

Composito Mathematica **122:** 323–336, 2000. © 2000 Kluwer Academic Publishers. Printed in the Netherlands.

On Some Twistor Spaces Over $4\mathbb{CP}^2$

NOBUHIRO HONDA*

Department of Mathematics, Faculty of Science, Hiroshima University, 739-8526, Japan e-mail: honda@math.sci.hiroshima-u.ac.jp

(Received: 28 October 1998; accepted in final form: 21 May 1999)

Abstract. We show that for any positive integer τ there exist on $4\mathbb{CP}^2$, the connected sum of four complex projective planes, twistor spaces whose algebraic dimensions are two. Here, τ appears as the order of the normal bundle of *C* in *S*, where *S* is a real smooth half-anti-canonical divisor on the twistor space and *C* is a real smooth anti-canonical divisor on *S*. This completely answers the problem posed by Campana and Kreussler. Our proof is based on the method developed by Honda, which can be regarded as a generalization of the theory of Donaldson and Friedman.

Mathematics Subject Classifications (2000). 32L25, 32G05, 32G07, 53A30, 53C25.

Key words: twistor space, self-dual metric, algebraic dimension, elliptic curve.

1. Introduction

Let $n\mathbb{CP}^2$ be the connected sum of *n* copies of the complex projective plane, where $0\mathbb{CP}^2$ denotes the four-sphere S^4 by convention. Let *g* be a self-dual metric on $n\mathbb{CP}^2$ and *Z* the associated twistor space. Throughout this paper we always assume that the type of the scalar curvature of *g* is positive. From the works of Poon, LeBrun, Kreussler, Kurke, Campana and others [P1, P2, LB, KK, Kr1, Kr2, C] it has turned out that twistor spaces associated with such self-dual metrics have rich structures as compact complex threefolds.

In this paper we focus our attention on the case n = 4. This case is interesting because we have $c_1(Z)^3 = 4 - n = 0$ [Hi], where $c_1(Z)$ denotes the first Chern class of Z and $c_1(Z)^3$ is a positive multiple of the coefficient of the leading term of the Riemann-Roch for pluri-anti-canonical system of Z. Another reason is that for $n \leq 3$ twistor spaces over $n\mathbb{CP}^2$ have already been described [P1, P2, KK] and the case n = 4 is the next one to be studied.

Some important families of twistor spaces over $4\mathbb{CP}^2$ are known. (a) LeBrun twistor spaces [LB]: They are explicitly given as bimeromorphic transforms of conic bundles over $\mathbb{CP}^1 \times \mathbb{CP}^1$. In particular they are Moishezon threefolds. They have a holomorphic \mathbb{C}^* -action. They are naturally parameterized by distinct four points on H^3 , the upper half three-space, and form a six-dimensional family. (b) Twistor spaces with a (\mathbb{C}^*)²-action [PP2, Hon1]: They have a pencil whose general elements

^{*}This work was partially supported by Research Fellowships of the Japanese Society for the Promotion of Science for Young Scientists.

are nonsingular toric surfaces, and the base locus of the pencil is the anti-canonical curve of the surfaces. In particular, they are Moishezon. They are naturally parameterized by distinct four points on the circle and form a one-dimensional family. (c) Another Moishezon twistor spaces are also known [Kr2, Hon2]: They have a net of rational surfaces and the associated meromorphic maps give on the twistor spaces (meromorphic) conic bundle structures over \mathbb{CP}^2 . (d) Recently the author and M. Itoh [HI] have proved that there exist twistor spaces over $4\mathbb{CP}^2$ with a \mathbb{C}^* -action whose corresponding self-dual metrics are not LeBrun's or Joyce's.

On the other hand Campana and Kreussler [CK] showed that there exist twistor spaces over $4\mathbb{CP}^2$ whose algebraic dimensions are two. More precisely they showed the following: Let $|-\frac{1}{2}K_Z|^{\sigma}$ be the real sub-system of the half-anti-canonical system of Z, where σ denotes the real structure of Z. Let $S \in |-\frac{1}{2}K_Z|^{\sigma}$ be an irreducible element. (It is relatively easy to see that such an S always exists on any twistor space over $4\mathbb{CP}^2$.) Then by a result of Pedersen and Poon [PP1] S is an eight points blown-up of $\mathbb{CP}^1 \times \mathbb{CP}^1$. Hence we always have dim $|-K_S| \ge 0$, and if C is an irreducible nonsingular anti-canonical curve of S the degree of the normal bundle, which we will denote by $N_{C/S}$, is zero. Then Campana and Kreussler showed the following: (i) Let a(Z) denote the algebraic dimension of Z. Then $1 \le a(Z) \le 2$ and the equality a(Z) = 2 holds if and only if the order of $N_{C/S}$ in Pic⁰C is finite. (ii) For some $\tau \ge 1$, there exists a twistor space Z over $4\mathbb{CP}^2$ with $S \in |-\frac{1}{2}K_Z|^{\sigma}$ and $C \in |-K_S|^{\sigma}$ such that the order of $N_{C/S}$ in Pic⁰C is τ .

Then they asked [CK, Open Problem] which values of τ can be realized as above for some twistor spaces over $4\mathbb{CP}^2$. The purpose of this paper is then to give an answer to this problem in the following form:

THEOREM 1.1. For any $\tau \ge 1$ there exist twistor spaces over $4\mathbb{CP}^2$ with the following property: There exist smooth and irreducible members $S \in |-\frac{1}{2}K_Z|^{\sigma}$ and $C \in |-K_S|^{\sigma}$ respectively such that the order of $N_{C/S}$ in Pic⁰C is τ .

It is easy to see that for distinct τ the twistor spaces are not biholomorphic. Thus for each $\tau \ge 1$ there exist twistor spaces over $4\mathbb{CP}^2$ whose algebraic dimensions are two. We also remark that all of the twistor spaces (a)–(c) cited above contain only reducible $C \in |-K_S|^{\sigma}$.

Our proof of Theorem 1.1 is based on the method developed in [Hon2], which is a generalization, in a sense, of the theory of Donaldson and Friedman [DF]. That is, for any given integer $\tau \ge 1$ we construct a 'triple' (Z', S', A') of normal crossing varieties, where S' (resp. A') is a (real) Cartier divisor on Z' (resp. S'). Then we will show that this triple can be smoothed to give a twistor space over $4\mathbb{CP}^2$ in Theorem 1.1.

Finally we should mention that in the previous paper [HI] we have already shown the existence of twistor spaces in the case that $\tau = 1$. But the twistor spaces considered in that paper are different from the one in this paper even in the case that $\tau = 1$. For example, as was mentioned above, twistor spaces in [HI] have a \mathbb{C}^* -action, whereas the identity component of the automorphism group of twistor spaces in Theorem 1.1 is trivial.

2. Main Construction

In this section we shall construct a triple (Z', S', A') of normal crossing varieties which depends on an integer $\tau \ge 1$. This will be used in Section 3 to prove Theorem 1.1.

Let g be a self-dual metric on $3\mathbb{CP}^2$ whose scalar curvature is of positive type. That is, there exists a C^{∞} -function φ on $3\mathbb{CP}^2$ such that the scalar curvature of $e^{\varphi}g$ is a positive constant. Let Z be the twistor space associated to g. Such a twistor space belongs to either of the following (Sections 2 and 3 of [P2]; See also [KK, Kr1]):

- (i) (generic type [P2, KK, Kr1]) Assume that the complete linear system $|-\frac{1}{2}K_Z|$ has no base points. Then $|-\frac{1}{2}K_Z|$ is three-dimensional and defines a morphism $f: Z \to \mathbb{CP}^3$. *f* is a double covering map branched along a (real) quartic surface.
- (ii) (LeBrun twistor spaces [LB]) Assume that $|-\frac{1}{2}K_Z|$ has base points. In this case we also have dim $|-\frac{1}{2}K_Z| = 3$, but the image under the associated meromorphic map is $\mathbb{CP}^1 \times \mathbb{CP}^1$, a (real) quadric surface. Further a bimeromorphic model of Z has a conic bundle structure over the quadric surface. Z has a \mathbb{C}^* -action and is one of twistor spaces constructed by LeBrun [LB].

For the proof of Theorem 1.1 we use a twistor space over $3\mathbb{CP}^2$ which is type (i). From now on let Z_1 be such a twistor space, σ_1 the real structure of Z_1 and $f: Z_1 \to \mathbb{CP}^3$ the double covering map induced by $|-\frac{1}{2}K_{Z_1}|$. Moreover, let *B* denote the branch quartic surface, which is real with respect to σ_1 . It was shown in [P2, KK, Kr1] that *B* has exactly 13 ordinary double points, one of which is the unique real point on *B*.

Let H_1 be a real plane on \mathbb{CP}^3 which intersects *B* transversally along a nonsingular curve. We further assume that H_1 does not go through any of the singular points of *B*. Then we put $S_1 := f^{-1}(H_1)$. By construction S_1 is a real nonsingular element of $|-\frac{1}{2}K_{Z_1}|^{\sigma_1}$. Adjunction formula and the vanishing theorem of Hitchin imply that the restriction of *f* onto S_1 is the morphism induced by $|-K_{S_1}|$, which is two-dimensional without base points. It is easy to see that S_1 is a rational surface with $c_1^2 = 2$. But the reality implies more [PP1]: S_1 is obtained from $\mathbb{CP}^1 \times \mathbb{CP}^1$ by blowing-up six points. Let $p : S_1 \to \mathbb{CP}^1$ be the composition of the blowing-down and the projection to one of the \mathbb{CP}^1 s. Then twistor lines (on Z_1) which are contained in S_1 are parameterized by $S^1 \subseteq \mathbb{CP}^1$, the real circle. Let $\{L_s := p^{-1}(s) | s \in S^1\}$ be the family of twistor lines. By choosing H_1 sufficiently general we may suppose that the blown-up six points are in general position. That is, no two (resp. four) points among the six points are on a curve of bidegree (1,0) or (0,1) (resp. a curve of bidegree (1,1)), and the six points are not on a curve of bidegree (1,2) or (2,1). Then we have (*) For any twistor line $L_s (= p^{-1}(s))$ on $S_1 f|_{L_s}$, the restriction of f onto L_s , is a biholomorphic map onto a real *conic* on H_1 .

In fact if the image $f(L_s)$ is a line then there must be an effective curve D on S_1 such that $D + L_s$ is an anti-canonical curve of S_1 . But since L_s is an element of the system $|\beta^* \mathcal{O}(0, 1)|$, where $\beta : S_1 \to \mathbb{CP}^1 \times \mathbb{CP}^1$ is the above blowing-down map, $\beta(D)$ must be a curve of bidegree (2, 1) which goes through all of the (blown-up) six points. This contradicts to the above generality condition.

Next let m_1 be a real line on H_1 which intersects $B \cap H_1$ transversally, and put $C_1 := f^{-1}(m_1)$. Clearly C_1 is a non-singular elliptic curve with a real structure and is a real anti-canonical curve of S_1 . Since $C_1 \cdot L_s = -K_{S_1} \cdot L_s = -\frac{1}{2}K_{Z_1} \cdot L_s = 2$ and both C_1 and L_s are real, $C_1 \cap L_s$ consists of two distinct points for every $s \in S^1$. Therefore the set $\{C_1 \cap L_s \mid s \in S^1\}$ defines an unramified double covering over the circle S^1 . We denote this by \mathcal{T} . \mathcal{T} is obviously a real subset of C_1 . By choosing m_1 sufficiently general we may assume that the following holds:

(**) The four ramification points of the double covering map $f|_{C_1} : C_1 \to m_1$ are not on any twistor lines on S_1 .

Further let $m \neq m_1$ be also a real line on H_1 and set $y := m_1 \cap m$ and $f^{-1}(y) = \{w_1, \overline{w}_1\}$, where we put $\overline{w}_1 := \sigma_1(w_1) \neq w_1$. The situation is illustrated as follows:

Z_1	\supseteq	S_1	\supseteq	C_1	\supseteq	$\{w_1, \overline{w}_1\}$
$f\downarrow$		\downarrow		\downarrow		\downarrow
\mathbb{CP}^{3}	\supseteq	H_1	\supseteq	m_1	\ni	$\downarrow \\ y$

Then we have isomorphisms

$$N_{C_1/S_1} \simeq \mathcal{O}_{C_1}(w_1 + \overline{w}_1) \simeq f^* \mathcal{O}_{m_1}(1).$$

Now we consider a map $\alpha : C_1 \longrightarrow \operatorname{Pic}^0 C_1$ which is defined by

 $z \longmapsto \mathcal{O}_{C_1}(w_1 + \overline{w}_1 - z - \overline{z})$

$$(\simeq \mathcal{O}_{C_1}(-z-\overline{z})\otimes f^*\mathcal{O}_{m_1}(1)).$$

Then the structure of α is described as follows: The image of α , which we denote by S^1 , is the circle. S^1 is the identity component of $(\operatorname{Pic}^0 C_1)^{\sigma_1} := \{F \in \operatorname{Pic}^0 C_1 | \overline{\sigma_1^* F} \simeq F\}$. α gives on C_1 the structure of a fiber bundle over S^1 . When $(\operatorname{Pic}^0 C_1)^{\sigma_1}$ is connected, that is $(\operatorname{Pic}^0 C_1)^{\sigma_1} = S^1$, the typical fiber of α is a circle. When $(\operatorname{Pic}^0 C_1)^{\sigma_1}$ is disconnected, which is two disjoint circles, the typical fiber of α is two disjoint circles. These can be proved, for example, by classifying all of anti-holomorphic involutions on elliptic curves and writing down explicitly the equation of the fibers of α (using a coordinate on the universal cover \mathbb{C}).

Now we show that:

LEMMA 2.1 For any positive integer τ there exists a point $z \in C_1 \setminus T$ such that the order of $\alpha(z)$ in $\operatorname{Pic}^0 C_1$ is τ .

Proof. Let $\varphi(\tau)$ denote the Euler function of τ . That is, for a positive integer τ , $\varphi(\tau)$ denotes the number of integers *n* with $1 \le n \le \tau$ such that $(n, \tau) = 1$. Then there exist $\varphi(\tau)$ points on S^1 whose order (in $\operatorname{Pic}^0 C_1$) is τ . If $\tau \ge 7$ or $\tau = 5$ we have $\varphi(\tau) \ge 3$ and hence it is obvious that the claim of the lemma holds. When $\varphi(\tau) = 2$, that is $\tau = 3, 4$ or 6, it suffices to show that \mathcal{T} cannot coincide with the fiber over the two-torsion points. Suppose that. Then \mathcal{T} consists of disjoint two circles \mathcal{T}_1 and \mathcal{T}_2 and each are the fibers over two-torsion points. But this cannot happen, since we have $\mathcal{T}_2 = \sigma_1(\mathcal{T}_1)$, α preserves the real structures, and hence even if \mathcal{T} is contained in some fiber of α , it must be *a* fiber of α .

Therefore to prove the lemma it suffices to show that \mathcal{T} cannot be the fiber (of α) over the trivial bundle or the real line bundle whose order is two. First we show that $\alpha(z) \simeq \mathcal{O}_{C_1}$ for any $z \in \mathcal{T}$. Assume that $\alpha(z) \simeq \mathcal{O}_{C_1}$. Then since in such a case $\mathcal{O}_{C_1}(z+\overline{z}) \simeq f^*\mathcal{O}_{m_1}(1)$ and the system $|\mathcal{O}_{C_1}(z+\overline{z})|$ is one-dimensional we have $f(z) = f(\overline{z})$. On the other hand if $z \in \mathcal{T}$ there exists a twistor line $L_s \subseteq S_1$ such that $z \in L_s$. Therefore $f(z) \neq f(\overline{z})$ since $z \neq \overline{z}$ and $f|_{L_s}$ is an isomorphism by (*). This is a contradiction. Hence $\alpha(z) \simeq \mathcal{O}_{C_1}$ for any $z \in \mathcal{T}$, and the case $\tau = 1$ is proved.

Next let $z \in C_1$ be a ramification points of $f|_{C_1} : C_1 \to m_1$. Then we have

$$\alpha(z)^{\otimes 2} = \mathcal{O}_{C_1}(-2z - 2\overline{z}) \otimes f^* \mathcal{O}_{m_1}(2) \simeq f^* \mathcal{O}_{m_1}(-2) \otimes f^* \mathcal{O}_{m_1}(2) \simeq \mathcal{O}_{C_1}.$$

Moreover z does not lie on \mathcal{T} by (**). Hence, $\alpha(z)$ is a torsion point whose order is two. Therefore the case $\tau = 2$ is also proved.

Let $\tau \ge 1$ be a given integer, $z_{10} \in C_1 \setminus T$ a point such that the order of $\alpha(z_{10})$ in $\operatorname{Pic}^0(C_1)$ is τ , L_1 the twistor line on Z_1 through z_{10} (and \overline{z}_{10}), and $\mu_1 : Z'_1 \to Z_1$ the blowing-up along L_1 . Further we set $S'_1 := \mu_1^{-1}(S_1)$, $Q_1 := \mu_1^{-1}(L_1)$, $l_1 := \mu_1^{-1}(z_{10})$ and $\overline{l}_1 := \mu_1^{-1}(\overline{z}_{10})$. Let $C'_1 (\subseteq S'_1)$ denote the strict transform of C_1 . Since $L_1 S_1 \mu_1|_{S'_1}$ is the blowing-up at z_{10} and \overline{z}_{10} , and l_1 and \overline{l}_1 are the exceptional curves. Then we have

$$N_{C'_1/S'_1} \simeq \mathcal{O}_{C'_1}(w_1 + \overline{w}_1 - z_{10} - \overline{z}_{10}) = \alpha(z_{10}),$$

where we regard $w_1, \overline{w}_1, z_{10}$ and \overline{z}_{10} as points on C'_1 . Hence, by the choice of z_{10} , the order of $N_{C'_1/S'_1}$ in Pic⁰ C'_1 is τ . It is easy to show the following claim:

CLAIM 2.2. The τ th anti-canonical system $|-\tau K'_1|$ of S'_1 is one-dimensional without base points, and defines an elliptic fibration $g: S'_1 \to \mathbb{CP}^1$.

We note that $\tau C'_1$ is a real element of $|-\tau K'_1|$ and that the anti-Kodaira dimension (cf. [S]) of S'_1 is one.

Next let f_1 be a real nonsingular fiber of g. Since f_1 is linearly equivalent to $\tau C'_1$ and we have $C'_1 \cdot l_1 = 1$, we have $f_1 \cdot l_1 = \tau$ and may suppose that f_1 intersects l_1 trans-

versally at τ distinct points. Let $\{z_{11}, \dots, z_{1\tau}\}$ be the intersections. Then we have $\{\overline{z}_{11}, \dots, \overline{z}_{1\tau}\} = f_1 \cap \overline{l}_1$ by the reality of f_1 .

On the other hand let Z_2 be the flag twistor space of \mathbb{CP}^2 with Fubini–Study metric, σ_2 the real structure and $L_2 \subseteq Z_2$ any twistor line. Then there exists a divisor D_2 on Z_2 which satisfies (i) $D_2 \cdot L_2 = 1$; (ii) D_2 and $\overline{D}_2 := \sigma_2(D_2)$ intersect transversally along L_2 . Let $\mu_2 : Z'_2 \to Z_2$ be the blowing-up along L_2 , Q_2 the exceptional divisor, and D'_2 and \overline{D}'_2 the proper transforms of D_2 and \overline{D}_2 respectively. D_2 and \overline{D}_2 are isomorphic to Σ_1 , the non-minimal Hirzebruch surface. Further we set $l_2 := D'_2 \cap Q_2$ and $\overline{l}_2 := \overline{D}'_2 \cap Q_2$. These define disjoint sections of $\mu_2|_{Q_2} : Q_2 \to L_2$.

Next we choose a biholomorphic map $\phi : Q_1 \to Q_2$ which preserves the real structures and satisfies $\phi(l_1) = l_2$ and $\phi(\overline{l_1}) = \overline{l_2}$. Then we set ([DF, KP]) $Z' := Z'_1 \cup_{\phi} Z'_2$, and

$$S' := S'_1 \cup (D'_2 \amalg \overline{D}'_2) = D'_2 \bigcup_l S'_1 \bigcup_{\overline{l}} \overline{D}'_2.$$

Here, we put $l := l_1 \simeq l_2$ and $\overline{l} := \overline{l_1} \simeq \overline{l_2}$. S' is clearly a Cartier divisor which is invariant by the natural real structure of Z'.

Next for each *i* with $0 \le i \le \tau$ we set $z_{2i} := \phi(z_{1i}) \in l_2$, $\overline{z}_{2i} := \phi(\overline{z}_{1i}) \in \overline{l}_2$ and let f_{2i} (resp. \overline{f}_{2i}) be the fiber of $D_2 \to \mathbb{CP}^1$ (resp. $\overline{D}_2 \to \mathbb{CP}^1$) through z_{2i} (resp. \overline{z}_{2i}). Then we put

$$C' := C'_1 \bigcup_{\phi} (f_{20} \amalg \overline{f}_{20}) = f_{20} \cup C'_1 \cup \overline{f}'_{20},$$

and

$$f' := f_1 \bigcup_{\phi} (\underset{i=1}{\overset{\tau}{\amalg}} (f_{2i} \amalg \overline{f}_{2i})) = (\underset{i=1}{\overset{\tau}{\amalg}} f_{2i}) \cup f_1 \cup (\underset{i=1}{\overset{\tau}{\amalg}} \overline{f}_{2i}).$$

(See next page for figures.) We note that C' and f' are Cartier divisors on S' which are invariant by the real structure. Furthermore we put A' := C' + f'.

3. Proof of Theorem 1.1

In the previous section for each $\tau \ge 1$ we have constructed a triple (Z', S', A') of normal crossing varieties, where S' (resp. A') is a real Cartier divisor on Z' (resp. S'). In this section using the results of [Hon2] we study smoothing of this triple and prove Theorem 1.1. For notations we refer to Sections 3 and 5 of [Hon2].

First we consider smoothing of the pair (S', A'). The following lemma can be proved in the same way as Proposition 3.1 and Lemma 3.2 of [Hon2].

LEMMA 3.1. We have $\Theta_{S',A'}^1 \simeq \mathcal{O}_l \oplus \mathcal{O}_{\overline{l}}$ and $\Theta_{S',A'}^i = 0$ for $i \ge 2$, and there exists an exact sequence of vector spaces

$$0 \longrightarrow H^1(\Theta_{S',A'}) \longrightarrow T^1_{S',A'} \xrightarrow{r} H^0(\Theta^1_{S',A'})$$

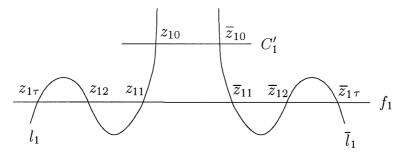


Figure. Curves on S'_1 .

f_{20}	f_{21} j	f_{22} ;	$f_{2 au}$	
 z_{20}	z_{21}	z_{22}	$z_{2\tau}$	l_2

$$A_2' = A' \cap D_2'$$

Figure. Curves on D'_2 .

$$\longrightarrow H^2(\Theta_{S',A'}) \longrightarrow T^2_{S',A'} \longrightarrow H^1(\Theta^1_{S',A'}) = 0.$$

Next we show (after Proposition 3.3):

LEMMA 3.2. We have $H^{2}(\Theta_{S',A'}) = 0$.

Lemmas 3.1 and 3.2 imply

PROPOSITION 3.3. We have $T_{S',A'}^2 = 0$. In particular deformations of the pair (S', A') are unobstructed.

Proof of Lemma 3.2. For simplicity we put $A'_1 := C'_1 + f_1 (\subseteq S'_1)$, $A'_2 := \sum_{i=0}^{\tau} f_{2i} (\subseteq D'_2)$ and $\overline{A'_2} := \sum_{i=0}^{\tau} \overline{f_{2i}} (\subseteq \overline{D'_2})$. Then we have $A' = A'_1 + A'_2 + \overline{A'_2}$. First we consider the exact sequence

$$0 \to \Theta_{S',A'} \to \Theta_{S'_1,A'_1+l_1+\overline{l}_1} \oplus (\Theta_{D'_2,A'_2+l_2} \oplus \Theta_{\overline{D'_2},\overline{A'_2}+\overline{l}_2}) \to \Theta_l(-1-\tau) \oplus \Theta_{\overline{l}}(-1-\tau) \to 0.$$
(1)

(Strictly speaking we must take the normalization of S' into consideration. But for simplicity of notations we omit it.)

CLAIM 3.4. We have $H^2(\Theta_{D'_2,A'_2+l_2}) = H^2(\Theta_{\overline{D'_2,A'_2+l_2}}) = 0.$ Proof. The cohomology exact sequence of

 $0 \to \Theta_{D'_2,A'_2+l_2} \to \Theta_{D'_2,l_2} \to \mathcal{O}_{A'_2} \to 0$

shows that $H^2(\Theta_{D'_1,A'_1+l_2}) \simeq H^2(\Theta_{D'_1,l_2})$. But the latter cohomology group is easily seen to vanish by using the exact sequence

$$0 \to \Theta_{D'_1, l_2} \to \Theta_{D'_2} \to \mathcal{O}_{l_2}(1) \to 0.$$

By the reality we also have $H^2(\Theta_{\overline{D}_2,\overline{A}_2+\overline{I}_2}) = 0$. (qed for Claim 3.4)

CLAIM 3.5. The natural map $H^1(\Theta_{D'_1,A'_1+b_2}) \to H^1(\Theta_{b_2}(-1-\tau))$ is surjective. Proof. The cohomology exact sequence of

$$0 \to \Theta_{D'_2,A'_2}(-l_2) \to \Theta_{D'_2,A'_2+l_2} \to \Theta_{l_2}(-1-\tau) \to 0$$

shows that we have only to show that $H^2(\Theta_{D'_2,A'_2}(-l_2)) = 0$. But the exact sequence

$$0 \to \Theta_{D'_2,A'_2}(-l_2) \to \Theta_{D'_2}(-l_2) \to \mathcal{O}_{A'_2}(-1) \to 0$$

implies that $H^2(\Theta_{D'_2,A'_2}(-l_2)) \simeq H^2(\Theta_{D'_2}(-l_2))$. Further the exact sequences

$$0 \to \Theta_{D'_2}(-l_2) \to \Theta_{D'_2,l_2} \to \Theta_{l_2} \to 0$$

and

$$0 \rightarrow \Theta_{D'_2,l_2} \rightarrow \Theta_{D'_2} \rightarrow N_{l_2/D'_2} \rightarrow 0$$

show that we have

$$H^{2}(\Theta_{D'_{2}}(-l_{2})) \simeq H^{2}(\Theta_{D'_{2},l_{2}}) \simeq H^{2}(\Theta_{D'_{2}}) = 0,$$

as desired. (qed for Claim 3.5)

CLAIM 3.6. We have $H^2(\Theta_{S'_1,A'_1+l_1+\overline{l}_1}) = 0$. *Proof.* The exact sequence

$$0 \to \Theta_{S_1', \mathcal{A}_1' + l_1 + \overline{l}_1} \to \Theta_{S_1', \mathcal{A}_1'} \to N_{l_1/S_1'} \oplus N_{\overline{l}_1/S_1'} \to 0$$

implies that $H^2(\Theta_{S'_1,A'_1+l_1+\overline{l}_1}) \simeq H^2(\Theta_{S'_1,A'_1})$. To prove that $H^2(\Theta_{S'_1,A'_1})$ is zero we first show that $H^0(\Omega_{S'_1}(C'_1)) = 0$, where Ω_X denotes the cotangent sheaf of a complex manifold X. We choose a blowing-down map $\beta: S_1 \to S_0 := \mathbb{CP}^1 \times \mathbb{CP}^1$ and put $\alpha := \beta \cdot (\mu_1|_{S'_1})$. α is eights points blown-up of S_0 . We put $C_0 := \alpha(C'_1) (= \beta(C_1))$, which is an anti-canonical curve of S_0 . Then the eight points, which we denote by $P := \{p_1, \dots, p_8\} (\subseteq S_0)$, clearly lie on C_0 and we may assume that $p_i \neq p_j$ for $i \neq j$. Further, we set $E_i := \alpha^{-1}(p_i)$ for $1 \le i \le 8$, the exceptional curves of α , and put $E := \sum_{i=1}^{8} E_i$. Then we have an exact

330

ON SOME TWISTOR SPACES OVER $4\mathbb{CP}^2$

sequence

$$0 \to \alpha^* \Omega_{S_0} \to \Omega_{S'_1} \to \Omega_E \to 0,$$

from which, by taking tensor product with $\mathcal{O}_{S'_1}(C'_1)$, we get an exact sequence

$$0 \longrightarrow (\alpha^* \Omega_{S_0}) \otimes \mathcal{O}_{S'_1}(C'_1) \longrightarrow \Omega_{S'_1}(C'_1) \longrightarrow \Omega_E \otimes \mathcal{O}_{S'_1}(C'_1) \longrightarrow 0.$$
⁽²⁾

Since C'_1 is the strict transform of C_0 we have $\mathcal{O}_{S'_1}(C'_1) \simeq (\alpha^* \mathcal{O}_{S_0}(C_0)) \otimes \mathcal{O}_{S'_1}(-E)$ and hence the first nontrivial term of (2) becomes $(\alpha^* \Omega_{S_0}(C_0)) \otimes \mathcal{O}_{S'_1}(-E)$. On the other hand being $E_i \cdot C'_1 = 1$ for each $i \ (1 \le i \le 8)$ the last nontrivial term of (2) becomes $\bigoplus_{i=1}^{8} (\Omega_{E_i} \otimes \mathcal{O}_{E_i}(1))$, which we denote by $\mathcal{O}_E(-1)$ for simplicity. Therefore (2) can be rewritten as

$$0 \longrightarrow (\alpha^* \Omega_{S_0}(C_0)) \otimes \mathcal{O}_{S'_1}(-E) \longrightarrow \Omega_{S'_1}(C'_1) \longrightarrow \mathcal{O}_E(-1) \longrightarrow 0.$$

Hence we get an isomorphism

$$H^{0}(S'_{1}, \Omega_{S'_{1}}(C'_{1})) \simeq H^{0}(S_{0}, \Omega_{S_{0}}(C_{0}) \otimes \mathcal{I}_{P}),$$
(3)

where \mathcal{I}_P denotes the ideal sheaf of *P* in S_0 . On the other hand, the second Chern class of $\Omega_{S_0}(C_0)$ is

$$c_2(\Omega_{S_0}(C_0)) = c_2(\Omega_{S_0}) + c_1(\Omega_{S_0}) \cdot c_1(\mathcal{O}_{S_0}(C_0)) + C_0^2$$
$$= e(S_0) + K_{S_0} \cdot (-K_{S_0}) + (-K_{S_0})^2$$
$$= e(S_0) = 4,$$

where $e(S_0)$ denotes the Euler number of S_0 . Therefore if a section of $\Omega_{S_0}(C_0)$ has only isolated zeros it vanishes at four points. Hence a nonzero element *s* of $H^0(S_0, \Omega_{S_0}(C_0) \otimes \mathcal{I}_P)$ must vanish along a curve containing *P*. But since *P* is on an anti-canonical curve C_0 and the six points among *P* are in general position (see (*) in Section 2) this implies that *s* determines a nonzero section of $\Omega_{S_0}(C_0) \otimes \mathcal{O}_{S_0}(-C_0) \simeq \Omega_{S_0}$. But this cannot happen because S_0 is rational. Hence, by using (3) and Serre duality we get

$$H^{0}(\Omega_{S'_{1}}(C'_{1})) = H^{2}(\Theta_{S'_{1}} \otimes 2K_{S'_{1}}) = 0.$$
(4)

Now assume that $\tau = 1$. Then we have $\Theta_{S'_1}(-A'_1) \simeq \Theta_{S'_1} \otimes 2K_{S'_1}$. Hence, (4) and the cohomology exact sequence of

$$0 \to \Theta_{S'_1}(-A'_1) \to \Theta_{S'_1,A'_1} \to \Theta_{A'_1} \to 0$$

imply that $H^2(\Theta_{S'_1,A'_1}) = 0$, which is the claim for the case $\tau = 1$.

Next we show that $H^2(\Theta_{S'_1,A'_1}) = 0$ for $\tau \ge 2$. Since in this case $N_{C'_1/S'_1}$ is a non-trivial line bundle of degree zero we have $H^1(N_{C'_1/S'_1}) = 0$. Hence the

cohomology exact sequence of

$$0 \to \Theta_{S'_1,A'_1} \to \Theta_{S'_1} \to N_{C'_1/S'_1} \oplus N_{f_1/S'_1} \to 0$$

shows that it suffices to show that the map $H^1(\Theta_{S'_1}) \to H^1(N_{f_1/S'_1})$ is surjective. Considering further the cohomology exact sequences of

$$0 \to \Theta_{S'_1,f_1} \to \Theta_{S'_1} \to N_{f_1/S'_1} \to 0$$

and

$$0 \to \Theta_{S_1'}(-f_1) \to \Theta_{S_1',f_1} \to \Theta_{f_1} \to 0,$$

we have only to show that $H^2(\Theta_{S'_1}(-f_1)) = 0$. Moreover, by Serre duality, this is equivalent to $H^0(\Omega_{S'_1}((\tau - 1)C'_1)) = 0$.

Fix $\tau \ge 2$. We show by induction on k that

$$H^{0}(\Omega_{S'_{1}}(kC'_{1})) = 0 \tag{5}$$

for any $1 \le k \le \tau - 1$. The case k = 1 is nothing but (4). Assume that (5) holds for some $k, 1 \le k \le \tau - 2$. The exact sequence $0 \to N^*_{C'_1/S'_1} \to \Omega_{S'_1}|_{C'_1} \to \Omega_{C'_1} \to 0$ splits because $N^*_{C'_1/S'_1}$ is non-trivial. That is, we have

$$\Omega_{S_1'}|_{C_1'} \simeq N^*_{C_1',S_1'} \oplus \Omega_{C_1'}. \tag{6}$$

By taking the tensor product of $\Omega_{S'_1}$ with the exact sequence $0 \to \mathcal{O}_{S'_1}(kC'_1) \to \mathcal{O}_{S'_1}((k+1)C'_1) \to (k+1)N_{C'_1/S'_1} \to 0$, we get an exact sequence

$$0 \longrightarrow \Omega_{S'_1}(kC'_1) \longrightarrow \Omega_{S'_1}((k+1)C'_1) \longrightarrow \Omega_{S'_1}|_{C'_1} \otimes (k+1)N_{C'_1/S'_1} \longrightarrow 0.$$
(7)

But by (6) the last nontrivial term of this sequence is isomorphic to $kN_{C'_1/S'_1} \oplus (k+1)N_{C'_1/S'_1}$, whose cohomology groups vanish since we have assumed that $1 \le k \le \tau - 2$. Thus by using (7) we have $H^0(\Omega_{S'_1}(kC'_1)) \simeq H^0(\Omega_{S'_1}((k+1)C'_1))$. Hence by assumption we get $H^0(\Omega_{S'_1}((k+1)C'_1)) = 0$. In particular we have $H^0(\Omega_{S'_1}((\tau-1)C'_1)) = 0$. This is the required result. (qed for Claim 3.6)

Completion of the Proof of Lemma 3.2. Then the cohomology exact sequence of (1) and Claims 3.4–3.6 (and the reality) imply $H^2(\Theta_{S',A'}) = 0$.

Let $\{S \xrightarrow{p} B, A \xrightarrow{q} B \text{ with } A \hookrightarrow S\}$ be the Kuranishi family of deformations of the pair (S', A'). By Proposition 3.3 *B* can be regarded as a small open ball in $T^1_{S',A'}$ containing the origin and we have isomorphisms $p^{-1}(0) \simeq S'$ and $q^{-1}(0) \simeq C'$. Again by Proposition 3.3 and the exact sequence of Lemma 3.1 we have an exact sequence

$$0 \longrightarrow H^{1}(\Theta_{S',A'}) \longrightarrow T^{1}_{S',A'} \xrightarrow{r} H^{0}(\mathcal{O}_{l} \oplus \mathcal{O}_{\overline{l}}) \longrightarrow 0.$$
(8)

Then the following proposition can be proved along the same line as in the proof of Proposition 2.3 in [Hon2].

PROPOSITION 3.7. Let $t \neq 0 \in B \subseteq T^1_{S',A'}$ be an element such that both of the factors of r(t) in (8) are non-zero. Then $S_t := p^{-1}(t)$ satisfies the following: (i) S_t is nonsingular and is an eight points blown-up of $\mathbb{CP}^1 \times \mathbb{CP}^1$, (ii) the τ th anti-canonical system of S_t is one-dimensional without base points and defines an elliptic fibration $S_t \to \mathbb{CP}^1$, (iii) there exists real and nonsingular anti-canonical curve C_t of S_t , such that (iv) the order of N_{C_t/S_t} in Pic^0C_t is τ .

Proof. By the choice of t it is obvious that $S_t = p^{-1}(t)$ is nonsingular and $A_t := q^{-1}(t)$ consists of two smooth curves C_t and f_t which are invariant by the natural real structure of S_t . It is also obvious that both C_t and f_t are elliptic curves, because C_t (resp. f_t) is obtained as a smoothing of C' (resp. f') and the curves f_{20} and \overline{f}_{20} (resp. f_{2i} and \overline{f}_{2i} $(1 \le i \le \tau)$) are smooth rational curves.

Now following the idea of [KP] we proceed as follows. Let $\Delta \subseteq \mathbb{C}$ be a small open disk around the origin and $\varpi : S'_1 \times \Delta \to \Delta$ the projection. Let $\gamma : S_\Delta \to S'_1 \times \Delta$ be the blowing-up with center $(l_1 \amalg \overline{l}_1) \times \{0\}$, and put $\varpi' := \varpi \cdot \gamma : S_\Delta \to \Delta$. Then it is easily shown that $\varpi'^{-1}(0)$ is biholomorphic to S'. That is, the pair (S', A' = C' + f') can be smoothed to obtain the pair $(S'_1, A'_1 = C'_1 + f_1)$. Hence the versality of the Kuranishi family of deformations of the pair (S', A') implies that $(S_t = p^{-1}(t), A_t = q^{-1}(t))$ can be obtained as smooth deformation of (S'_1, A'_1) . In particular we have $c_1^2(S_t) = c_1^2(S'_1) = 0$.

We choose a blowing-down map $\beta: S_1 \to S_0 = \mathbb{CP}^1 \times \mathbb{CP}^1$ as in Section 2 and set $\beta' := \mu_1|_{S'_1} \cdot \beta$, where $\mu_1: Z'_1 \to Z_1$ is the blowing-up with center L_1 as before. β' is eight points blowing-up of S_0 . Let n and n' be curves on S_0 whose bidegrees are (1, 0) and (0, 1) respectively. We suppose that they do not go through the blown-up eight points on S_0 . Set $n_1 := \beta'^{-1}(n)$ and $n'_1 := \beta'^{-1}(n')$. We regard n_1 and n'_1 as curves on S' which do not go through the singular locus of S'. Then since both of $N_{n_1/S'}$ and $N_{n'_1/S'}$ are trivial n_1 and n'_1 are stable by any small deformations of S'. Let n_t and n'_t be preserved curves on S_t , and let β_t be the rational map associated to the linear system $|n_t + n'_t|$. Then β_t gives a blowing-down map $S_t \to \mathbb{CP}^1 \times \mathbb{CP}^1$ since both of N_{n_t/S_t} and $N_{n'_t/S_t}$ are trivial and we have $H^1(\mathcal{O}_{S_t}) = 0$ by upper-semi-continuity. Combining with $c_1^2(S_t) = 0$ we have (i).

We now know that (S_t, A_t) is obtained as a smooth deformation of (S'_1, A'_1) as rational surfaces. Then recalling that C'_1 (resp. f_1) is an anti-canonical curve (resp. a τ -th anti-canonical curve) of S'_1 , we may conclude that C_t (resp. f_t) is also an anti-canonical curve (resp. a τ -th anti-canonical curve).

Thus we get two distinct τ th anti-canonical curves τC_t and f_t and, hence, the τ th anti-canonical system of S_t is at least one-dimensional. But since $f_t^2 = 0$ (because f_t is pluri-anti-canonical curve of S_t with $c_1^2(S_t) = 0$), $|f_t|$ is at most one-dimensional without base points. Hence we have completed the proof of (ii) and (iii). For a proof of (iv) see [BPV, III (8.3)], for example.

Next we investigate deformations of the triple (Z', S', A') which was constructed in Section 2.

LEMMA 3.8. We have $H^2(\Theta_{Z'}(-S')) = 0$.

Proof. By Proposition 4.1 in [Hon2] we have only to show that $H^2(\Theta_{Z_1}(-S_1)) = 0$. Since Z_1 is a Moishezon twistor space a result of Campana [C, Lemma 1.9] shows that it suffices to show that the restriction map $H^2(Z_1, \mathbb{C}) \to H^2(S_1, \mathbb{C})$ is injective. But the latter is shown by Kreussler [Kr1, p. 258].

The following Proposition can be proved in the same way as Propositions 4.5 and 4.6 in [Hon2], using Lemmas 3.2, 3.8 and Proposition 3.3. So we omit the proof.

PROPOSITION 3.9. We have $T^2_{Z',S',A'} = H^2(\Theta_{Z',S',A'}) = 0$. In particular deformations of the triple (Z', S', A') are unobstructed. Further we have a commutative diagram

$$\begin{array}{cccc} \mathbf{T}^{1}_{Z',S',A'} & \longrightarrow & \mathbf{T}^{1}_{S',A'} \\ & & & \downarrow \\ & & & \downarrow \\ H^{0}(\mathcal{O}_{Q}) & \stackrel{h}{\longrightarrow} & H^{0}(\mathcal{O}_{l}) \oplus H^{0}(\mathcal{O}_{\overline{l}}), \end{array}$$

where the vertical arrows are surjective and h is given by $t \mapsto (t, t)$.

Let $\{\mathcal{Z}' \xrightarrow{\rho} B', \mathcal{S}' \xrightarrow{p'} B', \mathcal{A}' \xrightarrow{q'} B'$, with $\mathcal{A}' \hookrightarrow \mathcal{S}' \hookrightarrow \mathcal{Z}'\}$ be the Kuranishi family of deformations of the triple $(\mathcal{Z}', \mathcal{S}', \mathcal{A}')$, where B' can be identified with a small open ball in $T^1_{\mathcal{Z}', \mathcal{S}', \mathcal{A}'}$ containing the origin by Proposition 3.9.

Let $\xi \in T^{1}_{Z',S',A'}$ be any real vector whose image in $H^{0}(\mathcal{O}_{Q})$ (see the above diagram) is non-zero. Let $B'' \subseteq B'$ be any real holomorphic curve in B' through the origin whose tangent vector at the origin is ξ . Let $\{Z'' \to B'', S'' \to B'', A'' \to B''$ with $A'' \hookrightarrow S'' \hookrightarrow Z''\}$ be the restriction of the Kuranishi family onto B'' and $t \in B''$ be a non-zero real element. Then by Donaldson and Friedman [DF] $Z_t := \rho^{-1}(t)$ is a twistor space of $4\mathbb{CP}^2$. Further as in the proof of Proposition 2.5 in [Hon2] $S_t := p'^{-1}(t)$ is a real nonsingular element of $|-\frac{1}{2}K_{Z_t}|$. Moreover by Proposition 3.7 there exists a real nonsingular anti-canonical curve C_t of S_t such that the order of N_{C_t/S_t} in $\operatorname{Pic}^0 C_t$ is τ . (The reality of C_t easily follows from that of t.)

That is, we have proved

THEOREM 3.10 (= Theorem 1.1). Z_t is a twistor space over $4\mathbb{CP}^2$ with the following property: There exist real, smooth and irreducible members $S_t \in |-\frac{1}{2}K_{Z_t}|$ and $C_t \in |-K_{S_t}|$ respectively such that the order of N_{C_t/S_t} in Pic⁰ C_t is τ .

Acknowledgements

The author would like to express his gratitude to Professor A. Fujiki for valuable conversations and encouragements. He would also like to thank the referee for many helpful suggestions.

References

- [AHS] Atiyah, M., Hitchin, N. and Singer, I.: Self-duality in four-dimensional Riemannian geometry, *Proc. Roy. Soc. London Ser. A* **362** (1978), 425–461.
- [BPV] Barth, W., Peters, C. and Van de Ven, A.: Compact Complex Surfaces, Springer, New York, 1984.
- [C] Campana, F.: The class C is not stable by small deformations, *Math. Ann.* **290** (1991), 19–30.
- [CK] Campana, F. and Kreussler, B.: Existence of twistor spaces of algebraic dimension two over the connected sum of four complex projective planes, *Proc. Amer. Math. Soc.* 127 (1999), 2633–2642.
- [DF] Donaldson, S. K. and Friedman, R.: Connected sums of self-dual manifolds and deformations of singular spaces, *Nonlinearity* **2** (1989), 197–239.
- [Hi] Hitchin, N.: Kählerian twistor spaces, *Proc. London Math. Soc. (3)* **43** (1981), 133–150.
- [Hon1] Honda, N.: On the structure of Pedersen-Poon twistor spaces, to appear in *Math. Scand.*
- [Hon2] Honda, N.: Dondaldson-Friedman construction and deformations of a triple of compact complex spaces, Osaka J. Math. 36 (1999), 641–672.
- [HI] Honda, N. and Itoh, M.: A Kummer type construction of self-dual metrics on the connected sum of four complex projective planes, J. Math. Soc. Japan. 52 (2000), 139–160.
- [Hor] Horikawa, E.: Deformations of holomorphic maps. III Math. Ann. 222 (1976), 275–282.
- [KP] Kim, J. and Pontecorvo, M.: A new method of constructing scalar-flat Kähler surfaces, J. Differential Geom. 41 (1995), 449–477.
- [Kr1] Kreussler, B.: Small resolutions of double solids, branched over a 13-nodal quartic surfaces, Ann. Global Anal. Geom. 7 (1989), 227–267.
- [Kr2] Kreussler, B.: Moishezon twistor spaces without effective divisors of degree one, J. Algebra Geom. 6 (1997), 379–390.
- [KK] Kreussler, B. and Kurke, H.: Twistor spaces over the connected sum of 3 projective planes, *Compositio Math.* 82 (1992), 25–55.
- [LB] LeBrun, C.: Explicit self-dual metrics on $\mathbb{CP}_2 \# \cdots \# \mathbb{CP}_2$ J. Differential Geom. 34 (1991), 223–253.
- [PP1] Pedersen, H. and Poon, Y. S.: Self-duality and differentiable structures on the connected sum of complex projective planes, *Proc. Amer. Math. Soc.* 121 (1994), 859–864.
- [PP2] Pedersen, H. and Poon, Y. S.: Equivariant connected sums of compact self-dual manifolds, *Math. Ann.* 301 (1995), 717–749.
- [P1] Poon, Y. S.: Compact self-dual manifolds of positive scalar curvature, J. Differential Geom. 24 (1986), 97–132.

- [P2] Poon, Y. S.: On the algebraic structure of twistor spaces, J. Differential Geom. 36 (1992), 451–491.
- [S] Sakai, F.: Anticanonical models of rational surfaces, *Math. Ann.* 269 (1984),389–410.