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Abstract

Let T be a finite simple group of Lie type in characteristic p, and let S be a Sylow subgroup of T with
maximal order. It is well known that S is a Sylow p-subgroup except for an explicit list of exceptions
and that S is always ‘large’ in the sense that |T |1/3 < |S | 6 |T |1/2. One might anticipate that, moreover, the
Sylow r-subgroups of T with r , p are usually significantly smaller than S . We verify this hypothesis by
proving that, for every T and every prime divisor r of |T | with r , p, the order of the Sylow r-subgroup
of T is at most |T |2blogr(4(`+1)r)c/` = |T |O(logr(`)/`), where ` is the Lie rank of T .
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1. Introduction

Given a finite simple group T of Lie type, it is natural to ask: what is the order of
the largest Sylow subgroup of T? This question dates back to at least 1955 and the
articles [1, 2] of Artin, who showed that if T is a classical group in characteristic p and
S is a Sylow subgroup of T with maximal order, then S is a Sylow p-subgroup of T
unless

◦ T � PSL(2, p) with p a Mersenne prime,
◦ T � PSL(2, r − 1) with r a Fermat prime,
◦ T � PSL(2, 8), T � PSU(3, 3) or T � PSU(4, 2).

In these cases, S is a Sylow s-subgroup with s = 2, r, 3, 2 or 3, respectively.
Artin’s investigations were extended by Kimmerle et al. [8] in 1990 to the cases
where T has exceptional Lie type, with the conclusion that S is always a Sylow p-
subgroup. Moreover, as one immediately observes upon inspecting the order formulae
for the finite simple groups of Lie type [5, Table 6], S is always ‘large’ (in both the
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classical and the exceptional cases) in the sense that |S | > |T |c for some constant c.
Indeed one can take c = 1/3 by [8, Theorem 3.5]. (On the other hand, |S | 6 |T |1/2

by [8, Theorem 3.6].)
With the aforementioned question settled, it is natural to ask: how large are

the other Sylow subgroups of T? Buekenhout [3] approached this question by
investigating the ratios ai = log(pn1

1 )/ log(pni
i ) in the prime factorisation |T | =

∏s
i=1 pni

i ,
where the labelling is such that pn1

1 > pn2
2 > · · · > pns

s . Specifically, he asked when
ai 6 log(3)/ log(2), calling the corresponding primes pi good contributors to the order
of T and explaining that the choice of constant log(3)/ log(2) was in some sense
arbitrary but motivated by computational evidence and applications in geometry. The
conclusion was that if T does not have Lie type A1, A2 or 2A2, then |T | has at most
one good contributor. More precisely, only 21 such groups have a good contributor
r distinct from the characteristic; in all of these cases, r 6 5 by [3, Theorem 4.1].
The cases where T has type A1, A2 or 2A2 produce many further examples, and
these were left open. In addition to having geometric applications as alluded to in [3],
Buekenhout’s result has also recently been used to study certain profinite groups [4].

The purpose of this note is to prove the following result.

Theorem 1.1. Let q be a prime power and let T = T (q) be a finite simple group of Lie
type, as listed Table 1. Let r be a prime dividing |T | but not q and let R be a Sylow r-
subgroup of T . Then, for K and M as in Table 1, we have |R| 6 |T |(blogr(M)c+1)/K , except
in the cases listed in the final column of the table.

Remark 1.2.

(i) The conditions listed in the fifth column of Table 1 mitigate occurrences of
isomorphisms between groups in different rows. In particular, observe that
G2(2) � 2A2(3).2, 2G2(3) � A1(8).3 and that 2B2(2) is solvable. Note also that
we include the Tits group 2F4(2)′ in Theorem 1.1.

(ii) It follows from Table 1 that, for all T , we have K > `/2 and M 6 4(` + 1), where
` is the Lie rank of T as in [9, Tables 5.1.A and 5.1.B]. The upper bound on |R|
given in Theorem 1.1 therefore implies the bound |R| 6 |T |2blogr(4(`+1)r)c/` claimed
in the Abstract.

(iii) Theorem 1.1 may be viewed as a refinement of [3, Theorem 4.1], in the following
sense. Let S and R denote the largest and second-largest Sylow subgroups of T ,
so that |S | = pn1

1 and |R| = pn2
2 in the above notation. As noted earlier, |S | > |T |c

for some constant c. On the other hand, as noted above, Theorem 1.1 implies that
|R| 6 |T |c

′ logp2
(`)/` for some constant c′, where ` is the Lie rank of T . We therefore

obtain the following lower bound on a2, which explains why Buekenhout’s good
contributors are so rare:

a2 =
log |S |
log |R|

>
`c log(|T |)

c′ logp2
(`) log(|T |)

=
c`

c′ logp2
(`)
.
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Table 1. Data for the bound |R| 6 |T |(blogr(M)c+1)/K in Theorem 1.1 and the Lie rank ` of each group T
(from [9, Tables 5.1.A and 5.1.B]).

T K M ` Conditions on T Exceptions
An(q) n n + 1 n n > 1, (n, q) < {(1, 2), (1, 3)}
2An(q) n/2

2(n + 1), 2 | n
2n, 2 - n b n+1

2 c n > 2, (n, q) , (2, 2)

Bn(q) n 2n n n > 2, (n, q) , (2, 2)
Cn(q) n 2n n n > 3, q odd
Dn(q) n/2 2(n − 1) n n > 4
2Dn(q) n/2 2n n − 1 n > 4
2B2(q) 2 4 1 q = 22m+1, m > 1
3D4(q) 6 12 2 (q, r) = (3, 13)
E6(q) 12 12 6 (q, r) = (3, 13)
2E6(q) 12 18 4
E7(q) 18 18 7
E8(q) 29 30 8 (q, r) = (2, 31)
F4(q) 12 12 4 (q, r) = (3, 13)
2F4(q)′ 6 12 2 q = 22m+1, m > 0
G2(q) 6 6 2 q > 3 (q, r) = (3, 13)
2G2(q) 7/2 6 1 q = 32m+1, m > 1

(iv) The questions considered here have also been investigated for the remaining
nonabelian finite simple groups, namely, the alternating groups and the 26
sporadic simple groups. Precise answers can, of course, be obtained for the
sporadic groups, and these are recorded in [8, Table L.5] and [3, Section 2].
Orders of Sylow subgroups of the alternating group Altn may be computed using
the classical formula of Legendre [10] for the prime factorisation of n!. As one
might anticipate, p1 = 2 and p2 = 3 almost always, indeed, unless n ∈ {5, 6, 7, 9}
by [3, Theorem 3.7]. Moreover, pn1

1 6 (n!/2)0.363 by [8, Table L.4].

We prove some preliminary lemmas in Section 2 before giving the proof of
Theorem 1.1 in Section 3.

2. Supporting lemmas

As in [1, 2, 8], we consider the cyclotomic factorisations for the finite simple groups
of Lie type (compare with [8, Definition 4.4]). Writing Φi for the ith cyclotomic
polynomial and d for the number of diagonal outer automorphisms of T = T (q), this
factorisation has the form

d|T | = qe0

M∏
i=1

Φi(q)ei ,
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Table 2. Numbers d and cyclotomic factorisations d|T | = qe0
∏M

i=1 Φi(q)ei for finite simple classical
groups T . (Note: the q in Φi(q) is suppressed for brevity.)

T d = gcd(·, ·) cyclotomic factorisation of d|T | M

An (n + 1, q − 1) q(n+1
2 ) Φn

1

n+1∏
i=2

Φ
b(n+1)/ic
i n + 1

2An (n + 1, q + 1) q(n+1
2 ) Φn

2

∏
2,i≡2(4)

Φ
b(2(n+1))/ic
i

∏
i.2(4)

Φ
b(n+1)/lcm(2,i)c
i

2(n + 1), 2 | n
2n, 2 - n

Bn, Cn (2, q − 1) qn2
2n∏
i=1

Φ
b2n/lcm(2,i)c
i 2n

Dn (4, qn − 1) qn(n−1)
∏

i - n and i|2n

Φ
2n/i−1
i

∏
i|n or i - 2n

Φ
b2n/lcm(2,i)c
i 2(n − 1)

2Dn (4, qn − 1) qn(n−1)
∏
i-n

Φ
b2n/lcm(2,i)c
i

∏
i | n

Φ
b2n/lcm(2,i)c−1
i 2n

where ei > 0 for i 6 M and eM > 0. We set ei = 0 for i > M. The values of M and
e0, e1, . . . , eM can be deduced from the usual formulae for |T | by noting that

qi − 1 =
∏
k|i

Φk(q) and qi + 1 =
∏

k|2i,k-i

Φk(q).

They may be also obtained from [8, Definition 4.4 and Tables C.1 and C.2]. The values
of M are listed in Table 1. Table 2 lists the cyclotomic factorisations for the classical
groups and duplicates the values of M for ease of reference.

We need the following lemma about cyclotomic polynomials.

Lemma 2.1. Let i < j be integers, and suppose that r is a prime dividing both Φi(q) and
Φ j(q) for some prime power q. Then j/i = rk for some positive integer k. In particular,
r divides j.

Proof. This follows immediately from [6, Theorem 2] or [7, Lemma 2]. �

The next lemma imposes an upper bound on the number of distinct cyclotomic
polynomial factors of |T | that are divisible by a given prime distinct from the
characteristic.

Lemma 2.2. Let T = T (q) be a finite simple group of Lie type defined over a field of
order q, and let d|T | = qe0

∏M
i=1 Φi(q)ei be the cyclotomic factorisation of T , where d is

the number of diagonal outer automorphisms of T . If r is a prime dividing |T | but not
q, then r divides at most blogr(M/m)c + 1 of the factors Φ1(q)e1 , . . . ,ΦM(q)eM , where
m is the order of q modulo r.
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Proof. Since r divides |T | but not q, it divides some factor Φi(q)ei of d|T |. Hence ei > 0.
Moreover, the minimal such i is the order m of q modulo r. By Lemma 2.1, r might also
divide some or all of Φmr(q)emr , . . . ,Φmrk (q)emrk , where k is maximal such that Φmrk (q)
divides |T |, but r cannot divide any of the other Φ j(q)e j . Since mrk 6 M, r divides at
most 1 + k = 1 + blogr(M/m)c of the factors Φ j(q)e j of d|T |. �

The final lemma bounds the contribution of each cyclotomic polynomial factor to
the order of a finite simple classical group.

Lemma 2.3. Let T = T (q) be a finite simple classical group defined over a field of order
q, as listed in Table 1 or Table 2. Let Q(T ) denote the largest factor of the form Φi(q)ei

dividing d|T |. Then

Q(T ) 6 |T |a/n, where a =

1 if T has type An, Bn or Cn,
2 if T has type 2An, Dn or 2Dn.

Proof. First, suppose that n = 1. Then T = A1(q) (with q > 4) and d|T | = q(q2 − 1), so
Q(T ) = Φ2(q). The desired bound is Q(T ) 6 |T |, and this holds because

|T | >
q(q2 − 1)

2
=

1
2

q(q − 1)(q + 1) > q + 1 = Φ2(q).

Suppose from now on that n > 2. We need the following inequality, which follows
from [11, Lemma 3.5]:

1 − q−1 − q−2 <

∞∏
i=1

(1 − q−i) 6 1 − q−1 − q−2 + q−3 for all q > 2. (2.1)

We now divide the proof into four cases.

Case 1: T � An(q) with n > 2. Here d = gcd(n + 1, q − 1) < q (see Table 2) so (2.1)
yields

|T | =
qn(n+1)/2

d

n+1∏
i=2

(qi − 1) =
qn(n+2)

d

n+1∏
i=2

(1 − q−i) >
1 − q−1 − q−2

q
· qn2+2n. (2.2)

Suppose that a cyclotomic polynomial Φi(q) divides |T |. According to Table 2, we
have 1 6 i 6 n + 1, e1 = n and ei = b(n + 1)/ic 6 n + 1 for i > 2. We now show that
Φi(q)ei 6 qn+1/(q − 1). This is true when i = 1 because (q − 1)n+1 < qn+1; if 2 6 i 6 n + 1
then Φi(q) divides (qi − 1)/(q − 1), and so

Φi(q)ei 6
(qi − 1

q − 1

)(n+1)/i
<

(qi)(n+1)/i

(q − 1)(n+1)/i 6
qn+1

q − 1
.

Therefore Q(T ) 6 qn+1/(q − 1), and it follows from (2.2) that

Q(T )n 6
qn(n+1)

(q − 1)n =
qn(n+2)

qn(q − 1)n <
qn(n+2)

4(q − 1)
6 (1 − q−1 − q−2)

qn(n+2)

d
= |T |.
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Hence Q(T ) 6 |T |1/n, as claimed.

Case 2: T � 2An(q). Here d = gcd(n + 1, q + 1) 6 q + 1, so

|T | =
qn(n+2)

d

n+1∏
i=2

(1 − (−q)−i) >
qn(n+2)

q + 1
(1 + q−3)

∞∏
j=1

(1 − q−2 j). (2.3)

That is, for the estimate we have omitted the factors in the original product with odd
i > 3. Using (2.1), the identity (1 + q−3)/(1 + q−1) = 1 − q−1 + q−2 and the inequality
1 − q−1 + q−2 > 11/16 gives

1 + q−3

q + 1

∞∏
j=1

(1 − q−2 j) >
(1 + q−3)(1 − q−2 − q−4)

q(1 + q−1)
>

11
16

(1 − q−1 + q−2

q

)
>

1
2q
.

Together with (2.3), this yields

|T | >
qn(n+2)−1

2
. (2.4)

We now show that Q(T ) 6 q2(n+1). If a cyclotomic polynomial Φi(q) divides d|T |, then
1 6 i 6 2(n + 1) by Table 2. If i = 1, then e1 = b(n + 1)/2c 6 (n + 1)/2 (by Table 2), so
Φ1(q)e1 6 (q − 1)(n+1)/2 < q2(n+1). For i = 2, similarly, e2 = n and Φ2(q)e2 < (q2 − 1)n 6
q2(n+1). Finally, if i > 3, then ei 6 2(n + 1)/i, so

Φi(q)ei < (qi − 1)2(n+1)/i < (qi)2(n+1)/i = q2(n+1).

Therefore Q(T ) 6 q2(n+1), which together with (2.4) yields

Q(T )n < q2n2+2n 6
q2n2+4n−2

4
=

(q2(n+1)−1

2

)2
< |T |2.

Thus Q(T ) < |T |n/2, as claimed.

Case 3: T � Bn(q) or Cn(q). Here d = gcd(2, q − 1) 6 2, which together with (2.1)
gives

|T | =
q2n2+n

d

n∏
i=1

(1 − q−2i) >
1 − q−2 − q−4

2
· q2n2+n >

11
32

q2n2+n >
q2n2+n

3
.

Suppose that Φi(q) divides d|T |. Then 1 6 i 6 2n and ei = b2n/lcm(2, i)c 6 2n/i by
Table 2. Since Φi(q) 6 qi − 1 < qi,

Φi(q)ei < (qi)2n/i = q2n.

Hence Q(T ) < q2n, and because n > 2,

Q(T )n < q2n2
<

q2n2+n

3
< |T |.
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Table 3. Values of Q(T ) for the exceptional Lie type groups T , and constants K, d0 and q0 such that
Q(T )K 6 (d/d0)|T | for all q > q0.

T 2B2
3D4 E6

2E6 E7 E8 F4
2F′4 G2

2G2

Q(T ) Φ4 Φ2
3 Φ3

3 Φ6
2 Φ7

2 Φ8
2 Φ4

2 Φ2
4 Φ2

2 Φ6
K 2 6 12 12 18 29 12 6 6 7/2
d0 1 1 3 3 2 1 1 1 1 1
q0 8 4 5 7 9 7 7 8 4 27

Therefore Q(T ) 6 |T |1/n, as claimed.

Case 4: T � Dn(q) or 2Dn(q). Here d = gcd(4, q ± 1) 6 4 and

|T | =
qn2−n(qn ± 1)

d

n−1∏
i=1

(q2i − 1) >
q2n2−n

4

∞∏
i=1

(1 − q−2i) >
(1 − q−2 − q−4)q2n2−n

4
.

Since
∏∞

i=1(1 − q−2i) > (1 − q−2 − q−4) > 11/16 by (2.1), we have |T | > q2n2−n−3. If
Φi(q) divides d|T |, then i 6 2n and ei 6 2n/i by Table 2, so Φi(q)ei 6 (qi − 1)2n/i < q2n.
Hence Q(T ) 6 q2n, so Q(T )n 6 q2n2

< (q2n2−n−3)2 < |T |2 and Q(T ) 6 |T |2/n, as claimed.
This completes the proof. �

3. Proof of the main theorem

Proof of Theorem 1.1. As in Section 2, write d|T | = qe0
∏M

i=1 Φi(q)ei and let Q(T )
denote the maximum of Φ1(q)e1 , . . . ,ΦM(q)eM . Let r be a prime dividing |T | but not
q, and let R be a Sylow r-subgroup of T . It follows from Lemma 2.2 that

|R| 6 Q(T )1+blogr(M)c. (3.1)

We now seek ‘large’ constants K satisfying Q(T )K 6 |T | to deduce the claimed bounds
of the form |R| 6 |T |(blogr(M)c+1)/K .

First, suppose that T is a classical group. Then the values of M may be deduced from
the cyclotomic factorisations listed in Table 2, and they are as listed in both Table 1
and Table 2. The values of K appearing in Table 1 are obtained from Lemma 2.3.

Now suppose that T is an exceptional Lie-type group. Then d|T | = qe0
∏30

i=1 Φi(q)ei ,
where the values of e1, . . . , e30 are listed in [8, Table C.2]. In particular, we obtain
the values of M appearing in Table 1. The values of e0 appear in the last row of [8,
Table C.3] and in [5, Table 6]. By inspecting these factorisations, one finds the value
of i such that Q(T ) = Φi(q)ei (and such that this value is independent of q). Table 3 lists
constants K, d0 and q0 such that

Φi(q)eiK 6
d
d0
|T | for all q > q0.

Note that d = d0 = 1 in all cases, except when T = E6(q), 2E6(q) or E7(q), where
(d, d0) = (gcd(3, q − 1), 3), (gcd(3, q + 1), 3) or (gcd(2, q − 1), 2), respectively.
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In particular, d 6 d0 in all cases, and so

Q(T )K 6 |T | for all q > q0.

The constants K agree with those in Table 1, and so by combining the above bound
with (3.1) we obtain the claimed bounds |R| 6 |T |(blogr(M)c+1)/K for q > q0. It remains to
consider the cases where q < q0. In these cases, we check manually, for each prime
r dividing |T | but not q, whether the bound |R| 6 |T |(blogr(M)c+1)/K (with K and M as
in Table 1) holds. The exceptions, which were checked both manually and using the
Magma code available at the first author’s website (http://school.maths.uwa.edu.au/
∼glasby/ExceptionsCheck.mag), are recorded in Table 1. �

Remark 3.1. One can slightly improve the values of K listed in Table 1 in some cases.
For example, if T � 2B2(q), then K can be increased to log(|2B2(8)|)/ log(Φ2(8)) ≈
2.46. As such improvements seem tedious to achieve and do not change the form of
our generic bound |R| 6 |T |O(logr(`)/`), where ` is the Lie rank of T , we chose not to
pursue them here.
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