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Abstract. We prove that a refinement of Stark’s Conjecture formulated by Rubifinim. Inst.
Fourier 46 (1996) is true up to primes dividing the order of the Galois group, for finite, Abelian ex-
tensions of function fields over finite fields. We also show that in the case of constant field extensions,
a statement stronger than Rubin’s holds true.
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0. Introduction

Let Lk,«(s, x) be the Artin L-function associated to a finite, Galois extensions

of global fieldsK/k, and a charactey € G@). In the 1970’s and early
1980’s, Stark [15] developed a conjecture concerning the leading coefficient of
the Taylor expansion oLk (s, x), ats = 0. The classical formulae for the
case of a Dedekind Zeta-function provide good hints: if the order of vanishing
is r, then the coefficient in question should be a rational number multiplied by a
regulator, obtained as a determinant ofrar r matrix involving character values
and logarithms of absolute values of unitskin

The examples, however, suggest that at least in the cadeetibn L-functions,
the denominator of the above-mentioned rational number could be specified. In the
last paper of [15], Stark proposed a refined conjecture, which makes this denom-
inator specific, in the case @éfbelian L-functions of order of vanishing = 1 at
s = 0. This is what Tate (see [16]) calls a conjecture ‘a¢eand he asks for such
a refined statement for Abeliab-functions of any order of vanishing In [14]
Rubin formulates a refined version of Stark’s conjecture, for Abeligunctions
of number fields, of any order of vanishimgats = 0. Rubin’s statement can be
easily extended to the more general case of abelian extensions of global fields of
any characteristic.

In this paper we study Rubin’s conjecture in the case of finite, Abelian exten-
sions of global fields of characteristic> O (i.e. function fields). The cage= 1in
this situation was independently solved by Deligne (see [17, Chpt. V]) and Hayes
(see [6]), with methods relying oftradic homology of 1-motives and rank 1 sign-
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normalized Drinfeld modules respectively. We adopt methods similar to Deligne’s
in order to treat the arbitrary order of vanishing case.

In Section 1 we set the notation, define the objects involved and some of their
properties, and state the conjecture. Section 2 is concerned with the ‘dynamics’ of
Rubin’s conjecture. In particular we show that, in certain cases, one can derive the
conjecture at any level from a stronger form of the conjecture at levek 0 (see
Corollary 2.2). This fact turns out to be of crucial importance in Sections 3 and
4. In Section 3 we prove Rubin’s conjecture, up to primes dividing the order of
the Galois groups (K / k), for any Abelian extensiolX / k of function fields (see
Theorems 3.1.1 and 3.2.1). In Section 4 we prove that a stronger statement than
Rubin’s holds true for constant field extensions of function fields (see Theorems
4.2.9and 4.3.1).

We use these results in [13] in order to formulate and prove Gras-type Conjec-
tures for global fields of characteristic> 0.

The main technique employed in this is thadic homological (or, equivalently,
the ¢-adic étale cohomological)l(# p) interpretation ofL-functions, due to
Grothendieck. However, in order to deal with thepart of the conjecture, we had
to rely on thep-adic homology groups, which are known not to give a good theory
of L-functions. Therefore, we needed a ‘bridge’ betweertthdic étale and the-
adic étale cohomology theories, and that is provided by the crystalline cohomology
theory. The fact that the Frobenius actions on #talic étale and the crystalline
cohomology groups have the same characteristic polynomials has been known for
quite some time (see [8]). However, we needed the slightly stronger statement that
the characteristic polynomials of the Frobenius actions orythemponents of the
¢-adic étale and crystalline cohomology groups are the same, for every character
of G(K/k). Due to lack of a good reference, we provide a proof of this fact (see
Proposition A.1) along with a proof of Theorem 1.7.4.1, in the Appendix.

1. The Objects Involved and Their Properties
1.1. GENERAL NOTATION

Let us fix a function fieldk of characteristico > 0 and of transcendental degree
1 over a finite field. LetK be a finite, Abelian extension @&f, of Galois group
G = G(K/k), and letg = |G|. We denote byF, andF,. the exact fields of
constants ok and K respectively, where is a power ofp, andv is a positive
integer. For primes in k andw in K, such thatw|v, we denote byF,(v) and
by F,»(w) their corresponding residue fields, anddyandd,, their degrees over
F, andF,., respectively {, = [F,»(v):F,] andd,, = [F,»(w):Fy]). Let Nv =
[F, ()|, Nw = |F,»(w)], and letG, be the decomposition group associated to
K/ k. The normalized absolute valje |,,: K* +— ¢* associated ta is defined
by: o] = (Nw) 2% @ for everya € K.

Let S andT be two finite, nonempty and disjoint sets of primeg ji§ contain-
ing all primes which ramify inK / k. Let us define:
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Sk = {primes inK lying above primes ir5}

Tx = {primes inK lying above primes i}

Os={eeK:|a], <1 forallw & Sk}

Us = Oy (the group ofS-units in K).

Ust = {a € Us:a = 1 modw, for all w € Sk} (This is a freeZ-module.)
Ag = the ideal class group abg

A {Fractional ideals 0Dy, prime toTx }
[ ] =
ST {fOs: f = 1modw, Yw € Tx)

Ag. 7 is afinite ideal class group, isomorphic via the Artin reciprocity map with
the Galois group of the maximal Abelian extensionkafof conductor dividing
[l,er, w, in which all primes inSg split completely.

o Xg = {ZweSK apWw:ay, € Z, ZweSK ay = 0}

o Ls.7:Usr — R Xs, is theG-morphism defined by 7(«) = Zwesk f—
log(Jx|,) - w, for anya € U 7r. This induces arR[G]-isomorphismR &
Usr R ® Xs.

e Rs 7 is the absolute value of the determinantgfr, with respect t&Z-bases of
Usr andXy.

There is an exact sequenceZiiG]-modules:

0— Usr — Us — @ Fo(w)* — Asp — Ag — 0, 1)

weTg

which, together with the usual class-number formula, implies that, if

¢s.r(9) = [T @=Nw™™ [T @—Nw'™)

weESk weTg
is the(S, T)-zeta function associated 10, then:
ord—ols,7(s) = ISkl — 1,

. _ _ 2
lim s*1%1¢5. 1 (s) = (=11 As.r| - Rs.r- @)

(see [4] for (1) and (2) above).

1.2. THE L-FUNCTIONS

Let G be the group of irreducible, complex valued charactexs dfor anyy € G,
L(s, x) will denote the ArtinZ-function associated tp, ande, = 1/g ), .; x(0)-
o~1 € C[G]. The Stickelberger function is defined Bys) = era L(s, x)-e,-1,
and it can be thought of as a complex meromorphic function, with valu€gari.
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Rather than working with thé and Stickelberger functions as defined above,
Rubin [14] works with thg S, T')-modified objects, defined by

Lsr(s, x) = [[@—=x(00) - Nv*™) - [[@ = x(o0) - N ™),

veT vES

Os.r(s) = Y Lsr(s, x) - €41,

xeG

whereo, is the Frobenius morphism associated to (the unramified)G. Due to
the conditions imposed a$hand7', Ls 7 (s, x) and®g 7 (s) are holomorphic on the
whole complex plane. For an integer> 0, such thas ™" ®s 7 (s) is holomorphic
ats =0, let

ey 0) = im s~ ©5.7(s) = Zlms—%”(s, X) -e,1 € C[G].

xeG

For § andT fixed, andy € G, let ry = 0ord—oLs 7 (s, x). These numbers do
not depend o, but they depend o8 in the following way:

#Hve S xlg, =16}, ifx # 1,
ry = _ 3)
#S — 1, if x = 1g,

or, equivalently (and more elegantly),
r, = (X, xxs)» forally € G, (4)

whereyy, is the character associated to the Galois representatiogiven by the
C[G]-moduleC® X, and(, ) is the usual inner product on the space of characters
G. (See [17] for (3) and (4) above.)

1.3. GROUP RINGS ANDG-MODULES

For a subringr of C, and aZ[G]-module M, R[G] denotes the group ring with
coefficients inR, and RM denotes theR[G]-moduleR ®;z M. For x € G, R[x]
denotes the minimal ring extension Bf containing the values of.

If L is a field of characteristic 0, theG (L) will denote the set of characters
associated td.-irreducible representations @. (In particular, if L = C, then
G(C) = G) If L is an algebraic closure df, then G(L/L) acts canonically on
G(L) andG(L) can be viewed as the set of orbits with respect to this action. For
Y e G(L) andy € G(L), we write x | if x belongs to the orbit represented by
Y. If SandT are fixed, (3) above implies thaf = r,-, for any x € G(L) and
anyrt € G(L/L) We can therefore defing, asry, = r,, foranyy e G(L) and
anyy € G(L) such thaty |y.

comp4188.tex; 8/04/1999; 9:55; p.4

https://doi.org/10.1023/A:1000833610462 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000833610462

ON A REFINED STARK CONJECTURE FOR FUNCTION FIELDS 325

I r is a positive integer andlis fixed, letG(L, r) = (¢ € G(L):r, =r}. If R
is a ring whose field of fractions 5, andM is anR[G]-module, let

M,s=1{meM:e, -m=0,forally € GIL)\G(L,r)},
wheree, = 1/gY" .. ¥ (o) - oL This is obviously amR[G]-submodule ofi/.

Remarkl. Let R be a Dedekind domain containir€f1/g], and letL be its
field of fractions. Then one has a decomposit®IG] = .5, Dy, Where
Dy = R[G] - ey,. The D,’s are finite extensions ok (and therefore Dedekind
domains themselves), ard, —5 R[x] via the mapR[G] AN R[x], defined
asx (Y, colo - 0) = Yy dox(0), for any x € G(L), x|¥. This implies that,
if M is anR[G]-module, then one can decompose it intoyitcomponentsi =
DBy, M?. whereMV =M Q Dy ={m € M:e, -m =0in LM, if x { y}.
For a finitely generate@[G]-module M, the following are therefore equivalent:

(i) M is a projectiveR[G]-module.

(i) MV is a projectiveD,,-module, for anyy .
(iii)y MY has noD,-torsion, for anyy .
(iv) M has noR-torsion.

1.4. FAITTING IDEALS
If A is a commutative, Noetherian ring, ail is a finitely generatedi-module,
then Fitty (M) denotes its Fitting ideal. A" 25 A" > M - 0is a finite
presentation oM, one can consider the compositionmfnorphisms’/"\ A 20N
det

A"+ A, .

By definition, we have Fitt(M) = Im(deto A ¢). We will use the following
properties of Fitting ideals:

(@) If M is a cyclicA-module then Fitt (M) = Anny(M).

(b)IfA ', Bisa morphism of Noetherian rings, amlis a finitely generated
A-module, then Fig(M Q) B) = f (Fitt4(M))B.

A
(c) If R is a Dedekind domainM is a finitely generatedk[G]-module, and
a € R[G], then

a € Fittgig)(M) < a € Fittg, (g (M® Rk> , VA,
R

wherex runs through the set of prime ideals ®f
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(d) If Ais a finite, direct sum of Noetherian rings= @, A;, N = &, N; is
an A-module, withN; —> A", for some positive integers, and

=@
N=€BN,~—"»N=@N,.—>M—>0

is an exact sequence dfFmodules, then déf) =qer > dety, (f;) € Fitta(M).

(Here deg, (f;) is the determinant of; with respect to lami basis ofN;.)

Let0 > M — M — M” — 0 be an exact sequence of finitely generated
A-modules. Then:

(e) Fitty (M) - Fitt,(M") C Fitt,(M) C Fitty(M").

(N If Ais a Dedekind domain ant, M’ andM” are finite, then

Fitt, (M) = Fitt,(M') - Fitt,(M") and [A:Fitt,(M)] = |M].

In particular, ifA = Z, then Fity (M) = |M| - Z.

(9) If A =Z[G], andG is cyclic, then Fith (M) C Fitt,(M).

Proofs for all the properties above, except (c) and (d), can be found in the Ap-
pendix of [9]. (c) is a consequence of (b), and (d) follows easily from the definition
of the Fitting ideal.

1.5. THE MODULES xg, Usr AND Ag

Let K/k, S, T be as above, and letbe a positive integer. From now on we are
going to assume that the set of d&k&/ k, S, T, r) satisfies the following extended
set of hypotheses:

S#0, T#9, SNT =40,
H) S contains all primes which ramify ik / k,
S contains at leastprimes which split completely ik /k,

IS| >r+ 1

Hypotheses (H) imply that, for any < G, we haver, > r (see (3) above) and
therefore@f{y(O) € C[G] makes sense. From the definitions, we h@@T(O) €

ClG],.s.
Let us choose am-tuple (vy, ..., v,) of r distinct primes inS, which split
completely inK /k. Let us fixW = (wy, ..., w,), wherew; is a prime inK lying

abovev;, forany 1< i < r, and letw € Sk, such thatw fv;, forany 1< i <r.
All the exterior powers considered in this paper are &f&F], unless otherwise

specified. We will be interested in tIZE{G]-moduIeS/r\ Ust andA Xg. LetX =gef
(wi—w)A - A(w, —w) G/F\XS.
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LEMMA 1.5.1. Let R be a discrete valuation ring, or a field, containi@j1/g],
let L be its field of fractions and IeR[G] = &5 Dy be the direct sum
decomposition described in Remdrin Sectionl.3. Then

(1) RUs 7 ~ RX5 >~ @5, Dy » as R[G]-modules

(2) (R A Usp)rs ~ (R A X5),.s ~ R[G5, as R[G]-modules

(3) (R N XS)r,S = R[G]r,S - X.

Proof. (1) is a consequence of Remark 1, Section 1.3, equality (4) and the fact
thatRUs r andR X are isomorphic aR[G]-modules (see Section 1.1).

(2) and (3) follow from Remark 1, Section 1.3 and Lemma 2.6 of [14]. O
Foreveryps, ..., ¢, € Homg(Us. 7, Z[G]), one can define @ G]-morphism:

Q A Uy B2% Q[6)

by lettinggs A -+« A @ (ur A --- Au,) = det j(¢i(u;)), foreveryuy A--- Au, €
A Usp.

DEFINITION 1.5.2. LetAg r be theZ[G]-submodule of) A Us.r defined by

PN AN pe(e) € ZIG],

nSI Ve, ..., ¢ € HOMz61(Us 1, Z[G]) .

AS,T = [8 € <Q /V\ US,T)
LEMMA 1.5.3. The latticeAs r defined above satisfies the equalitites:

(1) Z[1/glAs r = (Z[1/8] A Us.r)y.s.
(2) If r = l,thenAs,T = (US,T)l,S-
(3) If r =0, thenAS,T = Z[G]O,S-

Proof. See [14], Proposition 1.2. O

1.6. THE CONJECTURES

For every componen; of the r-tuple W, chosen in Section 1.5, one can define
aZ[G]-morphismXg i Z[G], by defining it first onP, 5, Zw asw;(w) =

Y oeG.uwo—u; O YW € Sk, and by taking the restriction t&. One obtains this way
aC[G]-morphism

r WA AW

C/\XS

CIG],
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defined byw; A --- Awf(xy A - Ax) =det j(w](x;)), VX1 A A X, en Xs.

Remarkl. If X = (wy — w) A --- A (w, — w) is the element oh X, defined
in Section 1.5, themw; A --- A w}(X) = 1, as one can easily see.
5 ()
r AiT r
LetC A Usr — C A Xs be theC[G]-isomorphism defined by (u1 A

r
o Auy) =As (W) Ao Adsr(u,), foreveryus A Au, €A Us .

DEFINITION 1.6.1.

(1) The regulator map associated to thauple W is defined to be th€[G]-
morphism:C A Us 7 —% C[G], given byRy = (wiA--- Aw?) oAy

(2) Foreveryy e G, we defineC A Ust LiLe by Rw , = x o Rw.

Remark2. Let us observe thaky| :(C A Ust)rs — C[G].s is

(CAUS,T)rs
an isomorphism o€[G]-modules. Indeed, since’;. is an isomorphism (Lemma
1.5.1), all we have to check is that

(Wi A AwH)| :(C A Xs)rs = C[Gl,s

(CAX$)r.s

is an isomorphism. According to Lemma 1.5.1 (@,/r\ Xs)rs = C[G],.s - X, and
therefore our statement follows from Remark 1 above.

CONJECTURE A (‘overQ’) (Stark, Tate). If the set of data K /&, S, T, r) sat-

isfies hypothese@), then there exists a uniqug 7 € (Q A Us.7)r.s, Such that
Ry (esr) = ®E{)T(0)-

Remark3. As Rubin shows (see [14], Prop. 2.3), Conjecture A above is equiv-
alent to Stark’s original conjecture ‘ove)’, for the L-functions associated to
characters, € G(C, r). As Tate points out (see [17], Chpt. V), Stark’s Conjecture
‘over Q' is always true in the function field case. Therefore Conjecture A is a
theorem in the setting we are considering in this paper. We will refer to Conjecture
AasQ-St(K/k, S, T,r)inthe sequel.

The following is the refinement Rubin [14] proposes for Conjecture A:

CONJECTURE B (‘overZ’) (Rubin). If the set of data K/k, S, T, r) satisfies
hypothesegH), then there exists a uniqug r € Agsr, such thatRy (esr) =

0y (0).
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Remark4. If r = 0, this statement is equivalent &g (0) € Z[G]o s (See
Lemma 1.5.3(3)). This was proved by Deligne in the function field case (see [17],
Chpt. V).

If » = 1, as Rubin points out (see [14], Prop. 2.5), Conjecture B above, for
a fixed S and for all7, is equivalent to Stark’s own refined conjecture for al
functions associated to characterse G(C, r). In the function field case, this
was proved independently and with very different methods by Deligne (see [17],
Chpt. V) and Hayes [6]. (Also see [13 Section 3] for more details on the equi-
valence between Rubin’s Conjecture for= 1 and the classical Brumer—Stark
Conjecture.)

The main goal of this paper is the study of Conjecture B above (which will be
referred to as $K /k, S, T, r)), for any value of-.

Remarks. Remark 2 above implies that the uniqueness;gfin both Conjec-
ture A and B is automatic, once one proves its existence in the appropriate vector
space or lattice.

1.7. GEOMETRIC BACKGROUND(SEE[17])
1.7.1. The Corresponding Schemes

Let X; — Y; be a finite morphism of projective, irreducible, smooth curves,
defined overF,, corresponding to the inclusioh — K. Let F be an algebraic
closure ofF, and letX = X3 xspecr,) SpecF), andY = Y1 xspecr,) SPecF) be
the smooth, projective curves associated(toand Y; respectively, by extending
scalars fromF, to F. SinceF, is algebraically closed i, k ®¢, F is a field
and, correspondinglyy is an irreducible, smooth, projective curve, defined over
F. Since the algebraic closure Bf in K is Fyv, K ®¢, F —> @o<i<,—1K®, with
K mutually isomorphic fields. Correspondingly, = | [oc;<,_, X, where the
Xs are irreducible, smooth, projective curves, defined dvewhose fields of
rational functions are th& ©’s respectively. Thex?’s are mutually isomorphic
over F, and therefore their geneg.«, are equal. We will denote the common
value of these numbers k. We will also denote byX ] the generic point of
the schemex ), for every 0< i < v —1.

Everyo € G gives isomorphisms

o K — K, o '®1: KQF — K QF,
which induce the isomorphisms
Ox,: X1—~>X1, Ox. X—~>X

of F,-schemes an#-schemes respectively. This way,acts on the sets of points
of X and it permutes the generic points®] transitively. We emphasize the fact
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thatoy, andoy are associated 0~* € G. This way, ifw is a prime inK, and[w]
is the associated closed point on the schefehenoy, ([w]) = [w?].

1.7.2. The Geometric Frobenius

Let Fx,: X1 — X1 be the geometric Frobenius endomorphismXgf relative to
F,. If U is an affine open subset &, thenFyx, |y corresponds to thg-power map
on theF,-algebral’ (U, Oy,), of U-sections of the structural she@i,.

DEFINITION 1.7.2. LetF = Fx, Xspecr,) lspecr): X — X be the Spe@)-
scheme morphism obtained frofy, by extending scalars t6. F is called the
geometric Frobenius endomorphismofelative toF,,.

Remarkl. F permutes transitively the generic poifigs®] of X, andF" fixes
each of these. We can therefore suppose from now o xH{al = F’([X @), for
every 0<i <v—1.

Remark2. The simple fact that (x?) = o(x)4, Vx € K, Vo € G, implies
that Fx, o ox, = ox, o Fx, and therefore, by extending scalaFsp ox = ox o F,
Vo € G.

1.7.3. The¢-adic Homology Groups aof

We first give explicit descriptions of the homology groups¥ Z) of X, with
coefficients inZ, and of the actions of; and of the geometric Frobenius mé&p
on each of these. For any> 0 and any € G, we will denote by, ; andF, ; the
maps induced on HX, Z) by o and F respectively.

e H;(X,Z)=0fori > 3.
e Ho(X, Z) = the free Abelian group generated py’],0 <i < v — 1.

The mapss, o and F, o act on H(X, Z) by simply permuting théXV]’s as de-
scribed in Section 1.7.2. Remark 1 in Section 1.7.2 also impliegthat 14, z)-

e Hi(X,Z) = Pic°(X), where Pi€(X) is the Jacobian variety associatedsto
We have Pig(X) = []; Pi®(x®), and each PReX®) is an Abelian variety of
dimensiongy, whose underlying group is isomorphic to the quotient of the group
of divisors of degree zero aki”, by the subgroup of principal divisors:

Divo(X ®) PIC(X) Divo(X)

i @)y —
P = @ e kT V() f BT

Here DiV(X) is the group of divizors ofnultidegreezero onX, i.e. of degree zero
if restricted to each compone( ).
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The mapss, ; and F, ; are naturally induced by the actions®fand F on the
set of closed points of the schernve

e Hy(X,2Z) = Ho(X, 2) @ F>*, with 042 = 040 @ 1, andF*)z =F,o® Og»
whereo,: F* — F* is theg-power map, (x) = x9.

If M is an Abelian group andis a prime number, we give the following ad-hoc
definition of the¢-adic Tate module o#/:

M®Z, if Mhasnd-torsion
Te(M) = 3 |im M[¢"], otherwise

n

where M[¢"] is the group of¢"-torsion points ofM, and the projective limit is
taken with respect to the multiplication BymapsM[¢"+1] M (.

DEFINITION 1.7.3.1. Let¢ be any prime number. Theadic homology groups
H; (X, Z,) of X are defined by HX, Z,) = T,(H;(X, Z2)), Vi > 0.

TheZ-linear actions ofz andF on H; (X, Z) induce in a natural wa¥,-linear
actions on K(X, Z,). According to the definition above, we have

L] H,'(X, Z@) = O, Vi 2 3

e Ho(X,Zy) = Ho(X,Z) ®Z, is the freeZ,-module generated by @], for all
O0<i<g<v-1.

e Hi(X,Z)) = T,(Pic(X)) = @ T,(PIC(XD)) — ZJ", wheren = 2gy, if
Z#p,and0<n<2gx,if€:p.l

e Hx(X,Z,) — Ho(X,Z,) ® T,(F¥). Since T(F*) = lim per, wheregen =
(¢ € F:¢" = 1}, we have T(F*) — Z,if £ # p, and T,(F*) = {1}. We
therefore have HX, Z,) >~ Ho(X, Z,), if £ # p, and B(X,Z,) = 0. It is worth
noticing that H(X, Z,) and H(X, Z,) are G-isomorphic, but not,-isomorphic.
In fact, the action of, , is taken into the action qf - F, o by the isomorphism
above.

If ¢is a prime number, an® is any ring containingZ,, then, by definition,
H;(X, R) = H;(X, Zy) ®Zz R. In what follows,o, ; and F,.; will also denote the
R-linear actions induced by and F on H;(X, R), for anyi > 0, and anyR as
above.

Remarkl. The H(X, Z,)’s as defined above are in fact the functorial duals of
the étale cohomology groupéétleIX’, Z,) of X (see Appendix).

1.7.4. Homological Interpretation 00 7 (s)

Let R be a commutative ring, and a finitely generated projectivR[G]-module.
Let W be a finitely generated®[G]-module so thatVv @ W — R[G]", for
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some integen > 0. Let f € Endgg;(V). If u is a variable, one can define the
polynomial inu, with coefficients inR[G]:

deteio)(1— £ - ulV) E'detyoy(1— (f ® Oy) - ulV & W),

where the determinant on the right is taken with respect to a basis of thR[ftge
module V @ W. Schanuel's Lemma easily implies that this definition does not
depend oriv.

In particular, if R andL are as in Remark 1, Section 1.3, then one can consider
the decompositionR[G] = @5y Dy, andV = @5, VY, with VY free
Dy-modules of finite rank. It is easy to see that, in this case,

deteigy(L— f-ulV)= Y det, (1— f-ulVY),

YeG(L)
in R[G][u] = @y gDy lul.

Remarkl. If R’ is an R-algebra,V is a projective R-module, andf €
EndgiG;(V), thenV’ = V ®x R’ is a projectiveR’'[G]-module, f' = f ® 1g €
EndR/[G](V’), and dep[(;](l — f’ . uIV/) = detR[(;](l — f -ulV).

For every prime numbet, and everyi = 0, 1, 2, let

def
Pio(u) = dety,6y(1 — Fu i - ulHi (X, Qo).
The following theorem will play an important role in our future arguments.

THEOREM 1.7.4.1.Foranyi =0, 1, 2:
(1) P, () € Z,[1/gl[G1lul, and if¢ # p, thenP,; € Z[1/g][G][ul.
(2) If £ # p, thenP; ,(u) does not depend oh

Let P;(u) def ;.¢(u), foranyf¢ # p. Then:
(3) There exist polynomial®;(u) € Z,[1/g][G]lu], such thatP;(u) =

Pi p(u) - Qi(u).
(4) If K/k is a constant field extension, thén(u) € Z,[G][u].

Proof. See Appendix. O

The link between the polynomialB; (1) defined above and the Stickelberger
function ®(s) is given by the following:

THEOREM 1.7.4.2. There is an equality of complex, meromorphic functions

O(s) = [loci<2 Pi(q—) V",
Proof. See [17], Chapter V. O
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The natural question which arises is to give a similar homological interpretation
for ®g r(s). This was done by Deligne (see [17], Chpt. V). We are going to briefly
describe his constructions below, as they will be needed in Sections 3 and 4.

Let Sx be the finite set of closed points &h lying above points corresponding
to primes inS, and let Di(Sy) be theZ[G]-module of divisors onX, supported
on Sx. There is an exact sequenceZdiG]-modules:

0 — kerag — Div(Sy) —» Ho(X,Z) — 0 (5)

whereay is the multidegree map given by

m
g anpj = Z Z n; [X(i)]v
j=1

0<i<v—1 \ Pjex®
for every) " n;P; € Div(Sx).

Remark2. Obviously kekrg is a freeZ-module of finite rank and, by definition,
T,(keras) = keras ® Z,, for any prime numbet. «y is F o-invariant and there-
fore F acts on both ketrg and T, (keras). We denote the induced endomorphisms
by F,o.

Let T be the finite set of closed points oy lying above points associated to
primes inT, and let (Tx, Z) be the free Abelian group generated By. There
is an exact sequence BfG]-modules

Br

O - HO(X’ Z) ® FX —_— HO(TX’ Z) ® FX - COkel(ﬂT) — 0’ (6)
where
Brl D xPefi|= > Y P|®f,
o<i<v—1 0<i<v—1 \ peTynX®

foranyd o, 1[XV1® f; € Ho(X,Z) @ F*.

Remark3. From the definition o7, one can easily see that, as a group.

coker (B7) is a torus, i.e. coke(By) —> F*", for some positive integen.
Therefore we have ;{cokerf;)) — Z™, if £ # p, and T,(cokenBr)) = {1}.

SinceF induces an isomorphisifi, ; = F o ® o, on both H(X, Z) ® F* and
Ho(Tx,Z) ® F*, and By is F, »-invariant, F induces aZ-linear isomorphism on
coker (Br), and aZ,-linear isomorphism on j{cokerBr)). We will denote both
these isomorphisms by, ».

THEOREM 1.7.4.3.1f S and T are two finite, nonempty, disjoint sets of primes in
k, S containing all primes which ramify ik / k, andu = ¢—*, then
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(1) ©s.7(s) € Z[G][ul.
(2) For every prime numbef, such that # p, we have

Os.7(s) = dely,1(1— F.o-ulT,(kerag) ® Q) x
x dely, 6] (1 — Fi1 - ulHi(X, Qp)) x
x detg,6)(1 — Fi2 - u|Te(cokenBr)) ® Q).
Proof. See [17], Chapter V. O
Remark4. The theorem above implies in particular that, if the set of data

(K/k, S, T, 0) satisfies hypotheses (H), thé r(0) € Z[G], and therefore (by
definition) ®s 7 (0) € Z[G]o,s. This is the proof of StK /k, S, T, r), forr = 0.

LEMMA 1.7.4.4. Let? be a prime number, such thgtd(¢, ¢g) = 1. Then
(1) It € # p,
Os,7(s) = det,61(1— Fio-u|Ty(kerag)) x

x det,61(1 — Fy1 - ulHi(X, Zy)) x
x dety,(61(1 — Fy 2 - ulT,(cokerBr))).
(2) If gcd(p, g) = 1, there exists a polynomiad(u) € Z ,[u] such that
Os,7(s) = Q(u) det (1 — Fi1-ulHi(X, Z))) x
X detzp[G](l — Foo-ulT,(kerayg)).

Proof. Let us first notice that, for satisfying gcd?, g) = 1, Hi(X, Zy),
Te(kerayg) and T,(coker Br)) areZ,-free and therefor@,[G]-projective modules
(see Remark 1, Section 1.3). This shows that the determinants on the right-hand
side of (1) make sense. Statement (1) in the lemma is now a direct consequence of
Remark 1 above and Theorem 1.7.4.3(2).

The fact that T(kerag) = (keras®Z[1/g]) ®z(1/,1Z¢ and that ketrs®Z[1/g]
is Z[G]-projective imply that

det1/41161(1 — Fio - ulkeras ® Z[1/g])
= det,(6)(1 — F,o- ulTe(keray)), (7)

for all prime numberg, such that gcd, g) = 1, in particular for¢ = p. Equal-
ity (7) shows that the polynomial on the right is independent,0és long as
gede, g) = 1.

As Deligne shows (see [17], Chpt. V), the exact sequence (6) implies that, if
¢ # p,gede, g) = 1, we have an equality

det,;6)(1 — F. 2 - u|T,(cokenBr)))
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_ [T,er (X — o, (qu)™)
det,i61(1 — gFio0- ulHo(X, Zy))"

(8)

On the other hand, X, Z,) = Ho(X, Z[1/g]) ® Z,, and H(X, Z[1/g]) is a
projectiveZ[1/g][G]-module. Remark 1 therefore implies that

det,(6)(1 — g Fio - ulHo(X, Zy))
= det1/1161(1 — g F0 - ulHo(X, Z[1/g])).

This implies that the right-hand side of equality (8) is an element in the power series
ring Z[1/g1[G]1[[«]]. On the other hand, the left-hand side of the same equality
belongs taZ,[G][u]. We therefore have

det,6)(1 — F. 2 - u|T,(cokenBr))) € Z[1/gl[G]1lul,

for all ¢, such that geet, g) = 1.
Let Q) &' Q1) - det, (1 — Fi2 - ulT(cokenBr))), where Q1 (u) is the
polynomial defined in Theorem 1.7.4.1 (3), ahds a prime number, such that
¢ # p and gcd¢, g) = 1. According to the arguments abov@(u) € Z,[G][u].
Part (1) of the lemma, in addition to Theorem 1.7.4.1(3) and equality (7) imply that

Os.7(s) = Qu)-det /(1 — Fi1-ulHi(X,Z))) x
X de&p[G](l — F*’o . ulTp(keraS)),

which concludes the proof of (2). O

2. Dynamics (ChangingSandr)

Let us suppose that the set of da®/k, S, T, r) satisfies hypotheses (H). Let
r" > r,and letv,,q, ..., v ber — r distinct primes ink, not belonging taS
or T, and splitting completely ik /k. If ' = S U {v,41,..., v}, then the set
of data(K/k, S’, T, r") satisfies hypotheses (H) as well. SinEeremains fixed
throughout this section, we will denote by andeg the elementss r andeg
whose existence is predicted K- S(K/k, S, T,r) andQ - S{K/k, S, T,r")
respectively. We will also make the notatioAs = As 7, Us = Usr etCc. Ag ¢
will denote the subgroup ol generated by primes ik, lying abovev;, for all
r+1 < i < r'. Allthe Fitting ideals and exterior powers involved from now on in
this paper are considered ov&fG], unless otherwise specified, and therefore we
will suppress the group ring[G] from the notation.

In this section we will list some relations between statement& 5t, S, T, r)
and StK/k, S’, T, r"), which will be needed in Sections 3 and 4. For most proofs,
we refer the reader to [14], Section 5.
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There is an exact sequenceZdiG]-modules:
0— AS,S’_)AS_)AS’_)O- (9)

PROPOSITION 2.1If eg andeg are the elements defined above, then

(1) Es € Z[l/g] Fitt(As)AS & Ey € Z[l/g] Fitt(AS/)AS/.
(2) If G is cyclic, thereg € Fitt(Ag)As < g € Ay,

Proof. (see also Theorem 5.3 in [14]) According to [14], Section 5, there exist
Q[G]-morphisms:

r @ r r'—r @
QAUsy — QAUs, Q A Uy — QIG],

satisfying the following properties:

(a) @ is injective if restricted t@QAg .

(b) ©(Z[1/g]Ay) = Z[1/g]Fitt(As s) As.

(c) Fitt(As s)As S P(Ay).

(d) d)(sgf) = &g.

(e) D' (AN Uy = Fitt(AS’S/).

() ®(ui Aup) = & (u1) Auyp, for everyu; € Q A" Ug anduy € Q A’ Us.

(1) The exact sequence (9) and the fact #fdt/g][G] is a finite, direct sum of
Dedekind domains (see Section 1.3) imply that there is an equaldylof1[G]-
ideals (see Section 1.4(f)):

Z[1/g]Fitt(As) = (Z[1/gIFitt(As,s) - (Z[1/gIFitt(Ag)). (10)

Let us suppose thaty € Z[1/g]Fitt(As)As. (10) implies thateg can be written
as a finite sumg = Zi Vi, with Yi € Z[l/g]Fltt(As/), 8 € Fitt(AS,S/) and
A; € Ag. According to (c) above, this implies that € ®(Z[1/g]Fitt(As)Ay).
Thus (a) and (d) imply thaty € Z[1/g]Fitt(Ag)Ag .

Let us suppose now thaty € Z[1/g]Fitt(As)Ag. This implies thateg =
d(eg) € Fitt(As)D(Z[1/g]As). On the other hand, according to (b) and (10)
above, we have the equalities:

Fitt(As)® (Z[1/g]As) = Z[1/g]Fitt(As s)Fitt(As)As
= Z[1/g]Fitt(As)As.

This concludes the proof of (1).
(2) If G is cyclic, Section 1.4 (g) and the exact sequence (9) imply thaixixtC
Fitt(As s), and therefore (a) and (c) imply (2). O
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COROLLARY 2.2. Let us suppose that, in the context abaove; 0. Then

(1) ®S,T(O) S Z[l/g]Fltt(As) & gy € Z[l/g]Fltt(AS/)As/
(2) If Giscyclic,®57(0) € Z[Glo sFitt(As) = ey € Z[Gl,r 5 - A Ug.

Proof.(1) In order to prove (1), one has to rely on the fact that, in the cas@,
As = Z[Glo.s (see Lemma 1.5.3(3)), and that

Z[1/g]Fitt(As) - Z[1/g1[Glos = Z[1/g]Fitt(As) N Z[1/g][G]o,s-

This last equality follows from the fact tha[1/¢][G] = @, 5 Py and that,
with respect to this decompositioZ[1/¢][Glo,s = ©yc50.0 Dy (S€€ Section
1.3).

Proposition 2.1 (1), in addition to the fact th@ r(0) € C[Glos, implies
therefore that

®s,7(0) € Z[1/gIFitt(As) & O5 7(0) € Z[1/g]Fitt(As) - Z[1/g1[Glo s
& gy € Z[l/g]Fltt(As/)As/

(2) Let us suppose th&ds r(0) € Z[Glo s - Fitt(As). One can therefore write
Os.7(0) as a finite sumds 7 (0) = ) o; - fi, Wwhereo; € Z[Glos, and f; €
Fitt(As). Property (e) above together with Section 1.4(g) imply that there exist
elementsu; € AUy so thatf; = ®'(u;), for every indexi, and therefore (f)
implies thatey = O 7(0) = ®()_w; - u;). The obvious fact that, in our context,
Z[Glos = Z[G], s therefore implies tha} ", «; - u; € Z[Gl 5 - A" Ug C Ag.
Properties (a) and (d) imply then that = Y o; - u; € Z[Gly.s - A Ug. O

We conclude this section with the following statement, whose proof can be
found in [14], Section 5 (see Corollary 5.4). For a more detailed proof, see [12],
Chapter II.

PROPOSITION 2.3.Let us suppose that the set of dat/k, S, T, r) satisfies
hypothesegH), and thateg 7 is the element satisfyin® - S(K/k, S, T, r). If
es.t € Z[1/g]As. 7, then the following statements are equivalent:

(1) es.r € Z[1/g]Fitt(As r) As.7-

(2) Z[1/glGles,r = Z[1/g]Fitt(As 1) As. 1.

We will actually prove that statement (1) in Proposition 2.3 is always satisfied in
the function field case (see Theorem 3.2.1(2)) and, therefore, (2) is always satisfied

(see Corollary 3.2.2). This fact turns out to be of crucial importance in proving that
Gras-type Conjectures hold true in the function field setting (see [13]).
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3. Conjecture B up to Primes Dividing |G(K/K)|
3.1. THE »=0 CASE

In the context described in Section 1.7, let us suppose that the set ofidata
S, T, 0) satisfies hypotheses (H). The goal of this section is the proof of the fol-
lowing:

THEOREM 3.1.1.If the set of data K /k, S, T, 0) satisfies hypotheséghl), then
Os,7(0) € Z[1/g]Fittz(1/41161(As,7)-

Remarkl. Before starting to prove the theorem above, let us first notice that, ac-
cording to Section 1.4 (c), its statement is equivaler® {g-(0) € Fittz,(6(As,r ®
Z,), for all primes¢, such that gc€t, g) = 1. We will therefore prove the Theorem
‘prime by prime’.

Let Sx, andSx be the finite sets of closed points & andX respectively, lying
above points inv; associated to primes il. Ty, and Tx have similar meanings.
If Z is a subset of closed points & or X, then DiWZ) and Di(Z) will denote
the groups of divisors and respectively divisors of degree 0, supportefl @
Z C X, degree 0 meamnsultidegree0, i.e. degree 0 on each connected component
X)) Let

Div®(X1) B Divo(X)
{div(f): f € K} T H{diV(f): f € Bocicy1 KD}

be the Picard groups associatedstpand X respectively. As explained in Section
1.7.3, Pi€(X) is the underlying group of an Abelian variety of dimensigg,
on which the geometric Frobenius map induces a bijective endomorphism
Pic®(X1) can be naturally viewed as a finite subgroup ofPXo, and it is precisely
the part of Pi€(X) fixed by the action of’, ;.

We will also consider the following groups:

Pid(X,) = Pic(X)

. B DiVO(Xl\Txl)
PO = (G F e K. 7 = Lmodw, var € T
i ,0
P Div°(X\Tx)

{div(f): f € @K(")X, f = 1modw, Vw € Tx}

It can be shown that Pi¢X); is the underlying group of an algebraic group
as well. We will not use this fact in what follows. P{&1); sits inside the part
of Pic®(X) fixed by the actionF, ; of the geometric Frobenius morphism and, as
Lemma 3.1.4 below shows, it is in fact equal to this. There obviously are surjective
group homomorphismsy, : Pic’(X1); — Pic(Xy), mx: Pid(X); — Pi(X).

There is a commutative diagram 2fG]-modules, with exact rows
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0 K*/F5 -t DiVO(Xy) — PIc(X1) 0
K os Vs (1D
X diVS .

0 K /US _— DlV(Xl\le) Ag 0,

where
e 7 is the usual projection(;, < Us).
e ¢5 is the ‘forgetful’ map defined by (3_,, .y, niw:i) = Zwiexl\sxl njw.
e Y5 is the map induced bys.
e div is the usual divisor map.
e divy is the ‘forgetful’ divisor map defined by dif) = Zwexl\sxl

ord,(f)-w,forany f € K.

The snake lemma applied to (11) and the surjectivityr pfgive an isomorph-

ism of Z[G]-modules cokdips) —> coker(ys). Let d&Z = Im(Div(Syx,) d—eg>
Z), where ‘deg’ is the divisor degree map a&h. It is an easy observation that
cokel¢ps) —> Z/dZ asZ[G]-modules, withG acting trivially onZ/dZ. There-
fore we obtain the following isomorphism @fG]-modules

cokenys) — Z/dZ, (12)

with G acting trivially onZ /dZ.
There is a commutative diagram 2fG]-modules with exact rows

0—— | @ Fr) | /F5 2 PIC(X1)r —> Pic(Xy) 0
wETXl
ﬂrl Vs, T Vs
0— | P Fpw)* | /Us 21 sy As 0,
weTx1
(13)

where

e The lower row comes from the exact sequence (1).

o ir((@w)uery,) = AV(P), for every(@y)uery, € Buer,, Fr(w)* and f e
K, satisfying f = a,, modw, Yw € Ty,.
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° Ws,T(Zi/”i\'wi) = the ideal class corresponding[tp w!" in As 7.

The snake lemma applied to (13) and the surjectivity ngf imply that
cokel(yrs.7) —> cokers). (12) therefore gives an isomorphismz{iG ]-modules

cokenys ) — Z/dZ, (14)
with G acting trivially onZ /dZ.
PROPOSITION 3.1.21f £ is a prime number, such thgtd(¢, g) = 1, then

det,(61(1 — F,olTe(keras)) e Fittz,g1(cokeyrs r) ® Zy).

Before starting to prove the proposition, let us observe that the determinant in

the statement makes sense due tadli& ]-projectivity of T, (kerag) (see Remark
2, Section 1.7.4 and Remark 1, Section 1.3). In what follow3/ ifts an Abelian
group andf € End(M), thenM/ denotes the subgroup &f fixed by f.

Proof. Sincewy is F o-equivariant, we have a commutative diagranZoé]-
modules, with exact rows

0 ——— keray — Div(Sx) —+ Ho(X, Z) 0
(1-Fy 01 (1-Fy0)2 (1-Fy0)3
0 ——— kerag —— Div(Sy) — Ho(X, 2) 0.

Obviously, we have the following equalities:

e ker(1 — F, o)z = Div(Sy)f+0 = Div(Sy,),
e ker(1-F, )3 =therank 1, fre€-module generated by = >, _,[X"],
with trivial G-action.

The snake lemma therefore gives a long exact sequen¢pafmodules
0 ker(1— F, o)1 — Div(Sx,) 2“2 7.4 —
— cokernl — F, )1 — cokenl — F, ), — cokerl — F,o)s — O.

Since ImMA - deg = dZ - A, andG fixes A, we get an injective morphism of
Z[G]-modules

Z/dZ < cokerl — F, o)1, (15)
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with G acting trivially onZ /dZ. Since for¢ 1 g, Z,[G] is a direct sum of Dedekind
domains, (14), (15) and (f), Section 1.4 imply that

Fittz,g;(cokel(l — F, 0)1 ® Z,) < Fittz,;g;(cokenys.r) @ Z,), VL, £ 1 g. (16)

If one considers the decompositidh[G] = @z, Dy, as in Section 1.3,
then the fact that [I(keray) is a projectiveZ,[G]-module implies that one has an
isomorphism T(kerag) —> @wD;‘”, for some positive integers, (see Remark
1, Section 1.3). The exact sequence

(1-Fy 01

Tg(keras)

(kerag) — cokenl — F,p)1®Z, — 0

gives therefore a situation similar to the one described in Section 1.4 (d), with
R =Z,GlandN = T,(kerayg). We therefore have

de&K[G](l — F*’ong(kerOls)) € FittZ{[G](COkEI(l — F*,O)l (029 Zg) (17)
Relations (16) and (17) imply the statement in Proposition 3.1.2. O

PROPOSITION 3.1.3If £ is a prime number, such thgtd(¢, ¢g) = 1, then

det,(61(1 — F, 2| Te(cokenBr))) - det,i61(1 — Fi 1|H1(X, Zy))
S Fittzl[G](PiCO(Xl)T ® Z@)

Proof. Let us recall that we have an exact sequencg[cf]-modules
0= Ho(X,2) ® F* P7e Ho(Tx, Z) ® F* — cokerBy) — O. (18)

The g-power geometric Frobenius morphism induces isomorphisins =
F.o ® o, on each term of (18), where,: F* — F* is the g-power map, and
Br is F, »-invariant (see Section 1.7.4).

Let ¥ = G(F/F,) (topologically generated by,), let =, be the closed sub-
group of £ (topologically) generated by,’, and letl’o be the finite subgroup of
Autz (Ho(Tx, Z)) generated by, o. Then obviously the profinite groupy x X
acts continously on each term of (18), considered with the discrete topology.

Let H be the closed subgroup Df x X, (topologically) generated by, , =
F.o®o,. Let H, be the closed subgroup &f generated by}, = F,,®0,. Since
the actions off andG on Hy(Tx, Z) ® F* commute, (18) is an exact sequence of
H x G-modules.

We also have an exact sequence&’emodules

0 — cokerBr) — Pid(X); — Pid(X) — 0, (19)

which preserves the Frobenius action on each of its terms (see [17], Chapter V).
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Let ¢ be a prime number. Remark 3, Section 1.7.4 shows that the multiplication

by ¢ maps cokeiBr)[£" ] N coker8r)[£"] are surjective for every > 0.
The definition of Pi€(X1)7, combined with the weak approximation theorem for
valuations onK @, for all 0 < i < v — 1, easily implies that the natural maps
Pic°(X1)7[€"] — Pic®(X1)[¢"] are surjective as well, for every > 0. These two
facts show that (19) gives short exact sequence&s-ofodules

0 — cokerBr)[¢*] — Pid(X)r[£*°] — Pic(X)[¢*] — 0

20
0 — T,(cokerBr)) — T,(PiP(X)r) — T (Pic(X)) - 0 (20)

which are also Frobenius action preserving. (Hefié>] = ;- M{[¢1], for every
Z,-moduleM.) We will need two lemmas:
LEMMA 3.1.4. For every prime numbef we have the following:

(1) T.(Pic°(X)7) is a freeZ,-module of finite rank, an&ic’(X);[¢>°] is a divis-
ible Z,-module of finite corank. (i.e. isomorphic to a finite direct sum of copies
ofQ¢/Z,.)

(2) PIC(X)5* =5 Pid(X1); asZ[G]-modules, wher@i®(X);"* is the part of
Pic°(X) fixed byF, ;.

Proof. Statement (1) follows directly from the exact sequences (20) and Remark
3, Section 1.7.4.
(2) The fact thal‘F*“)0 = 1,x.z) iImplies that there is ai/ -isomorphism

Ho(X,2) @ F* — (Z - [X91® F*) X) Z[H]. (21)
Z[H,]

Shapiro’s Lemma and Hilbert's Theorem 90 imply therefore that, at the level of
Galois cohomology groups, we have

H (H,Ho(X,2Z) ® F*) — H(H,,Z - [X?1® F*)
=H(Z,,.F*) =0, (22)

fori =1, 2.
The fact thatH / H, is finite cyclic and (21) above imply that there are isomorph-
isms of G-modules
(Ho(X.2) @ F)" = (2 [X©1 @ F)™ = P = FX. (23)

In a similar fashion one can prove that

HY(H,Ho(Tx,Z) @ F*) = 0 (24)
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and that there is an isomorphism@¥fmodules

(Ho(Tx, 2) @ F*)" — @B Fpr(w)™. (25)

weTy

As a consequence of (22)—(25), the long exact sequeniecafhomology groups
associated to the short exact sequence (18) starts as

0 Fr > P Fp(w)* — (cokepr))” —

wETXl
—- 0— 0— H(H, cokerBr)) - 0— ---

This implies that we have the followinG-isomorphisms:

H(H, cokerfr)) =0 and

~ 26
cokenpr)’ — | @ Fpran* | /R (26)

weTxl

Let # be the subgroup of AutPic’(X1)7) generated by, 1. As we mentioned
above, the restriction df, ; to cokeKSr) via the injective morphism cokes;) —
Pic®(X1)r coincides withF, ,. This observation and (26) show that the short ex-
act sequence (19) gives a long exact sequenc#&-abhomology groups which

starts as 0> (cokel(Br)) 2 — PiC(X);** — Pid(X)F1 — 0.
We therefore have a commutative diagram with exact rows

0—— | P Frw) | /Fi -1 PIC(X)r 2+ PIC(Xy) —> 0

weTxl
ill io i3

0 —— (coker(Br)) 2 —— PI(X);™t — PIP(X)™* — 0,
(27)

wherei, andiz are the natural inclusions aridis the isomorphism in (26). We
already know that; andi; are isomorphisms (see comments at the beginning of
this section and (26) above, respectively). The snake lemma therefore implies that
i is an isomorphism as well, and this concludes the proof of (2). O

LEMMA 3.1.5. Let M be aZ[G]-module which has no nontrivia-torsion, let
f € Endy61(M), and{ a prime number such that

(1) M[¢°°]is a divisibleZ,-module of finite corank.
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5 oef

(2) M) = {m € M: f(m) = m} is finite.

Then there is an isomorphism Bf[G]-modules
M[e®Y — Tu(M)/(L— HTu(M).

Proof. Hypothesis (1) implies tha¥[£°°] is an injectiveZ ,-module and there-
fore there is an exact sequenceZef G]-modules:

0 — Hom(Q¢/Z,, M[£*°]) — Hom(Q,, M[£*°]) — Hom(Z,, M[£*]) — O.

The map(1l — f) restricted toM[¢>°] gives aZ,[G]-morphism of this exact se-
guence into itself:

0 - Hom(Q,/Z,, M[£*]) — Hom(Q¢, M[£*]) — Hom(Z,, M[£>]) — O

1= 1=z 1-1s3
0 — Hom(Q,/Z,, M[£*]) — Hom(Q,, M[£*]) — Hom(Z,, M[£*]) —0.

Hypothesis (2) implies thatl — ) is injective and(1 — f), is an isomorphism.
The snake lemma applied to the diagram above therefore gives:

ker(1— f); —> cokerl— f);. (28)

On the other hand, there are canonical isomorphisms (@fiZ,, M[(®]) —>
Hom(Q,/Z,, M) —> T.(M) and HomZ,, M[£*]) —> M[£*], which com-
bined with (28) conclude the proof of Lemma 3.1.5. O

We now return to the proof of Proposition 3.1.3. Lemma 3.1.4 and the finiteness
of Pid®(X1)7 (see the upper row of commutative diagram (27) and keep in mind
that Pié(X) is finite) imply that Pi€(X) together with its endomorphis, 1,

and any prime numbé, satisfy the hypotheses in Lemma 3.1.5. We therefore have
an isomorphism oZ ,[G]-modules

T(PiIC(X)r)/(1 — F. )T (PIC(X)r) — Pid(X1)r ® Zy, (29)

for any prime numbet. The exact sequence (20) gives a commutative diagram of
Z[G]-modules with exact rows

0 —> T.(cokenBr)) — T, (PiC(X);) — T,(Pic°(X)) — 0

(1-Fs ) (1-F 1)1 (1-Fi1)2

0 —> T.(cokenBr)) — T, (PiP(X);) — T,(Pic°(X)) — 0
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F*,l

The finiteness of PR¢X) ;! = Pid®(X1)7 and Pi€(X) -1 = Pic®(X,) respectively
implies that the mapdl—F., 1); and(1—F, 1), are both injective. The snake lemma
applied to the diagram above, and (29), give an exact sequeZe¢@f-modules

0 — cokerl— F,,) — Pid(X1);r ® Z, — cokenl — F, 1), — O.

Property (e) Section 1.4 implies that
FittZ{[G](COkEKl — F*’l)z) . FittzK[G](COkEI(l — F*)z)) -
€ Fittz,6;(PIC(X1)7 ® Zy). (30)

On the other hand, both,T(coker8;)) and T,(Pic°(X)) are freeZ,-modules,
and therefore projectivé,[G]-modules (see Remark 1, Section 1.3). An argument
similar to the one used in proving (17) shows that

de&([G](l - F*,2|T€(00k6|([3T))) € FittzK[G](COkEI(l — F2))
and (31)
detr,i61((1 — F )1l Te(Pic(X))) € Fittz,;6(cokenl — Fi.1)2).

According to (30) and (31) we can finally conclude that Proposition 3.1.3 istrue.

Proof of Theoren8.1.1. Let us consider a prinfesuch that gcd, g) = 1, and
the exact sequence @f[G]-modules

vs,1®1z,

PIC(X1)r ® Z; Asr ®Zy — coketys 1) ® Zg —= 0
(see diagram (21) for the definition ¢f; 7). Property (e) Section 1.4 implies that

Fittz,;6)(coken s 1) ® Z;) - Fittz,16(PIC(X1)r ® Z¢) <
C Fittz,161(As,r ® Zy). (32)

Stepl. Let us first suppose thét# p. Then Propositions 3.1.2 and 3.1.3, in
addition to (32) above, and Lemma 1.7.4.4 (1) foe= O (and therefore: = 1),
imply that

Os,7(0) = det, (1 — FiolTe(kerayg)) - det,g(1 — F, 1|H1(X, Zy)) x
x det,16)(1 — Fy 2| T,(cokenB))) € Fittz,61(As,7 @ Zy).

Step2. Let us suppose now théat= p, and gcdp, g) = 1. The first observation
we have to make is that,Tcoker(5r)) = 1 and therefore Proposition 3.1.3 implies
that

det,;61(1 — Fy.1| Hi(X, Z)) € Fittz,161(Pic®(X1)7 ® Z,,). (33)
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Proposition 3.1.2, (32) and (33) above, in addition to Lemma 1.7.4.4 (2) imply
therefore that

O5.7(0) = Q1) -det,i6/(1 — FiolT,(keray)) x
x detz,161((1 — Fi01lH1(X, Z))) € Fittz,161(As,r ® Z)).

According to Remark 1, Step 1 and Step 2 above conclude the proof of Theorem
3.1.1. O

3.2. ARBITRARY r

The following theorem shows that, for general Abelian extensions of function
fields, Conjecture B is true, up to primes dividing the order of the Galois group.

THEOREM 3.2.1. If the set of data(K/k, S, T, r) satisfies hypothese@d),
then

(1) There exists a unique elemesy; € Z[1/glAsr satisfying®{).(0) =
Ry (es.).
(2) The elements r above satisfiess 7 € Z[1/g]Fitt(As.7)As.7.

Proof. Let {vq, ..., v,} be the distinguished set efdistinct primes inS, which
split completely inK /k, and letSo = S \ {vs, ..., v,}. Then obviously the set of
data(K / k, So, T, 0) satisfies hypotheses (H). Theorem 3.1.1 implies@hgt; (0) €
Z[1/g]Fitt(As, 7). Corollary 2.2 (1), withS" = S andS = Sp, implies there-
fore that the elements ; satisfyingQ - S(K/k, S, T, r), also satisfiegsr €
Z[1/g]Fitt(As.7)As.r. This settles the proof of both (1) and (2) above, as the
uniqueness of r is a consequence of Remark 5, Section 1.6. O

COROLLARY 3.2.2 (Raw form of Gras’ Conjecture)The elements 7, whose
existence is proved in the Theor&®R.1, satisfies

Z[1/31[G] - es.r = Z[1/gIFitt(As.7) As.r = Fitt(As 1)(Z[1/g] A Us.r)r.s.

Proof. This is a direct consequence of Theorem 3.2.1 (2), Proposition 2.3 and
Lemma 1.5.3(1). O

In [13] it will become apparent that Corollary 3.2.2 implies Gras-type conjec-
tures for function fields.

4. Proof of a Stronger Form of Conjecture B for Constant Field Extensions

Throughout this sectiorK /k is a constant field extension of function fields of
characteristig.
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4.1. PRELIMINARY CONSIDERATIONS

LetF, andF,. be the exact fields of constantskaind K respectively. Then clearly
G(K/k) — G(F,»/F,) is cyclic of orderv, with a distinguished generator
o, satisfyingo (¢) = ¢4, for every¢ in F,v, and K /k is everywhere unrami-
fied. We remind the reader that for primesn k, andw in K, such thatw|v,
o, denotes the Frobenius morphismwfelative toK /k, d, = [F,(v): F,] and
d, = [Fg(w):F,v]. Simple arithmetic considerations show that = o®, that
there are precisely, = gcd(d,, v) primes inK lying abovev, and thati,, = d,/r,.
(This implies in particular that splits completely inK /k if and only if v|d,.)

LEMMA 4.1.1. For any prime numbet, there areZ,[G]-isomorphisms

(1) Ho(X,Z,) — Z,[G], which sends the action df..0 on Ho(X, Z,) into
multiplication byo ~! onZ,[G].

~ [ ZdG], if L #p,
2) Hy(X,Z .
(2) Ha( e)—>{0’ it 0 = p.
which sends the action df, , on Ha(X, Z,) into multiplication bygo 1 on

Z,G].

Z,[G%x, if £ # p,
Z,G]", if £ =p,
for some integer, 0 < n < 2gy.

(3) Hi(X,Zy) — {

Proof. Let us first notice that
Foo(lXPD) =0, 5(X"]), forevery0<i<v-—1. (34)

(1) We know that H(X, Z) is Z-free of basis{[X"]:0 < i < v — 1}, thatG
is cyclic of orderv and it permutes the elemerit& ] transitively. We have also
chosen the indicesso that[XV] = F! ,([X@]). (34) implies therefore that we
can define an isomorphism 8f G]-modules

Ho(X.Z) — Z[G], (35)

given by p([X?]) = o7, V0 < i < v — 1. Obviously, under this isomorphism,
the action ofF, o on the left corresponds to multiplication lay~* on the right.
Statement (1) in the lemma can now be obtained by tensoring (35¢with

(2) We already know (see Section 1.7.3) that there is an isomorphism

f
H.(X, Z,) — Ho(X, Z,) which takes the action of, , on the right-hand side
into the action of; F, o on the left-hand side. The m&p® 17,) o f gives therefore
aZ,[G]l-isomorphism satisfying the requirements in (2).
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(3) The fact thatG| = v and thatG permutes transitively and isomorphically
the v irreducible componentX @ of X, and therefore their corresponding Picard
groups Pi€(xX®), implies that there is an isomorphism DfG]-modules

Hi(X,Z) = @ PicO(XU'))L>Z[G]®Pic°(x(°>),
Z

o<i<v—1

with G acting trivially on Pi€(X©). Passing td-adic Tate modules, one obtains
the desired ,[G]-isomorphisms. O

4.2. THE r=0 CASE
Throughout this section we will assume that the set of dkték, S, T, 0) satisfies
hypotheses (H).
LEMMA 4.2.1. If u = ¢—*, we have the following:
(1) For any prime numbef # p
[TA— (e ™)

Os.r(u) =22

1—0"1w)
[1A - (go~tw)®)
UET(]_ _ (C]G_lu)) ’ de&z[G](l — Fo1-ulHi(X, Zy)).

(2) There exists a polynomi& (u) € Z,[G][u], such that

[TA- (@) [1A-(go " u)®)

. _VeS _vel
Os.7() = Q) A—-o0"1w) (1— (go~1u))

x det,6)(1 — Fi1-ulHi(X, Z))).

Proof. (1) Let ¢ # p be a prime number. The freeness of thg¥ Z,)'s as
Z,[G]-modules implied by Lemma 4.1.1, and Theorem 1.7.4.2, show that

O(s) = [] deti— Fui-ulHi(X. Z) V"™, (36)
0<ig2
for any prime numbet # p. Lemma 4.1.1 (1) and (2) and equality (36) give
det,(6)(1 — Fi1-ulHi(X, Zy))
O(s) = . : .
) AQ—o0"1lu)-(1—qgo1u)
On the other hand, sind€/ k is unramified everywhere, we have
Os.7(s) = ]_[(1 — o, INv™) - ]_[(1 — o, NV - O(s).

ves veT

(37)
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This equality and (37) give (1) in Lemma 4.2.1.
(2) This follows directly from (1) and Theorem 1.7.4.1 (3), with= 1 and

Q) = Qa(u). o

PROPOSITION 4.2.2Under the assumptions above, we have the following:

(1) ©5,7(0) € Fittzi6)(As,7) N Z[Glo,s.
(2) If £ is a prime number, such thgtd(¢, g) = 1, or gcd(¢, d,,) = 1, for some
w e Sk, then@Sj(O) € FittZ{[G](As)T X Zg) . Z([G]o’s.

Proof. Let us fix a primevy € § and letSy; = {vg}. Obviously the set of
data(K/k, S, T, 0) still satisfies hypotheses (H). (Recall th&f k is everywhere
unramified.) There is a surjective morphismAjiG]-modulesAs, r — As 7 (See
(9)), which gives & ([G]-surjectionAs, r ®Z, — Asr ®Z,, for everyl as above.
These imply that

Fittz(61(As,,r) S Fittzi6)(As,7),
Fittz,(61(Asy,r ® Z¢) € Fittz,161(As, 7 @ Zy)

(see Section 1.4(f)). These relations together with
Osr@= [ @=0,Y Og1(0),
veS\{vo}
and

]‘[ 1—0o,1Z[Glos, € Z[Glo.s,
veS\{vo}

imply that it is enough to prove the proposition above in the ¢8se= 1. From
now on we will assume that = {vg}, and we will fix a primewg € Sgx. We will
need three lemmas.

LEMMA 4.2.3. Let us consider th&[G]-moduleZ/d,,,Z with trivial G-action.
Then

1 — O—_dwo .
ﬁ € Flttz[G](Z/dwOZ).

Proof. SinceG acts trivially on

~dug

o
Z/dwOZ, ? € AnnZ[G](Z/dwOZ).

1—

On the other hand? /d,,,Z is a cyclicZ[G]-module, and therefore Section 1.4(a)
shows that Fitt;(Z /d,,Z) = Annz61(Z/dyZ). O
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LEMMA 4.2.4. For anyv € T, the following hold true:

(1) 1 — (go™™"™) € Fittzig) [ EP Fyr ()

wlv

(1—(qgo D% _ x x
(2) W € Flttz[(;] @qu(w) /qu y
wherquXv is embedded i®,,,F,» (w)* diagonally (x — @,,,(x modw)).

Proof. Let us fix a primewg in K, such thatwg|v. There is an isomorphism of
Z[G]-modules

PF, W) = Fpr(wo)* ) ZIGL,

wlv Z[Gy]

whereG, is the decomposition group of relative toK / k. SinceF . (wo)* is a
cyclic Z[G,]-module, both®,,, F,» (w)* and(@waqv(w)X)/F;\, areZ[G]-cyclic
and therefore their Fitting ideals ov&({G] are equal to theiZ[G]-annihilators
(see Section 1.4(a)).

(1) The equalityr, = o% implies that

1-— (QO'_l)dv € Annz[(;v](FqU(w)X) - Annz[G] @ Fqu(l,U)X

wlv

2 Letl = {v,v—1,...,v—r, +1}. Thenl{a"|i € I} is a set of coset rep-
resentatives for the quotiedt/G, and{wg'|i e I} = {wlwin K, wlv}. Let
Jjw: Fgv = Fgr(w)*, defined byj, (x) = x modw, for everyw|v.

One can easily show that
Jooi (@) =0 w1 Vi € I, Vx € F. (38)
Wo

We will identify F;\, with a subgroup of . (wo)*, via j,. If ¢ is a generator of
F,»(wo)* then, under this identification,

vdy /1y __ l
FX = (%), wherea = qi.

39
; o (39)

Relations (38) and (39) imply that the image of the composition of maps
@w\vjw

TR 25 P F ) — Fpwo)* Q) ZIG1 — o' - Fyr(we)™

wlv Z[Gy] iel
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satisfies the equality

Im() =13 6" c"" " "n e Z/(g" - DZ}. (40)

iel

Let us also observe thai;c;o' - F v (wo)* is generated oveZ[G] by the element
¢ having¢ = ¢'¢ in the component correspondingite= v, and 0 in all the other
components.

Letus consider the;“’-evaluation mapé,: Z[G,] — Z/(g%"/"*—1)Z, defined

by ¢, (3 50aj0.)) = 3 ;20aj(q™)’. The equalityg®(;) = 9" shows that if
a=),,0 o €Z[G],withe; € Z[G,],Vi € I, thena - =), , o' - ¢%@),
In light of these observations, equality (40) shows that:

Annz[(;] @ qu (w)>< /F;\, = AnnZ[G] (E)

wlv

= {Zoi -ajla; € Z[G,],dn € Z,

iel
by (o) =n - ag” " modg" /™ —1),Vi € 1}. (41)

One can write

1— —1ydy . .
1200 N a,

_ -1
1 q9 iel

whereA = % According to (41), in order to prove statement (2) in our

lemma, we would simply have to show thalip, (A) in Z/(g""/™ — 1)Z. This is
an easy consequence of the fact that(dcty,, v/r,) = 1 (see comments at the
beginning of Section 4.1). O

LEMMA 4.2.5. Let¢ be any prime number. Then
det,(6)(1 — Fi.1lH1(X, Z)) € Fittz,161(Pic°(X1) ® Z).

Proof. Lemma 3.1.5 applied t&/ = Pic°(X) and f = F, gives an exact
sequence af ,[G]-modules

0 — T,(PIC(X)) =2 T,(PIC(X)) — PIP(X,) ® Z, — O. (42)

(take into account that PieX): = Pic®(X;)). Lemma 4.1.1 (3) shows that
T.(Pid(X)) = Hi(X,Z,) is a freeZ,[G]-module, for every prime numbef.
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The exact sequence (42) gives therefore aZrd& ]-resolution of Pig(X;) ® Z,.
Lemma 4.2.5 is now a direct consequence of the definition of the Fitting ideal.

We are now ready to conclude the proof of Proposition 4.2.2.
(1) By definition,®; 7 (0) € Z[G]o,s, and therefore all we have to prove is that
Os.7(0) € Fittz(As.7) which, according to Section 1.4(c), is equivalent to

®S,T(O) € FittzK[G](As)T (029 Zg), \42 prime

Let us fix a prime numbet. We will refer again to commutative diagram (11).
With the same notations, we have an exact sequenZ€®f-modules

PIP(X;) X+ Ag — cokenyrs) — O, (43)

and cokefps) —> cokenys) asZ[G]-modules. The only difference is that, in
our situation, due to the fact that = {vo}, d,, = d,, for anyw e Sx. We

therefore have @[G]-isomorphism cokerpg) N Z/d,,Z, which gives &[G]-
isomorphism

cokel(ys) — Z/dy,Z, (44)

with G acting trivially onZ/d,,,Z. Lemmas 4.2.3 and 4.2.5, in addition to exact
sequence (43) and property (e), Section 1.4, imply that

1 — O—_dwo .
1o 1 det,6)(1 — Fi1lH1(X, Zy)) € Fittz,(61(As ® Zy). (45)

Letus fixaprimevy € T and letTy = {vr}. We have the following exact sequences
of Z[G]-modules:

0— @Fq”(w)x /WUs/Us 1) = As 1, — As — O,

wlvr

PFy) |/ > | B Fp@)* | /(Us/Us.z) — O.

wlvr wlvr

(The first exact sequence above is another way of writing (1), Wits Ty, and
the second one is a consequence of the obvious inje€fior> Us/Us r,.) These
exact sequences combined with (45), Lemma 4.2.4 (2) and Section 1.4(e), imply
that

1—o0 %0 1— (goHdr

1-01 1-—got

xdet,6)(1 — F, 1|H1(X, Zy)) € Fittz,161(As, 1, ® Zy). (46)
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And finally, in order to pass fronTy to T, let us consider the following exact
sequences d[G]-modules

0— GB For(w)* | /(Us,i\1y/Us.1) = As.r — As.zy = 0,

we(T\To)k

P Frw |- @ Fe@*|/Usrn/Uss) — 0.

we(T\To)x we(T\To)x

These exact sequences, combined with (46), Lemma 4.2.4 (1) and Section 1.4(e),

imply
1— —1\d,
1— oo UE[T (qo™)
. X
1-0-1 1-—got
xdet,g)(1 — F, 1|H1(X, Zy)) € Fittz,16/(As,r ® Zy). (47)

Let us denote byl the left-hand side of (47). Lemma 4.2.1, with= 0 (and
thereforeu = 1), implies that

1—o .
W'aﬁ, |f£7£p,

'0

O5,r(0) = (48)

1—o0 .

Sinced,,, = d,/r, andQ(1) € Z,[G], (47) together with (48) show that

Os,7(0) € Fittz,161(As,r ® Zy),

for every prime number. This, as we remarked earlier, concludes the proof of
Proposition 4.2.2 (1).

(2) Let¢ be a prime number as in Proposition 4.2.2 (2). Let us first notice that,
if gcd(Z, g) = 1, then (2) is a direct consequence of (1). Indeed, in this situation

ZGl= € Dy. ZIGls= P Dy,
veG(Qo) veG(Qr.0)

which, together with Fit,(6)(As,r ® Z¢) = @y Fittp, (As.r ® Dy ), imply that
Fittz,161(As,1 ® Z¢) - Z¢[Glo,s = Fittz,161(As, 7 ® Z¢) N Z4[Glos.

Let us then suppose thélg and gcd’, 4,,,) = 1. With notations as in the proof of
(1), this implies that

cokenys) ® Z, = 0. (49)
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The exact sequence (43) and Lemma 4.2.5 imply that (45) can be rewritten as

det,;61(1 — F, 1|H1(X, Zy)) € Fittz,16)(As ® Z),
which shows that in (45)—-(47) above, the facﬂq% is not needed anymore.
(47) and (48) therefore imply that

l—0%
Os5,7(0) € 1 o1 Fittz,(61(As,r ® Z). (50)

On the other hand=2— € Z[Glo 5. Indeed, ify € G(C)\ G(C,0), theny # 1
and x(o,) = 1 (see (3) and take into account tHat = 1.) This implies that

x(ll’_‘;:df = 0, which proves our assertion. This fact together with (50) imply
Proposition 4.2.2 (2). O

Our next goal is the proof of the following:

PROPOSITION 4.2.6Let¢ be a prime number, such thétg, and¢|d,,, for every
w e Sg. Then@S,T(O) S Fittzl[c](As,T ®Zy) - Zi[Glo.s-

An argument similar to the one given at the beginning of the proof of Proposi-
tion 4.2.2 shows that it is enough to prove this statement in the|Sase 1. We
therefore assume that = {vg}, and fixwg € Sk. In what follows,C, denotes
a completion of the algebraic closure @f with respect to the-adic valuation.
W denotes a finite ring-extension &f;, inside C,, containing the values of all
x € G(Cy). We will extend scalars t& and prove Proposition 4.2.6 insidé[G].

Let£™ be the exact power dfdividing ¢ = |G|. Let L be theZ-Sylow subgroup
of G. There is a decompositiofi = A x L, whereA is the maximal subgroup of
G, satisfying gcdt, |A]) = 1. LetK; andK » be the maximal subfields & fixed
by L andA respectively. Lef. = G(KA/k) andA = G(K /k). Restriction maps
give isomorphism&\ —> A andL —> L.

Remarkl. Due tod,, = d,/9cdd,, g), the fact that’|d,,, implies that¢™|d,,
and therefore splits completely ik, (see Section 4.1). This implies thate A.
Let us consider the decomposm(ﬂicg) = A(C() X L(Cg) and lety, § andx de-
note generic elements Gf(Cg) A(Cy) andL(Cg) respectively. We can therefore
conclude that a character= (3, 1) belongs td;(Cg, 0) if and only if §(o,) # 1,
orxy =15 (i.e.8 = 15 andx = 1;) (see (3)).

Since gcd¢, |A|) = 1, we can decompose the group rilifG] into its §-
components:

@ B
5eA(Cy)

WIG] = WIA][L]

P wilLl,

8€A(Cy)
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whereWs = W ands(Q_,cp re @%0.00T) = D _1c1 (D pen Go.:8(0)) - T, fOr every
§ € A(Cy). According to Remark 1 above, this induces an isomorphism

WiGlos — | @ WilLl| E Wa, - V..
8(ov)#1

whereN, = )" __, o. We thus have & [G]-isomorphism

WI[Glo,s - Fittwg)(As,r @ W)

~

— | P Fittw,i1(As.r ® W)° | @D Fittwizi(As.r @ W)™ - Np.
8(ov)#1

This implies that, in order to prov@; 7 (0) € W[Glo.s - Fittyg)(As.r ® W), itis
necessary and sufficient to show the following:

(i) If 8(0,) = 1,8 # 1y, thens (@ 7(0)) = 0.
(ii) If 8(0,) # 1, thens (®.7(0)) € Fitty,11(As.r ® W)P.
(i) 1A(®5.7(0)) € Fitty1(As.r ® W)2 - Np.

Assertions (i) and (ii) above are direct consequences of Proposition 4.2.2 (1),
after extending scalars t%. Therefore, in order to prove Proposition 4.2.6, one
has to prove (iii) above.

Proof of Proposition4.2.6. In the following arguments, ¥ is an intermedi-
ate field of K /k, then Ar s denotes ity S, T')-ideal class group, as defined in

Section 1.1.
The fact tha®g 7 (s) € W[G]o,s, combined with the class-number formula (2),
implies that
N |Ak,s,7l
12(05,7(0) = &.5.7(0) - |_LL| = |"LS|T - Ny.

Via the isomorphisnmW[L] —> W[L], we can therefore say that insi[L]

|Aks.rl
[L|

1 (©5,7(0) = NL, (51)

whereN; = ) _; 0. The fact that gc, |[A|) = 1, combined with a standard
class-field theoretical argument based on the class-field interpretation of the groups
Ar s.r (see Section 1.1), implies that we have an isomorphisi [d@f ]-modules

(As.r ® W)A — Ag,.sT @ W.
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This obviously implies that
Fitty 7, (As.r ® W)* = Fittyz,(Ak,.5.0 @ W). (52)

Equalities (51) and (52) above show that (iii) would be a consequence (after ex-
tending scalars t&V) of the following

LEMMA 4.2.7. With notations as above,

|Ak.s.7] :
|ZS|T - N € Fitty;,(Aky s.7) - Ni.

Proof. Let us consider the exact sequence
0— I; > Z[L] = Z — 0,

where s}, .;a, - 0) = Y . ja,, for every>  _;a, -0 € Z[L], and
I; = ker(s).

Obviously I; = Anng;,(N;), and therefore the statement in Lemma 4.2.7 is
equivalent to

|Ak.s,7] .
|ZS|T € s(Fitty71(Agy.5.7))-

On the other hand, properties (b) and (f), Section 1.4 imply that
s(Fitty;1(Ak,.s.7)) = Fittz(Ak, 5.7/ 11 Aka.5.7) = Ak a5,/ I Ak s.s.7] - Z.
The statement in Lemma 4.2.7 is therefore equivalent to

| Ak s.7l
[L|

|AKA,S,T/II:AKA,S,T|

The next lemma shows that something even stronger holds true.
LEMMA 4.2.8. With notations as above,

[Ax s 7l
|Akys.7/If Ak, 5.7l = i

Proof. Let K 5.7 andkg 7 be the(S, T)-ray class-fields ok, andk respect-
ively. We remind the reader that these are the maximal Abelian extensidiig of
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andk respectively, which are tamely ramified at primes ab®vand unramified
outsideT', and in which all primes it$ split completely (see class-field theoretical
interpretation ofAs r in Section 1.1). The corresponding Artin reciprocity maps
give the following group isomorphisms:

Ak, 5T — G(Ka 5,7/Kn), (53)
Apsr — Gksr/k). (54)

The maximality ofK s s 7, the fact thatg splits completely inK, (see Remark
1), and thatK » /k is everywhere unramified, imply th&, € Ks7 € Kas.r
and thatK x s r/k is Galois. Letg = G(K s.r/k). We have an exact sequence of
groups

1— G(Kasr/Kp) = §—L— 1 (55)

SinceG (K s.7/K ) is Abelian, L acts on it by (lift and) conjugation and this way
(53) becomes an isomorphism DfL]-modules.

Let [4, 4] denote the group theoretical commutatorgofThe maximality of
ks.7 implies that

[, 3] = G(Ka s,7/ks.T). (56)

An easy group theoretical argument, based on the exact sequence (55) and on
the fact thatL is cyclic, shows thafg, ] is generated by elements of the form
v’ L withy € G(Kasr/Kp) ando € L. On the other hand, the ided} is
generated oveZ by elements of the forra — 1. This observation and (56) imply

that, under the Artin isomorphism (53), we haye A, s.r N G(Kas1/ksT).

We therefore have the equalities

|G(Ka s1/Ka)l  |Glksr/K)| 1A s 7]
|G(Ka.s.m/ks.T)l [L] IL|

|AKA,S,T/I[:AKA,S,T| =

This concludes the proof of Lemma 4.2.8, Lemma 4.2.7 and Proposition 42.6.
THEOREM 4.2.9. Let K/ k be a finite constant field extension of function fields,
and let us suppose that the set of dekg/ k, S, T, 0) satisfies hypotheses (H). Then
Os 7(0) € Fittzi6)(As,7) - Z[Glos.
Proof. This statement is obviously equivalent to
Os,7(0) € Fittz,161(As,r ® Z¢) - Z¢[Glos, VEprime,

which follows from Propositions 4.2.2(2) and 4.2.6 above. O
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4.3. ARBITRARY r

THEOREM 4.3.1. Let K/ k be a finite constant field extension of function fields,
and let us suppose that the set of da#/k, S, T, r) satisfies hypotheses (H).
Then there exists a unique elemeg € Z[G], s - (A"Us.r), such tha®g 7(0) =

Ry (&s.7).

Proof. Let {vq, ..., v.} be the distinguished set efdistinct primes inS, which
split completely inK /k. Let Sg = S\ {v1, ..., v,}. The set of dat&K / k, Sy, T, 0)
satisfies hypotheses (H) as well. Theorem 4.2.9 therefore implie®)at(0)
Fittzi61(As,. 1) - Z[Glos,- The statement in Theorem 4.3.1 is now a direct con-
sequence of the relation above, and Corollary 2.2 (2), Wits S andS = Sp. O

Remark. The inclusionZ[G],.s - (/r\ Us.t) € Ay 7, shows that Theorem 4.2.9
settles Conjecture B, for arbitrary under the assumption th&t/k is a constant
field extension. The inclusion above is strict in most cases, and therefore Theorem
4.2.9 provides a refinement of Conjecture B, under the present assumptions.

Appendix

The goal of this appendix is the proof of Theorem 1.7.4.1. With notations as in
Section 1.7, let us recall that, for any prime numbgand any; = 0, 1, 2,

Po(u) £ dety,16)(1 — Foi - ulH: (X, Q).

where H(X, Q,) is theith £-adic homology group with coefficients @,, defined
in Section 1.7. The statement we would like to prove is the following:

THEOREM. Foranyi =0, 1, 2:

(1) P ,(u) € Z,[1/gl[G][u], and if¢ # p, thenP;, € Z[1/g][G][ul].

(2) If ¢ # p, thenP; ,(u) does not depend oh Let P;(u) =qet P;¢ (1), for any
¢ # p. Then:

(3) There exist polynomial®; (v) € Z,[1/g1[G][u] such thatP; (u) = P; ,(u) -
0i(u).

(4) If K/k is a constant field extension, théh(u) € Z,[G][u].

Before proceeding to the proof of the Theorem above, we need to summarize a
few considerations made in [17], Chapter V, on the Stickelberger funéti@.

Let|Y:| be the set of closed points of thg-schemey;. These are in one-to-one
correspondence with the primef the base field. For everyv € |Y1], let I, be
its inertia group inG, leto, € G,/I, be its Frobenius class, and let

ger 1
A

> 7t e Z[1/81IG].

TED,
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Then, ifu = ¢~*, we have the following equality

Ow) = [] @-F,-u") e 1+ uZ[1/g1[GII[u]l, (@l)

velYy|
valid for |u| < ¢~ (which corresponds to Re) > 1).

Remarkl. Let us observe that, K /k is a constant field extension, theh| =
1, and thereford”, € Z[G], for everyv € |Y;|. Equality (a.1) therefore shows that,
under the present hypothesis,

O(u) € Z[G][[u]l. (a2)

For everyv € |Y1], let X, be the finite set of closed points of tlkescheme
X abovev, and let B(X,, Q) be theQ-vector space generated b, with the
obviousG-action andg-power geometric Frobenius morphism actibn Lemma
2.1in[17], Chapter V, shows that

1— Fu™%% = detg6y(1 — F, - ulHo(X,, Q)), Vv € |Yy|.

If we combine these equalities with (a.1), we obtain

O@) = [ ] detye)(1 - F. - ulHo(X,. Q)). @3)

velYy|
We are now prepared to prove (1) and (2) in the Theorem above.
Proof of (1). Since H(X, Z ) is a freeZ ,-module,
Hi (X, Z,[1/gD) = Hi(X, Z,) ® Z,[1/g]
is a projectiveZ ,[1/g][G]-module (see Remark 1, Section 1.3), and therefore
P p(u) = de 11/¢161(1 — FiilHi (X, Z,[1/g]) € Z,[1/g][G]lu].

Let ¢ # p be a prime number. SincegHX, Z[1/g]) is Z[1/g][G]-projective
and H(X, Q¢) = Ho(X, Z[1/g]) ®zj1/¢) Qe, We have the equality

Po ¢ (u) = det1/0161(1 — Fio - ulHo(X, Z[1/g])). (a4)

This obviously implies thaPy , € Z[1/g][G][u].
TheQ,[G]-isomorphism H(X, Q,) —> Ho(X, Q,), carrying the action oF, »
into the action of; F, o (see Section 1.7.3), gives the equality

P; o (u) = dety,i61(1 — g Fy 0 - ulHo(X, Qp)), (ab5)
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which, according to the remarks above, implies that
P o (u) = det1/4)61(1 — g Fy0 - u|Ho(X, Z[1/g])). (a6)

The last equality obviously shows thBs ,(«) € Z[1/g][G][u].
Theorem 1.7.4.2 shows that

Pyo(u) =O) - Poe(u) - Poy(u) @7)

and since®u) € Z[1/gl[G][[«]] (see (a.l)), we obviously hav®;, €
Z[1/g1[G][u] as well. O

Proof of (2). Equalities (a.4) and (a.6) obviously show tfat (1) and Py ,(u)
do not depend oA, ¢ # p. Equality (a.7) therefore shows th8t ,(«) is independ-
ent of¢, £ £ p, as well. O

Before proceeding to the proof of statements (3) and (4) in the Theorem above,
we will need to make a few considerations on ghadic étale and the crystalline
cohomology groups oX.

Let #(X) = ®;—0.1.2H'(X) be either the/-adic étale cohomology aof with
coefficients inC, ®;—0.1.2H (X, Cy), £ # p, or the crystalline cohomology of
with coefficients inC,, EBi:o,l,sz:ris(X, C,). HereC, denotes the completion of
the algebraic closure @, with respect to the extension of the normalizeddic
valuation, for any prime numbet. The definition of H(X, C,) is H' (X, C,) =
H (X, Z¢) @, Ce, where H(X, Z,) = H;(X, Zy)* (functorial dual), for alli =
0,1, 2, and every # p (see [10]).

Let W(F) be the Witt vector ring of. Then H, (X, C,) =qet H.;s(X/ W (F))
Qw Cp. where H(X/W(F)) are finitely generatedv (F))-modules, func-
torial in the pairX /F. For a precise definition of the module$ X/ W (F)) the
reader can consult [1] and [2]. We will not need it for the present considerations.

In what followsK will denote eitherC, or C,, (¢ # p), depending on which
cohomology theory is being used. The correspondentes- #'(X) are con-
travariant functors from the category of smooth, projeciivechemes, to the cat-
egory of K-vector spaces. For every morphism fschemesf: X — X', we

will denote by f* the K-linear maps#'(X’) D, H'(X), induced by f

at the level of cohomology. In particular, evesy € G induces an isomorph-
ism of F-schemesry: X — X, and therefore isomorphisms &f-vector spaces
o5 H(X) — H'(X). We can define an action 6f on 7 (X) by settingo - h =qes
(03)7Y(h), for all o € G andh € #(X). This way the étale cohomology groups
Hi(X, C,) are dual as Galois modules to the homoIoAgy groupsxHC,) defined

in Section 1.7.4. In particular, for any charactere G(C,) we haveC,-linear
isomorphisms

1

H' (X, C)* —> Hi(X,Cp)* ™, (a8)
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carrying the actionF* of the g-power geometric Frobenius morphism on the left
hand-side into its actio#, ; on the right-hand side.

Let P, (u) =ger detk(1 — F* - u|#'(X)). Theorem 1 in [8] shows that the
polynomialsP, () do not depend on the cohomology thed#(X ), and therefore
we can make the notatioft’ (1) = Pi,(u), for alli = 0,1, 2. The polynomials
P'(u) have coefficients i and their reciprocal root&y;;} are algebraic integers,
satisfying the relations

lovij| = q'%, (@9)

foralli = 0,1,2, and allj = 1,...,dimg# (X) (see [8]). Relation (a.9) is
the dimension 1 case of Riemann’s Hypothesis, proved by Deligne for smooth,
projectiveF,-varieties of any dimension.

Let PLY (u) = det(1— F* - u| 7' (X)*), foralli =0, 1,2, andy € G(K). We
obviously have the relations

Piay= ] Py, (a.10)

x€G(K)
for everyi =0, 1, 2, and every cohomology theosf (X) in our list.

Remark2. Relations (a.9) and (a.10) imply that for a given cohomology theory
J(X) and a givery < G(K), the polynomlaIsP’ *(u) have mutually disjoint sets
of roots, for distinct values af.

Our next goal is to prove the following:

PROPOSITION A.1.The ponnomialsD;;,X (u) do not depend on the cohomology
theory # (X).

Before proceeding to proving the statement above, we need an elementary lemma
and a few remarks.

LEMMA A.2. If V is a finitely generated)[G]-module, andf € Endyc(V),
then

(1) Troa1(f: V) =1/ e Trolo 1 f3 V) 0.
(2) Tre(f; (VRK)) =1/g >, .o Trr(c 1 f; VRK)-x(0), forall x € G(K).

Proof. See [17], Chapter V, Lemma 2.6. O
In what follows we will freely use the mutually inverse isomorphisms

Io

1+ uQ[G][[u]l]l == uQIlglIl

exp
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and also the identity

log dety g (1 — f - ulV) = — ZTrQ[G](f"; V)-u"/n, (all)

n=1

foranyV and f as in Lemma A.2 (see [17], Chapter V).
Any cohomology theory# (X) in the list above satisfies the following form of
the Lefschetz fixed point formula:

THEOREM A.3. Let f: X — X be a morphism ofF-schemes, with isolated,
multiplicity 1 fixed points. LetA(f, X) be the number of fixed points ¢f Then

ACS X)) = 3012 Tr(f*5 H'(X)).

For a proof of the theorem above in the case of étale cohomology, the reader
can consult [10]. The case of crystalline cohomology is treated in [1] and [2]. We
now recall the definition of a fixed point of multiplicity 1 (see [7], Appendix C).

DEFINITION A.4. A closed pointx € X, fixed by f, has multiplicity 1 if the

mapQy ., Adfy Qx ., induced byf at the level of thec-germQy , of the sheaf
of differentialsQy of X, is injective.
We are now prepared to prove Proposition A.1.

Proof of PropositionA.1 (Compare [17], Chapter V, Theorem 2.5). According
to (a.3) and (a.11), we have

log®@) = log dety; (1 - F, - u[Ho(X,, Q)

ve|Y|
= ZTFQ[G](Ff; Ho(Xy, Q) - u"/n.

Lemma A.2 (1) shows that
Troe)(Fl's Ho(X,, Q) = 1/gTrq(o, 'F}'s Ho(X,, Q).

But sinceo1F" acts on H(X,, Q) by simply permuting the points af,, we
also have the relation §fo, *F"; Ho(X,, Q)) = A(a;lF"; X,), where the left-
hand side in the last equality represents the number of fixed poira:tg]tﬁ”m.
This implies that lo@®@ @) = 1/g Zv)nﬂA(a;lF"; X,) - o - u"/n, and since
X = U,epy, X, We obtain logd (u) = 1/gY", , Aoy 'F"; X) - o - u"/n, where
A(ox'F"; X) is the number of fixed points of tiescheme morphism; 1 F”: X —
X, foralln > 1.

Letx € X be a point fixed by ;' F”, for somen > 1. One can easily show that
x is isolated (dimX = 1), and that it has multiplicity 1, in the sense of Definition
A.4. We are therefore entitled to use Theorem A.3 in order to compute the numbers
A(ogtF"; X), foralln > 1. We thus have
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logO) = 1/g Y (~1)'Tre((ox ' F")"s #' (X)) -0 -u" /n

= 1/g Z(—l)"TrK(aF*"; H (X)) o -u"/n.
This implies that, for any € G(K), we have
logL(u, x) = log(x '®)) = x *(log ® (u))

= 1/g Y (=D Trx(e *F™"; A (X)) - x(o)u" /n.

n,o,i

Let us now combine the last equality with (a.11) and with Lemma A.2 (2), for
V = #(X)and f = F**. We obtain

log L(u, x) = Y (=1 Tre(F*"; 3 (X)") - u" /n

= Z(—l)"“log det (1 — F* - u; #' (X))

= log ]_[ detg(1 — F* - u; H! (X)X)(_l)i+1i|

1

= log ]_[P;;,X(u)<—1>"“]

And now, by taking exp of both sides of the last equality, we obfain, x) =
I, P;;X(u)(*)’“, for all x and #(X) as above. This shows that the product
[T, Pi ()Y does not depend on the cohomology thedfyX). Remark 2

therefore shows that the individual polynomi&t§X (1) do not depend ot (X),
which concludes the proof of Proposition A.1. O

Let us make the notatio®* () = P}*(u), foralli = 0,1,2, x € G, and
some cohomology theorgf (X) in our list. The isomorphism (a.8) shows that, for
all prime numbers # p, we haveP'*(u) = det,(1 — F., - u|H;(X, C()X_l).
Thus, for alli andy as above, we have

Pi(u) = Y P (u)- ey
X

= > det,(1— F* - ulHyo(X, Cp)%) - eyt (a.12)
X
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Let L be a local field of characteristic 0, 1&t be a finitely generated.[G]-
module and letf € End, (V). We have a (unique up to aun f]-isomorphism)
splitting of V as a finite direct sum af[G]-submodules

V=EPLIf v (a.13)

jelJ

whereL[ f] - v; are cyclicL[ f]-modules, isomorphic ta[u]/(g;(u)), with g; (u)
powers of irreducible polynomials, satisfying det- f|V) = ]_[jej q;(u). We
will denote byJy the subset off consisting of those indices such that the roots
of ¢;(u) in an algebraic closurg of L have valuation 0. Let

Vo=@ Lif1v;,  Vi=@Lif1-vy

Jj€Jo J€Jo

Since f is G-invariant, we have a direct sum decomposition/g{z]-modules
V = Vo @ V4, thus the following divisibility holds inL[G][u]:

detgi(1— f - ulVo)ldet, g1 (1— f - ulV). (a.14)

We will apply the general remarks above to a situation involving the étale and
crystalline cohomology groups df, described in [3], Section 3, and which we
briefly now summarize. LeL be the quotient field of the Witt vector ring (F)
and let H, (X, L) =qef HLis(X/ W (F)) Qw L. be the crystalline cohomology
group of X with coefficients inL.

Let H(X,Q,) be the étale cohomology groups af with coefficients in
Q,, defined by H(X,Q,) = H;(X,Q,)* (functorial dual). Let H(X, C,) =gef
Hi(X, Q,,)@Qp C,. As in the casel # p explained in detail above, we have
C,-linear isomorphisms

Hi(X,C,)* — H;(X,C,)* ', VxeG,
preserving the action of thgpower geometric Frobenius morphism, thus
Pip(u) = Y det,(1— Fu; - ulH:(X,C,)") - e
X

= > det,(1— F*-ulH(X,C))*) - e,-1,¥i =0,1,2.  (a.15)

X

There is an exact sequence@f[G]-modules (see [3], Theorem 3.2)
0— H'(X.Q,) 1+ Hi(X, L) —% Hi(X.L) — O,

cris cris

where¢ is the map induced at the cohomology level by g@ower geometric
Frobenius morphism ok (viewed as arkF,-scheme), and the injective morphism
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jiH (X, Q,) — HL.(X, L) preserves the action af* on both sides (see [3],
Lemma 3.3).

Let H. (X, L) = HL (X, L)o ® HL, (X, L), be the decomposition described
above forv = H., (X, L) and f = F*. Then the proof of Lemma 3.3 in [3] shows
that H.,(X, L)o and H,,((X, L) are¢-stable,j (H' (X, Q,)) € HL. (X, L)o, and
via j we have an equality df[G]-modules H,, (X, L)o = H' (X, Q,) ®Qp L.Ob-
viously this last equality can be written a§ KX, L)o = H (X, Q,) X, 161 LIG]-
This shows that

detg,(6)(1 — F* - u|H (X, Q,)) = detyg)(1 — F* - u|H};((X, L)o),
which, according to (a.14), implies that, insi@g[G][u], we have
det,i61(1— F* - ulH' (X, C,))|det, 161 (1 — F* - ulH(X, Cp)).

If we break the last divisibility intgy-components, we obtain the following divis-
ibilities in C,[u]:

detc, (1 — F* - ulH (X, C,)")|det, (1 — F* - u|Hi (X, C,)Y), Vx €G.
According to (a.12) and (a.15), these relations imply that there exist polynomials
Qi(u) € C,[G][u] such that

Pi(u)=0;wm)- P ,wm), Vi=012

In order to prove statements (3) and (4) in our theorem, we will just need to show
that Q;(u) € Z,[1/gl[Gll«] and that, in the case wheki/k is a constant field
extension,Q; (u) € Z,[G][u]. These statements will easily follow from the next
elementary lemma.

LEMMA A.5. LetS C R be two commutative rings with Letu be a variable
and let f(u) € S[ul, g(w) € S[u] andh(u) € R[u], such thatg(0) = 1, and
fw) = g) - h(u). Thenh(u) € S[u] as well.

Proof. Let f(u) = Zi>0ﬁui, gu) = Zl}ogiui, andh(u) = Zi>0hiui,
with f;,g; € S, h; € R andgg = 1. The hypotheses of our lemma imply that
ho = foand f1 = gihg + h1. Since fo, f1, g1 € S, these equalities imply that
ho, h1 € S. Let us suppose thdty, h1,...,h; € S, for 0 < s < degh) — 1.
We have a relationf;; 1 = hyy1 + (hygr + hg_182 + ---), which shows that
hsy1 = for1 — (hygr + hy_182 + -+ -). The induction hypothesis now shows that
hgi1 € S. O

We are now ready to conclude the proof of Theorem 1.7.4.1 (3) and (4).

Proof of (3). According to (1) and (2) in our Theorem, the desired statement
follows from Lemma A.5 applied t¢f (u) = P;(u), g(u) = P; ,(u), h(u) = Q;(u),
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S =27,[1/gllGllu] andR = C,[G][u]. O

Proof of (4). Let K/k be a finite, constant field extension of function fields.
Remark 1 above shows that

O ) € Z[G][[u]]. (a.16)
The proof of Lemma 4.2.1 shows that
Pow) =1—0"tu € Z[G][ul, Po(u) =1—go~tu € Z[G][u],

whereo is the distinguished generator @fdescribed in Section 4.1. According to
(a.7) and (a.16), we therefore have

Piu) € Z[Gllul, Vi=0,1,2 (a.17)

Since the K(X, Z,)'s are freeZ ,[G]-modules in the constant field extension case
(see Lemma 4.1.1), we also have

P, ,(u) = det,i6)/(1 — F,-ulH;(X,Z),)) € Z,[G]u], Vi=0,1,2(a.18)

According to (a.17) and (a.18), statement (4) in our Theorem follows from
Lemma A.5 applied tof (u) = P;(u), gw) = P, ,(w), h(w) = Qi(w), S =
Z,[Gllu] andR = C,[G][u]. O
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