× and(⊕w|vFqν (w)×)/F×qν areZ[G]-cyclic
and therefore their Fitting ideals overZ[G] are equal to theirZ[G]-annihilators
(see Section 1.4(a)).

(1) The equalityσv = σ dv implies that

1− (qσ−1)dv ∈ AnnZ[Gv ](Fqν (w)
×) ⊆ AnnZ[G]

⊕
w|v

Fqν (w)×
 .

(2) Let I = {ν, ν − 1, . . . , ν − rv + 1}. Then{σ i| i ∈ I } is a set of coset rep-
resentatives for the quotientG/Gv and{wσi0 | i ∈ I } = {w|w inK,w|v}. Let
jw: F×qν → Fqν (w)×, defined byjw(x) = x modw, for everyw|v.

One can easily show that

j
wσ

i

0
(x) = σ i[jw0(x

qν−i )],∀ i ∈ I,∀x ∈ F×qν . (38)

We will identify F×qν with a subgroup ofFqν (w0)
×, via jw0. If ζ is a generator of

Fqν (w0)
× then, under this identification,

F×qν = 〈ζ α〉, whereα = qνdv/rv − 1

qν − 1
. (39)

Relations (38) and (39) imply that the image of the composition of maps

J :F×qν
⊕w|v jw−→

⊕
w|v

Fqν (w)×
∼−→ Fqν (w0)

× ⊗
Z[Gv]

Z[G] ∼−→
⊕
i∈I

σ i · Fqν (w0)
×
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satisfies the equality

Im(J ) =
{∑
i∈I
σ i · ζ α·qν−i ·n|n ∈ Z/(qν − 1)Z

}
. (40)

Let us also observe that⊕i∈I σ i · Fqν (w0)
× is generated overZ[G] by the element

ζ havingζ = σ νζ in the component corresponding toi = ν, and 0 in all the other
components.

Let us consider the ‘qdv -evaluation map’φq :Z[Gv] → Z/(qdvν/rv−1)Z, defined
by φq(

∑
j>0 ajσv

j ) = ∑
j>0 aj (q

dv )j . The equalityσ dv(ζ ) = ζ q
dv shows that if

α =∑i∈I σ
i · αi ∈ Z[G], with αi ∈ Z[Gv], ∀i ∈ I , thenα · ζ =∑i∈I σ

i · ζ φq(αi).
In light of these observations, equality (40) shows that:

AnnZ[G]

⊕
w|v

Fqν (w)×
/F×qν

 = AnnZ[G](ζ )

=
{∑
i∈I

σ i · αi |αi ∈ Z[Gv], ∃n ∈ Z,

φq(αi) ≡ n · αqν−i mod(qνdv/rv − 1),∀ i ∈ I
}
. (41)

One can write

1− (qσ−1)dv

1− qσ−1
=
∑
i∈I

σ i · [qν−i ·A],

whereA = 1−(qσ−1)dv

1−(qσ−1)rv
. According to (41), in order to prove statement (2) in our

lemma, we would simply have to show thatα|φq(A) in Z/(qdvν/rv − 1)Z. This is
an easy consequence of the fact that gcd(dv/rv, ν/rv) = 1 (see comments at the
beginning of Section 4.1). 2
LEMMA 4.2.5. Let` be any prime number. Then

detZ`[G](1− F∗,1|H1(X,Z`)) ∈ FittZ`[G](Pic0(X1)⊗ Z`).

Proof. Lemma 3.1.5 applied toM = Pic0(X) andf = F∗,1 gives an exact
sequence ofZ`[G]-modules

0→ T`(Pic0(X))
1−F∗,1- T`(Pic0(X))→ Pic0(X1)⊗ Z`→ 0. (42)

(take into account that Pic0(X)F∗,1 = Pic0(X1)). Lemma 4.1.1 (3) shows that
T`(Pic0(X)) = H1(X,Z`) is a freeZ`[G]-module, for every prime number̀.
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The exact sequence (42) gives therefore a freeZ`[G]-resolution of Pic0(X1)⊗ Z`.
Lemma 4.2.5 is now a direct consequence of the definition of the Fitting ideal.2

We are now ready to conclude the proof of Proposition 4.2.2.
(1) By definition,2S,T (0) ∈ Z[G]0,S , and therefore all we have to prove is that

2S,T (0) ∈ FittZ[G](AS,T ) which, according to Section 1.4(c), is equivalent to

2S,T (0) ∈ FittZ`[G](AS,T ⊗ Z`),∀` prime.

Let us fix a prime number̀. We will refer again to commutative diagram (11).
With the same notations, we have an exact sequence ofZ[G]-modules

Pic0(X1)
ψS- AS → coker(ψS)→ 0, (43)

and coker(φS)
∼−→ coker(ψS) asZ[G]-modules. The only difference is that, in

our situation, due to the fact thatS = {v0}, dw = dw0, for anyw ∈ SK . We

therefore have aZ[G]-isomorphism coker(φS)
∼−→ Z/dw0Z, which gives aZ[G]-

isomorphism

coker(ψS)
∼−→ Z/dw0Z, (44)

with G acting trivially onZ/dw0Z. Lemmas 4.2.3 and 4.2.5, in addition to exact
sequence (43) and property (e), Section 1.4, imply that

1− σ−dw0

1− σ−1
· detZ`[G](1− F∗,1|H1(X,Z`)) ∈ FittZ`[G](AS ⊗ Z`). (45)

Let us fix a primevT ∈ T and letT0 = {vT }. We have the following exact sequences
of Z[G]-modules:

0→
⊕
w|vT

Fqν (w)×
 /(US/US,T0)→ AS,T0 → AS → 0,

⊕
w|vT

Fqν (w)×
 /F×qν →

⊕
w|vT

Fqν (w)×
 /(US/US,T0)→ 0.

(The first exact sequence above is another way of writing (1), withT = T0, and
the second one is a consequence of the obvious injectionF×qν ↪→ US/US,T0.) These
exact sequences combined with (45), Lemma 4.2.4 (2) and Section 1.4(e), imply
that

1− σ−dw0

1− σ−1
· 1− (qσ

−1)dvT

1− qσ−1
×

×detZ`[G](1− F∗,1|H1(X,Z`)) ∈ FittZ`[G](AS,T0 ⊗ Z`). (46)
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And finally, in order to pass fromT0 to T , let us consider the following exact
sequences ofZ[G]-modules

0→
 ⊕
w∈(T \T0)K

Fqν (w)×
 /(US,T \T0/US,T )→ AS,T → AS,T0 → 0,

 ⊕
w∈(T \T0)K

Fqν (w)×
→

 ⊕
w∈(T \T0)K

Fqν (w)×
 /(US,T \T0/US,T )→ 0.

These exact sequences, combined with (46), Lemma 4.2.4 (1) and Section 1.4(e),
imply

1− σ−dw0

1− σ−1
·
∏
v∈T

1− (qσ−1)dv

1− qσ−1
×

×detZ`[G](1− F∗,1|H1(X,Z`)) ∈ FittZ`[G](AS,T ⊗ Z`). (47)

Let us denote byL the left-hand side of (47). Lemma 4.2.1, withs = 0 (and
thereforeu = 1), implies that

2S,T (0) =


1− σ−dv
1− σ−dw0

·L, if ` 6= p,

Q(1) · 1− σ−dv
1− σ−dw0

·L, if ` = p.
(48)

Sincedw0 = dv/rv andQ(1) ∈ Zp[G], (47) together with (48) show that

2S,T (0) ∈ FittZ`[G](AS,T ⊗ Z`),

for every prime number̀ . This, as we remarked earlier, concludes the proof of
Proposition 4.2.2 (1).

(2) Let ` be a prime number as in Proposition 4.2.2 (2). Let us first notice that,
if gcd(`, g) = 1, then (2) is a direct consequence of (1). Indeed, in this situation

Z`[G] =
⊕

ψ∈Ĝ(Q`)

Dψ, Z`[G]0,S =
⊕

ψ∈Ĝ(Q`,0)

Dψ,

which, together with FittZ`[G](AS,T ⊗ Z`) = ⊕ψFittDψ (AS,T ⊗Dψ), imply that

FittZ`[G](AS,T ⊗ Z`) · Z`[G]0,S = FittZ`[G](AS,T ⊗ Z`) ∩ Z`[G]0,S .
Let us then suppose that`|g and gcd(`, dw0) = 1. With notations as in the proof of
(1), this implies that

coker(ψS)⊗ Z` = 0. (49)
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The exact sequence (43) and Lemma 4.2.5 imply that (45) can be rewritten as

detZ`[G](1− F∗,1|H1(X,Z`)) ∈ FittZ`[G](AS ⊗ Z`),

which shows that in (45)–(47) above, the factor1−σ−dw0

1−σ−1 is not needed anymore.
(47) and (48) therefore imply that

2S,T (0) ∈ 1− σ−dv
1− σ−1

· FittZ`[G](AS,T ⊗ Z`). (50)

On the other hand,1−σ
−dv

1−σ−1 ∈ Z[G]0,S . Indeed, ifχ ∈ Ĝ(C)\ Ĝ(C,0), thenχ 6= 1G
andχ(σv) = 1 (see (3) and take into account that|S| = 1.) This implies that
χ(1−σ−dv

1−σ−1 ) = 0, which proves our assertion. This fact together with (50) imply
Proposition 4.2.2 (2). 2

Our next goal is the proof of the following:

PROPOSITION 4.2.6.Let` be a prime number, such that`|g, and`|dw, for every
w ∈ SK . Then2S,T (0) ∈ FittZ`[G](AS,T ⊗ Z`) · Z`[G]0,S .

An argument similar to the one given at the beginning of the proof of Proposi-
tion 4.2.2 shows that it is enough to prove this statement in the case|S| = 1. We
therefore assume thatS = {v0}, and fixw0 ∈ SK . In what follows,C` denotes
a completion of the algebraic closure ofQ` with respect to thè -adic valuation.
W denotes a finite ring-extension ofZ`, inside C`, containing the values of all
χ ∈ Ĝ(C`). We will extend scalars toW and prove Proposition 4.2.6 insideW [G].

Let `m be the exact power of̀dividing g = |G|. LetL be thè -Sylow subgroup
of G. There is a decompositionG = 1× L, where1 is the maximal subgroup of
G, satisfying gcd(`, |1|) = 1. LetKL andK1 be the maximal subfields ofK fixed
byL and1 respectively. Let̄L = G(K1/k) and1̄ = G(KL/k). Restriction maps
give isomorphisms1

∼−→ 1̄ andL
∼−→ L̄.

Remark1. Due todw0 = dv/gcd(dv, g), the fact that̀ |dw0 implies that`m|dv,
and thereforev splits completely inK1 (see Section 4.1). This implies thatσv ∈ 1.
Let us consider the decomposition̂G(C`) = 1̂(C`)× L̂(C`) and letχ , δ andλ de-
note generic elements of̂G(C`), 1̂(C`) andL̂(C`) respectively. We can therefore
conclude that a characterχ = (δ, λ) belongs tôG(C`,0) if and only if δ(σv) 6= 1,
or χ = 1G (i.e. δ = 11 andλ = 1L) (see (3)).

Since gcd(`, |1|) = 1, we can decompose the group ringW [G] into its δ-
components:

W [G] = W [1][L]

⊕
δ∈1̂(C`)

δ

∼-
⊕

δ∈1̂(C`)
Wδ[L],
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whereWδ = W andδ(
∑

σ∈1,τ∈L aσ,τ σ τ) =
∑

τ∈L(
∑

σ∈1 aσ,τ δ(σ )) · τ , for every
δ ∈ 1̂(C`). According to Remark 1 above, this induces an isomorphism

W [G]0,S ∼−→
 ⊕
δ(σv) 6=1

Wδ[L]
⊕W11 ·NL,

whereNL =∑σ∈L σ . We thus have aW [G]-isomorphism

W [G]0,S · FittW [G](AS,T ⊗W)

∼−→
 ⊕
δ(σv) 6=1

FittWδ [L](AS,T ⊗W)δ
⊕FittW [L](AS,T ⊗W)1 ·NL.

This implies that, in order to prove2S,T (0) ∈ W [G]0,S · FittW [G](AS,T ⊗W), it is
necessary and sufficient to show the following:

(i) If δ(σv) = 1, δ 6= 11, thenδ(2S,T (0)) = 0.
(ii) If δ(σv) 6= 1, thenδ(2S,T (0)) ∈ FittWδ [L](AS,T ⊗W)δ .
(iii) 11(2S,T (0)) ∈ FittW [L](AS,T ⊗W)1 · NL.

Assertions (i) and (ii) above are direct consequences of Proposition 4.2.2 (1),
after extending scalars toW . Therefore, in order to prove Proposition 4.2.6, one
has to prove (iii) above.

Proof of Proposition4.2.6. In the following arguments, ifF is an intermedi-
ate field ofK/k, thenAF,S,T denotes its(S, T )-ideal class group, as defined in
Section 1.1.

The fact that2S,T (s) ∈ W [G]0,S , combined with the class-number formula (2),
implies that

11(2S,T (0)) = ζk,S,T (0) · NL|L| =
|Ak,S,T |
|L| ·NL.

Via the isomorphismW [L] ∼−→ W [L̄], we can therefore say that insideW [L̄]

11(2S,T (0)) = |Ak,S,T ||L̄| · NL̄, (51)

whereNL̄ =
∑

σ∈L̄ σ . The fact that gcd(`, |1|) = 1, combined with a standard
class-field theoretical argument based on the class-field interpretation of the groups
AF,S,T (see Section 1.1), implies that we have an isomorphism ofW [L̄]-modules

(AS,T ⊗W)1 ∼−→ AK1,S,T ⊗W.
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This obviously implies that

FittW [L̄](AS,T ⊗W)1 = FittW [L̄](AK1,S,T ⊗W). (52)

Equalities (51) and (52) above show that (iii) would be a consequence (after ex-
tending scalars toW ) of the following

LEMMA 4.2.7. With notations as above,

|Ak,S,T |
|L̄| ·NL̄ ∈ FittZ[L̄](AK1,S,T ) ·NL̄.

Proof.Let us consider the exact sequence

0→ IL̄→ Z[L̄] s−→ Z → 0,

where s(
∑

σ∈L̄ aσ · σ ) =
∑

σ∈L̄ aσ , for every
∑

σ∈L̄ aσ · σ ∈ Z[L̄], and
IL̄ = ker(s).

ObviouslyIL̄ = AnnZ[L̄](NL̄), and therefore the statement in Lemma 4.2.7 is
equivalent to

|Ak,S,T |
|L̄| ∈ s(FittZ[L̄](Ak1,S,T )).

On the other hand, properties (b) and (f), Section 1.4 imply that

s(FittZ[L̄](AK1,S,T )) = FittZ(AK1,S,T /IL̄AK1,S,T ) = |AK1,S,T /IL̄AK1,S,T | · Z.

The statement in Lemma 4.2.7 is therefore equivalent to

|AK1,S,T /IL̄AK1,S,T |
∣∣∣∣ |Ak,S,T ||L̄| .

The next lemma shows that something even stronger holds true.

LEMMA 4.2.8. With notations as above,

|AK1,S,T /IL̄AK1,S,T | =
|Ak,S,T |
|L̄| .

Proof. LetK1,S,T andkS,T be the(S, T )-ray class-fields ofK1 andk respect-
ively. We remind the reader that these are the maximal Abelian extensions ofK1
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andk respectively, which are tamely ramified at primes aboveT and unramified
outsideT , and in which all primes inS split completely (see class-field theoretical
interpretation ofAS,T in Section 1.1). The corresponding Artin reciprocity maps
give the following group isomorphisms:

AK1,S,T
∼−→ G(K1,S,T /K1), (53)

Ak,S,T
∼−→ G(kS,T /k). (54)

The maximality ofK1,S,T , the fact thatv0 splits completely inK1 (see Remark
1), and thatK1/k is everywhere unramified, imply thatK1 ⊆ KS,T ⊆ K1,S,T
and thatK1,S,T /k is Galois. LetG = G(K1,S,T /k). We have an exact sequence of
groups

1→ G(K1,S,T /K1)→ G→ L̄→ 1. (55)

SinceG(K1,S,T /K1) is Abelian,L̄ acts on it by (lift and) conjugation and this way
(53) becomes an isomorphism ofZ[L̄]-modules.

Let [G,G] denote the group theoretical commutator ofG. The maximality of
kS,T implies that

[G,G] = G(K1,S,T /kS,T ). (56)

An easy group theoretical argument, based on the exact sequence (55) and on
the fact thatL̄ is cyclic, shows that[G,G] is generated by elements of the form
γ σ−1, with γ ∈ G(K1,S,T /K1) andσ ∈ L̄. On the other hand, the idealIL̄ is
generated overZ by elements of the formσ − 1. This observation and (56) imply
that, under the Artin isomorphism (53), we haveIL̄ ·AK1,S,T ∼−→ G(K1,S,T /kS,T ).

We therefore have the equalities

|AK1,S,T /IL̄AK1,S,T | =
|G(K1,S,T /K1)|
|G(K1,S,T /kS,T )| =

|G(kS,T /k)|
|L̄| = |Ak,S,T ||L̄| .

This concludes the proof of Lemma 4.2.8, Lemma 4.2.7 and Proposition 4.2.6.2
THEOREM 4.2.9. LetK/k be a finite constant field extension of function fields,
and let us suppose that the set of data(K/k, S, T ,0) satisfies hypotheses (H). Then
2S,T (0) ∈ FittZ[G](AS,T ) · Z[G]0,S .

Proof.This statement is obviously equivalent to

2S,T (0) ∈ FittZ`[G](AS,T ⊗ Z`) · Z`[G]0,S, ∀` prime,

which follows from Propositions 4.2.2(2) and 4.2.6 above. 2
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4.3. ARBITRARY r

THEOREM 4.3.1. LetK/k be a finite constant field extension of function fields,
and let us suppose that the set of data(K/k, S, T , r) satisfies hypotheses (H).
Then there exists a unique elementεS,T ∈ Z[G]r,S · (∧rUS,T ), such that2S,T (0) =
RW(εS,T ).

Proof.Let {v1, . . . , vr} be the distinguished set ofr distinct primes inS, which
split completely inK/k. LetS0 = S \ {v1, . . . , vr }. The set of data(K/k, S0, T ,0)
satisfies hypotheses (H) as well. Theorem 4.2.9 therefore implies that2S0,T (0) ∈
FittZ[G](AS0,T ) · Z[G]0,S0. The statement in Theorem 4.3.1 is now a direct con-
sequence of the relation above, and Corollary 2.2 (2), withS ′ = S andS = S0. 2

Remark. The inclusionZ[G]r,S · ( r∧US,T ) ⊆ 3S,T , shows that Theorem 4.2.9
settles Conjecture B, for arbitraryr, under the assumption thatK/k is a constant
field extension. The inclusion above is strict in most cases, and therefore Theorem
4.2.9 provides a refinement of Conjecture B, under the present assumptions.

Appendix

The goal of this appendix is the proof of Theorem 1.7.4.1. With notations as in
Section 1.7, let us recall that, for any prime number`, and anyi = 0,1,2,

Pi,`(u)
def= detQ`[G](1− F∗,i · u|Hi (X,Q`),

where Hi(X,Q`) is theith `-adic homology group with coefficients inQ`, defined
in Section 1.7. The statement we would like to prove is the following:

THEOREM. For anyi = 0,1,2:

(1) Pi,p(u) ∈ Zp[1/g][G][u], and if` 6= p, thenPi,` ∈ Z[1/g][G][u].
(2) If ` 6= p, thenPi,`(u) does not depend oǹ. LetPi(u) =def Pi,`(u), for any

` 6= p. Then:
(3) There exist polynomialsQi(u) ∈ Zp[1/g][G][u] such thatPi(u) = Pi,p(u) ·

Qi(u).

(4) If K/k is a constant field extension, thenQi(u) ∈ Zp[G][u].
Before proceeding to the proof of the Theorem above, we need to summarize a

few considerations made in [17], Chapter V, on the Stickelberger function2(s).
Let |Y1| be the set of closed points of theFq-schemeY1. These are in one-to-one

correspondence with the primesv of the base fieldk. For everyv ∈ |Y1|, let Iv be
its inertia group inG, let σv ∈ Gv/Iv be its Frobenius class, and let

Fv
def= 1

|Iv|
∑
τ∈σv

τ−1 ∈ Z[1/g][G].
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Then, ifu = q−s , we have the following equality

2(u) =
∏
v∈|Y1|

(1− Fv · u−degv) ∈ 1+ uZ[1/g][G][[u]], (a.1)

valid for |u| < q−1 (which corresponds to Re(s) > 1).

Remark1. Let us observe that, ifK/k is a constant field extension, then|Iv| =
1, and thereforeFv ∈ Z[G], for everyv ∈ |Y1|. Equality (a.1) therefore shows that,
under the present hypothesis,

2(u) ∈ Z[G][[u]]. (a.2)

For everyv ∈ |Y1|, let Xv be the finite set of closed points of theF-scheme
X abovev, and let H0(Xv,Q) be theQ-vector space generated byXv, with the
obviousG-action andq-power geometric Frobenius morphism actionF∗. Lemma
2.1 in [17], Chapter V, shows that

1− Fvu−degv = detQ[G](1− F∗ · u|H0(Xv,Q)), ∀v ∈ |Y1|.
If we combine these equalities with (a.1), we obtain

2(u) =
∏
v∈|Y1|

detQ[G](1− F∗ · u|H0(Xv,Q)). (a.3)

We are now prepared to prove (1) and (2) in the Theorem above.

Proof of(1). Since Hi(X,Zp) is a freeZp-module,

Hi(X,Zp[1/g]) = Hi(X,Zp)⊗ Zp[1/g]
is a projectiveZp[1/g][G]-module (see Remark 1, Section 1.3), and therefore

Pi,p(u) = detZp [1/g][G](1− F∗,i |Hi(X,Zp[1/g])) ∈ Zp[1/g][G][u].
Let ` 6= p be a prime number. Since H0(X,Z[1/g]) is Z[1/g][G]-projective

and H0(X,Q`) = H0(X,Z[1/g])⊗Z[1/g] Q`, we have the equality

P0,`(u) = detZ[1/g][G](1− F∗,0 · u|H0(X,Z[1/g])). (a.4)

This obviously implies thatP0,` ∈ Z[1/g][G][u].
TheQ`[G]-isomorphism H2(X,Q`)

∼−→ H0(X,Q`), carrying the action ofF∗,2
into the action ofqF∗,0 (see Section 1.7.3), gives the equality

P2,`(u) = detQ`[G](1− qF∗,0 · u|H0(X,Q`)), (a.5)
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which, according to the remarks above, implies that

P2,`(u) = detZ[1/g][G](1− qF∗,0 · u|H0(X,Z[1/g])). (a.6)

The last equality obviously shows thatP2,`(u) ∈ Z[1/g][G][u].
Theorem 1.7.4.2 shows that

P1,`(u) = 2(u) · P0,`(u) · P2,`(u) (a.7)

and since2(u) ∈ Z[1/g][G][[u]] (see (a.1)), we obviously haveP1,` ∈
Z[1/g][G][u] as well. 2

Proof of (2). Equalities (a.4) and (a.6) obviously show thatP0,`(u) andP1,`(u)

do not depend oǹ, ` 6= p. Equality (a.7) therefore shows thatP1,`(u) is independ-
ent of`, ` 6= p, as well. 2

Before proceeding to the proof of statements (3) and (4) in the Theorem above,
we will need to make a few considerations on thep-adic étale and the crystalline
cohomology groups ofX.

Let H(X) = ⊕i=0,1,2H
i(X) be either thè -adic étale cohomology ofX with

coefficients inC`, ⊕i=0,1,2Hi(X,C`), ` 6= p, or the crystalline cohomology ofX
with coefficients inCp, ⊕i=0,1,2Hi

cris(X,Cp). HereC` denotes the completion of
the algebraic closure ofQ` with respect to the extension of the normalized`-adic
valuation, for any prime number̀. The definition of Hi(X,C`) is Hi(X,C`) =
Hi(X,Z`)

⊗
Z` C`, where Hi(X,Z`) = Hi(X,Z`)∗ (functorial dual), for alli =

0,1,2, and everỳ 6= p (see [10]).
LetW(F) be the Witt vector ring ofF. Then Hicris(X,Cp) =def Hi

cris(X/W(F))⊗
W(F) Cp, where Hicris(X/W(F)) are finitely generatedW(F))-modules, func-

torial in the pairX/F. For a precise definition of the modules Hicris(X/W(F)) the
reader can consult [1] and [2]. We will not need it for the present considerations.

In what followsK will denote eitherCp or C`, (` 6= p), depending on which
cohomology theory is being used. The correspondencesX → H i (X) are con-
travariant functors from the category of smooth, projectiveF-schemes, to the cat-
egory ofK-vector spaces. For every morphism ofF-schemesf :X → X′, we

will denote by f ∗ the K-linear mapsH i (X′) H i (f )- H i(X), induced byf
at the level of cohomology. In particular, everyσ ∈ G induces an isomorph-
ism of F-schemesσX:X → X, and therefore isomorphisms ofK-vector spaces
σ ∗X:H i (X)→ H i(X).We can define an action ofG onH(X) by settingσ ·h =def

(σ ∗X)−1(h), for all σ ∈ G andh ∈ H(X). This way the étale cohomology groups
Hi(X,C`) are dual as Galois modules to the homology groups Hi(X,C`) defined
in Section 1.7.4. In particular, for any characterχ ∈ Ĝ(C`) we haveC`-linear
isomorphisms

Hi(X,C`)
χ ∼−→ Hi(X,C`)

χ−1
, (a.8)
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carrying the actionF ∗ of theq-power geometric Frobenius morphism on the left
hand-side into its actionF∗,i on the right-hand side.

Let P iH (u) =def detK(1 − F ∗ · u|H i(X)). Theorem 1 in [8] shows that the
polynomialsP iH (u) do not depend on the cohomology theoryH(X), and therefore
we can make the notationP i(u) = P iH (u), for all i = 0,1,2. The polynomials
P i(u) have coefficients inZ and their reciprocal roots{αij } are algebraic integers,
satisfying the relations

|αij | = qi/2, (a.9)

for all i = 0,1,2, and allj = 1, . . . ,dimKH i (X) (see [8]). Relation (a.9) is
the dimension 1 case of Riemann’s Hypothesis, proved by Deligne for smooth,
projectiveFq-varieties of any dimension.

LetP i,χH (u) = detK(1−F ∗ ·u|H i (X)χ), for all i = 0,1,2, andχ ∈ Ĝ(K). We
obviously have the relations

P i(u) =
∏

χ∈Ĝ(K)
P
i,χ

H (u), (a.10)

for everyi = 0,1,2, and every cohomology theoryH(X) in our list.

Remark2. Relations (a.9) and (a.10) imply that for a given cohomology theory
H(X) and a givenχ ∈ Ĝ(K), the polynomialsP i,χH (u) have mutually disjoint sets
of roots, for distinct values ofi.

Our next goal is to prove the following:

PROPOSITION A.1.The polynomialsP i,χH (u) do not depend on the cohomology
theoryH(X).

Before proceeding to proving the statement above, we need an elementary lemma
and a few remarks.

LEMMA A.2. If V is a finitely generatedQ[G]-module, andf ∈ EndQ[G](V ),
then

(1) TrQ[G](f ;V ) = 1/g
∑

σ∈G TrQ(σ
−1f ;V ) · σ .

(2) TrK(f ; (V⊗K)χ) = 1/g
∑

σ∈G TrK(σ−1f ;V⊗K)·χ(σ ), for all χ ∈ Ĝ(K).
Proof.See [17], Chapter V, Lemma 2.6. 2
In what follows we will freely use the mutually inverse isomorphisms

1+ uQ[G][[u]] log-�
exp

uQ[g][[u]],
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and also the identity

log detQ[G](1− f · u|V ) = −
∑
n>1

TrQ[G](f n;V ) · un/n, (a.11)

for anyV andf as in Lemma A.2 (see [17], Chapter V).
Any cohomology theoryH(X) in the list above satisfies the following form of

the Lefschetz fixed point formula:

THEOREM A.3. Let f :X → X be a morphism ofF-schemes, with isolated,
multiplicity 1 fixed points. Let3(f,X) be the number of fixed points off . Then
3(f,X) =∑i=0,1,2 TrK(f ∗;H i (X)).

For a proof of the theorem above in the case of étale cohomology, the reader
can consult [10]. The case of crystalline cohomology is treated in [1] and [2]. We
now recall the definition of a fixed point of multiplicity 1 (see [7], Appendix C).

DEFINITION A.4. A closed pointx ∈ X, fixed byf , has multiplicity 1 if the

map�X,x
1−dfx- �X,x, induced byf at the level of thex-germ�X,x of the sheaf

of differentials�X of X, is injective.
We are now prepared to prove Proposition A.1.

Proof of PropositionA.1 (Compare [17], Chapter V, Theorem 2.5). According
to (a.3) and (a.11), we have

log2(u) =
∑
v∈|Y1|

log detQ[G](1− F∗ · u|H0(Xv,Q))

=
∑
v,n

TrQ[G](F n∗ ;H0(Xv,Q)) · un/n.

Lemma A.2 (1) shows that

TrQ[G](F n∗ ;H0(Xv,Q)) = 1/gTrQ(σ
−1
∗ F

n
∗ ;H0(Xv,Q)).

But sinceσ−1∗ Fn∗ acts on H0(Xv,Q) by simply permuting the points ofXv, we
also have the relation TrQ(σ

−1∗ Fn∗ ;H0(Xv,Q)) = 3(σ−1
X Fn;Xv), where the left-

hand side in the last equality represents the number of fixed points ofσ−1
X Fn|Xv .

This implies that log2(u) = 1/g
∑

v,n,σ 3(σ
−1
X Fn;Xv) · σ · un/n, and since

X = qv∈|Y1|Xv, we obtain log2(u) = 1/g
∑

n,σ 3(σ
−1
X Fn;X) · σ · un/n, where

3(σ−1
X Fn;X) is the number of fixed points of theF-scheme morphismσ−1

X Fn:X→
X, for all n > 1.

Let x ∈ X be a point fixed byσ−1
X Fn, for somen > 1. One can easily show that

x is isolated (dimX = 1), and that it has multiplicity 1, in the sense of Definition
A.4. We are therefore entitled to use Theorem A.3 in order to compute the numbers
3(σ−1

X Fn;X), for all n > 1. We thus have
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log2(u) = 1/g
∑
n,σ,i

(−1)iTrK((σ
−1
X Fn)∗;H i (X)) · σ · un/n

= 1/g
∑
n,σ,i

(−1)iTrK(σF
∗n;H i (X)) · σ · un/n.

This implies that, for anyχ ∈ Ĝ(K), we have

logL(u, χ) = log(χ−12(u)) = χ−1(log2(u))

= 1/g
∑
n,σ,i

(−1)i TrK(σ
−1F ∗n;H i (X)) · χ(σ )un/n.

Let us now combine the last equality with (a.11) and with Lemma A.2 (2), for
V = H i(X) andf = F ∗n. We obtain

logL(u, χ) =
∑
n,i

(−1)i TrK(F
∗n;H i (X)χ) · un/n

=
∑
i

(−1)i+1log detK(1− F ∗ · u;H i (X)χ)

= log

[∏
i

detK(1− F ∗ · u;H i (X)χ)(−1)i+1

]

= log

[∏
i

P
i,χ

H (u)(−1)i+1

]
.

And now, by taking exp of both sides of the last equality, we obtainL(u, χ) =∏
i P

i,χ

H (u)(−1)i+1
, for all χ and H(X) as above. This shows that the product∏

i P
i,χ

H (u)(−1)i+1
does not depend on the cohomology theoryH(X). Remark 2

therefore shows that the individual polynomialsP i,χH (u) do not depend onH(X),
which concludes the proof of Proposition A.1. 2

Let us make the notationP i,χ (u) = P
i,χ

H (u), for all i = 0,1,2, χ ∈ Ĝ, and
some cohomology theoryH(X) in our list. The isomorphism (a.8) shows that, for
all prime numbers̀ 6= p, we haveP i,χ (u) = detC`(1− F∗,i · u|Hi(X,C`)

χ−1
).

Thus, for alli andχ as above, we have

Pi(u) =
∑
χ

P i,χ (u) · eχ−1

=
∑
χ

detCp(1− F ∗ · u|Hi
cris(X,Cp)

χ ) · eχ−1. (a.12)
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Let L be a local field of characteristic 0, letV be a finitely generatedL[G]-
module and letf ∈ EndL[G](V ). We have a (unique up to anL[f ]-isomorphism)
splitting ofV as a finite direct sum ofL[G]-submodules

V =
⊕
j∈J

L[f ] · vj , (a.13)

whereL[f ] · vj are cyclicL[f ]-modules, isomorphic toL[u]/(qj (u)), with qj (u)
powers of irreducible polynomials, satisfying det(u − f |V ) = ∏

j∈J qj (u). We
will denote byJ0 the subset ofJ consisting of those indicesj such that the roots
of qj (u) in an algebraic closurēL of L have valuation 0. Let

V0 =
⊕
j∈J0

L[f ] · vj , V1 =
⊕
j 6∈J0

L[f ] · vj .

Sincef is G-invariant, we have a direct sum decomposition ofL[G]-modules
V = V0⊕ V1, thus the following divisibility holds inL[G][u]:

detL[G](1− f · u|V0)|detL[G](1− f · u|V ). (a.14)

We will apply the general remarks above to a situation involving the étale and
crystalline cohomology groups ofX, described in [3], Section 3, and which we
briefly now summarize. LetL be the quotient field of the Witt vector ringW(F)
and let Hicris(X,L) =def Hi

cris(X/W(F))
⊗

W(F) L, be the crystalline cohomology
group ofX with coefficients inL.

Let Hi(X,Qp) be the étale cohomology groups ofX with coefficients in
Qp, defined by Hi(X,Qp) = Hi(X,Qp)

∗ (functorial dual). Let Hi(X,Cp) =def

Hi(X,Qp)
⊗

Qp
Cp. As in the casè 6= p explained in detail above, we have

Cp-linear isomorphisms

Hi(X,Cp)
χ ∼−→ Hi(X,Cp)

χ−1
, ∀χ ∈ Ĝ,

preserving the action of theq-power geometric Frobenius morphism, thus

Pi,p(u) =
∑
χ

detCp(1− F∗,i · u|Hi (X,Cp)
χ) · eχ

=
∑
χ

detCp(1− F ∗ · u|Hi(X,Cp)
χ) · eχ−1,∀i = 0,1,2. (a.15)

There is an exact sequence ofQp[G]-modules (see [3], Theorem 3.2)

0 - Hi(X,Qp)
j- Hi

cris(X,L)
1−φ- Hi

cris(X,L)
- 0,

whereφ is the map induced at the cohomology level by thep-power geometric
Frobenius morphism ofX (viewed as anFp-scheme), and the injective morphism
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j :Hi(X,Qp) → Hi
cris(X,L) preserves the action ofF ∗ on both sides (see [3],

Lemma 3.3).
Let Hicris(X,L) = Hi

cris(X,L)0 ⊕ Hi
cris(X,L)1 be the decomposition described

above forV = Hi
cris(X,L) andf = F ∗. Then the proof of Lemma 3.3 in [3] shows

that Hicris(X,L)0 and Hicris(X,L)1 areφ-stable,j (Hi(X,Qp)) ⊆ Hi
cris(X,L)0, and

via j we have an equality ofL[G]-modules Hicris(X,L)0 = Hi(X,Qp)
⊗

Qp
L.Ob-

viously this last equality can be written as Hicris(X,L)0 = Hi(X,Qp)
⊗

Qp [G] L[G].
This shows that

detQp[G](1− F ∗ · u|Hi(X,Qp)) = detL[G](1− F ∗ · u|Hi
cris(X,L)0),

which, according to (a.14), implies that, insideCp[G][u], we have

detCp[G](1− F ∗ · u|Hi (X,Cp))|detCp[G](1− F ∗ · u|Hi
cris(X,Cp)).

If we break the last divisibility intoχ-components, we obtain the following divis-
ibilities in Cp[u]:

detCp(1− F ∗ · u|Hi(X,Cp)
χ )|detCp(1− F ∗ · u|Hi

cris(X,Cp)
χ), ∀χ ∈ Ĝ.

According to (a.12) and (a.15), these relations imply that there exist polynomials
Qi(u) ∈ Cp[G][u] such that

Pi(u) = Qi(u) · Pi,p(u), ∀i = 0,1,2.

In order to prove statements (3) and (4) in our theorem, we will just need to show
thatQi(u) ∈ Zp[1/g][G][u] and that, in the case whenK/k is a constant field
extension,Qi(u) ∈ Zp[G][u]. These statements will easily follow from the next
elementary lemma.

LEMMA A.5. Let S ⊆ R be two commutative rings with1. Letu be a variable
and letf (u) ∈ S[u], g(u) ∈ S[u] and h(u) ∈ R[u], such thatg(0) = 1, and
f (u) = g(u) · h(u). Thenh(u) ∈ S[u] as well.

Proof. Let f (u) = ∑
i>0 fiu

i , g(u) = ∑
i>0 giu

i , andh(u) = ∑
i>0 hiu

i ,
with fi, gi ∈ S, hi ∈ R andg0 = 1. The hypotheses of our lemma imply that
h0 = f0 andf1 = g1h0 + h1. Sincef0, f1, g1 ∈ S, these equalities imply that
h0, h1 ∈ S. Let us suppose thath0, h1, . . . , hs ∈ S, for 0 6 s 6 deg(h) − 1.
We have a relationfs+1 = hs+1 + (hsg1 + hs−1g2 + · · ·), which shows that
hs+1 = fs+1 − (hsg1 + hs−1g2 + · · ·). The induction hypothesis now shows that
hs+1 ∈ S. 2

We are now ready to conclude the proof of Theorem 1.7.4.1 (3) and (4).

Proof of (3). According to (1) and (2) in our Theorem, the desired statement
follows from Lemma A.5 applied tof (u) = Pi(u), g(u) = Pi,p(u), h(u) = Qi(u),
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S = Zp[1/g][G][u] andR = Cp[G][u]. 2
Proof of (4). LetK/k be a finite, constant field extension of function fields.

Remark 1 above shows that

2(u) ∈ Z[G][[u]]. (a.16)

The proof of Lemma 4.2.1 shows that

P0(u) = 1− σ−1u ∈ Z[G][u], P2(u) = 1− qσ−1u ∈ Z[G][u],
whereσ is the distinguished generator ofG described in Section 4.1. According to
(a.7) and (a.16), we therefore have

Pi(u) ∈ Z[G][u], ∀i = 0,1,2. (a.17)

Since the Hi(X,Zp)’s are freeZp[G]-modules in the constant field extension case
(see Lemma 4.1.1), we also have

Pi,p(u) = detZp [G](1− F∗ · u|Hi(X,Zp)) ∈ Zp[G][u], ∀i = 0,1,2. (a.18)

According to (a.17) and (a.18), statement (4) in our Theorem follows from
Lemma A.5 applied tof (u) = Pi(u), g(u) = Pi,p(u), h(u) = Qi(u), S =
Zp[G][u] andR = Cp[G][u]. 2
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