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Weighted Lp Boundedness of
Pseudodifferential Operators and
Applications

Nicholas Michalowski, David J. Rule, and Wolfgang Staubach

Abstract. In this paper we prove weighted norm inequalities with weights in the Ap classes, for pseu-

dodifferential operators with symbols in the class S
n(ρ−1)
ρ,δ that fall outside the scope of Calderón–

Zygmund theory. This is accomplished by controlling the sharp function of the pseudodifferential

operator by Hardy–Littlewood type maximal functions. Our weighted norm inequalities also yield Lp

boundedness of commutators of functions of bounded mean oscillation with a wide class of operators

in OPSm
ρ,δ .

1 Introduction

Recall that, given u ∈ C∞
0 (R

n), a pseudodifferential operator is an operator defined by

a(x,D)u(x) =
1

(2π)n

∫

Rn

a(x, ξ)û(ξ)ei〈x,ξ〉dξ,

where the symbol a(x, ξ) is assumed to be smooth in both the spatial variable x and

the frequency variable ξ, and satisfies certain growth conditions. An example of sym-

bols one might consider is the class Sm
ρ,δ , introduced by L. Hörmander [8], consisting

of a(x, ξ) ∈ C∞(R
n × R

n) with

|∂α
ξ ∂

β
x a(x, ξ)| 6 Cα,β〈ξ〉

m−ρ|α|+δ|β|,

where 〈ξ〉 = (1 + |ξ|2)
1
2 , m ∈ R, 0 6 δ, ρ 6 1.

An important problem in partial differential equations and harmonic analysis is

the question of Lp boundedness of pseudodifferential operators, which has been ex-

tensively studied, but the problem of boundedness of these operators in weighted Lp

spaces is a bit more involved. A pioneering investigation in this context was the pa-

per by N. Miller [10], where he showed that for symbols in S0
1, 0 one has the weighted

boundedness

(1.1) ‖a(x,D)u‖L
p
w
6 C‖u‖L

p
w

for all w ∈ Ap.

Here, of course, L
p
w denotes the weighted Lp space with weight w (see (2.1)). Later

S. Chanillo and A. Torchinsky ([4]) considered symbols in the class S
n
2

(ρ−1)

ρ, δ and

showed (1.1) for 2 6 p < ∞ and w ∈ A p
2
.

Received by the editors October 2, 2009; revised July 15, 2010.
Published electronically June 17, 2011.
AMS subject classification: 42B20, 42B25, 35S05, 47G30.
Keywords: weighted norm inequality, pseudodifferential operator, commutator estimates.

555

https://doi.org/10.4153/CMB-2011-122-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-122-7


556 N. Michalowski, D. J. Rule, and W. Staubach

In this paper we obtain weighted boundedness results as well as commutator esti-

mates for pseudodifferential operators. In the case of weighted boundedness results,

we complete the study for operators in S
n(ρ−1)
ρ,δ , with 0 6 δ < 1, 0 < ρ 6 1 and show

in Theorem 3.4 the L
p
w boundedness of these operators for all w ∈ Ap, 1 < p < ∞.

This is done by proving the pointwise estimate (a(x,D)u)♯(x0) 6 Mp(u)(x0). This

is formulated as Theorem 3.3. As far as we are aware, the best previous result con-

cerning weighed boundedness for these operators was the result of J. Álvarez and

J. Hounie ([1]), where they showed weighted boundedness of pseudodifferential op-

erators in OPS
n(ρ−1)
ρ, δ with 0 6 δ 6 ρ 6 1

2
. Our results are more natural in the sense

that they remove the restriction δ 6 ρ 6 1
2
. While our methods are similar to those

of [1] and [4] we are able to obtain a more favorable estimate on the Kernel in certain

situations (see Lemma 3.2), which allows us to remove this restriction.

Our weighted norm inequalities also enable us to prove boundedness of the com-

mutators of pseudodifferential operators with functions in BMO, the set of func-

tions of bounded mean oscillations (see Definition 2.2). More precisely, we show

that if p ∈ (1,∞), f ∈ BMO, and a ∈ Sm
ρ,δ , with either 0 6 δ < ρ < 1 and

m < n(ρ − 1)| 1
p
− 1

2
|, or ρ = 1, and m 6 0, then the commutator [ f , a(x,D)] is

bounded on Lp. This is formulated as Theorem 4.2 and it extends the Lp boundedness

of BMO commutators with OPS0
1,0 due to R. Coifman, R. Rochberg, and G. Weiss [5],

and the L2 boundedness result of Chanillo [3] for commutators between BMO func-

tions and operators in OPSm
ρ,δ , m < 0. In the case that ρ = 1 (even including δ = 1)

these were also extended by P. Auscher and M. Taylor [2].

Boundedness results for commutators arise in several places in connection to par-

tial differential equations. For example they arise in the study of elliptic systems with

BMO coefficients in [14] and the study of regularity for the Navier–Stokes equation-

sin [6].

2 Basic Notions of Weights, Weighted Norm Inequalities, and BMO

Given u ∈ L
p
loc, the p-th maximal function Mpu is defined by

Mpu(x) = sup
B∋x

{
1

|B|

∫

B

|u(y)|pdy

} 1
p

,

where the supremum is taken over balls B in R
n containing x. We shall use the no-

tation uB := 1
|B|

∫
B
|u(y)|dy for the average of the function u over B, so the standard

Hardy-Littlewood maximal function is given by

Mu(x) := M1u(x) = sup
B∋x

uB.

Given the above notation one defines the class of Muckenhoupt Ap weights as

follows.

https://doi.org/10.4153/CMB-2011-122-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-122-7


Weighted Lp Boundedness of Pseudodifferential Operators 557

Definition 2.1 Let w be a positive function in L1
loc. One says w ∈ A1 if Mw(x) 6

Cw(x), for almost all x ∈ R
n.

One says w ∈ Ap for p ∈ (1,∞) if

sup
B balls in Rn

wB(w
−1
p−1 )

p−1
B < ∞.

The Ap constants of a weight w ∈ Ap for p ∈ [1,∞) are defined by

[w]A1
:= sup

B balls in Rn

wB‖w−1‖L∞(B),

and

[w]Ap
:= sup

B balls in Rn

wB(w
−1
p−1 )

p−1
B for p ∈ (1,∞).

It is a well-known fact that for 1 < p < ∞ and 1
p

+ 1
p ′

= 1, w ∈ Ap, if and only

if w−1/(p−1) ∈ Ap ′ ; see [11]. In particular w ∈ A2 if and only if w−1 ∈ A2, a fact that

will be used later on. Also p1 < p2 implies that Ap1
⊂ Ap2

.

Given w ∈ Ap the weighted Lp norm is defined by

(2.1) ‖u‖L
p
w

:=

{∫
|u(y)|pw(y) dy

} 1
p

.

Furthermore for u ∈ L1
loc, the Fefferman–Stein sharp function u♯ is defined by

u♯(x) = sup
B∋x

inf
c

1

|B|

∫

B

|u(y) − c| dy.

A fact about the weighted norm inequalities that will be crucial for our studies is

that for a linear operator T a sharp function estimate of the form

(Tu)♯(x) 6 C p Mpu(x),

valid for all 1 < p < ∞ and u ∈ C∞
0 , implies the weighted Lp boundedness

‖Tu‖L
p
w
. ‖u‖L

p
w
,

for 1 < p < ∞, w ∈ Ap and u ∈ L
p
w(R

n); see for example [10, Theorem 2.12] for

the details. In Section 4 of this paper we shall deal with functions of bounded mean

oscillation (BMO) whose definition we recall.

Definition 2.2 A locally integrable function u belongs to BMO if

sup
B

1

|B|

∫

B

|u(x) − uB| dx < ∞.
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For u ∈ BMO it is well known that er|u(x)| is locally integrable for r < 1. This is a

consequence of the John–Nirenberg theorem; see e.g., [7, p. 524]. Furthermore, for

all γ < 1
2ne

, there exists a constant Cn,γ so that for u ∈ BMO and all balls B,

(2.2)
1

|B|

∫

B

eγ|u(x)−uB|/‖u‖BMO dx 6 Cn,γ .

For this, see [7, p. 528]. This fact will be used in our commutator estimate, i.e.,

Theorem 4.2.

Notational convention Here and in the sequel, a . b means a 6 Cb for some

constant C . The dependence of the constants on a and b will be obvious from the

contexts. We will also denote all generic constants by C even though their value may

differ from line to line.

3 Pseudodifferential Operators and their Weighted Lp Boundedness

In order to establish sharp function estimates we need a couple of lemmas that will

handle balls of different sizes. In our proofs we will frequently use a standard Little-

wood–Paley partition of unity {ϕk}k>0 ⊂ C∞
0 (R

n) with suppϕ0 ⊂ {ξ | |ξ| 6 2}
and suppϕk ⊂ {ξ | 2k 6 |ξ| 6 2k+1} for k > 1.

One also has, for all multi-indices α and N > 0, |∂α
ξ ϕ0(ξ)| 6 cα,N〈ξ〉

−N ,

|∂α
ξ ϕk(ξ)| 6 cα2−k|α| for some cα > 0 and all k > 1, and

ϕ0(ξ) +

∞∑

k=1

ϕk(ξ) = 1, for all ξ ∈ R.

The first lemma, which is fairly simple, yields a classical kernel estimate. This

implies the rapid decrease of the Schwartz kernel of the Hörmander class of pseudo-

differential operators

Lemma 3.1 Let a ∈ Sm
ρ,δ with m ∈ R and ρ, δ ∈ [0, 1]. Let ak(x, ξ) = a(x, ξ)ϕk(ξ),

for k > 0 with ϕk as in the above Littlewood–Paley decomposition. Then

(3.1) |z|l
∣∣∣
∫

∂β
x ak(x, ξ)ei〈z,ξ〉dξ

∣∣∣ . 2k(n+m−ρl+δ|β|),

for all x, z ∈ R
n and l > 0

Proof Using the definition of the symbol class Sm
ρ,δ and the Leibniz rule one readily

sees that |∂α
ξ ∂

β
x ak(x, ξ)| . 2k(m−ρ|α|+δ|β|). Integration by parts then yields

∣∣∣ zl
i

∫
∂β

x ak(x, ξ)ei〈z,ξ〉dξ
∣∣∣ ≃

∣∣∣
∫

∂β
x ak(x, ξ)∂ l

ξi
(ei〈z,ξ〉)dξ

∣∣∣

.
∣∣∣
∫

∂ l
ξi
∂β

x ak(x, ξ)ei〈z,ξ〉dξ
∣∣∣ . 2k(n+m−ρl+δ|β|).

Summing in i proves (3.1) for all integers l > 0. For non-integer values of l, the result

follows by interpolation of the inequality for k and k + 1, where k < l < k + 1.
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Now since the Schwartz kernel of the pseudodifferential operator a(x,D) is given

by K(x, y) = 1
(2π)n

∫
a(x, ξ)ei〈y,ξ〉dξ, Lemma 3.1 yields

(3.2) |K(x, y)| . |y|−N for N > 0, |x − y| > 1 and ρ > 0.

Estimate (3.2) will be needed for the sharp function estimate over balls of radius

larger than one. For the same reason we also need the following Hörmander-type

kernel estimate, which corresponds to the kernel estimates of [9] for the case of mul-

tipliers.

Lemma 3.2 Let a ∈ Sm
ρ,δ , 0 6 δ 6 1, 0 < ρ 6 1 and let K(x, z) =

∫
ei〈z,ξ〉a(x, ξ)dξ.

Then for

|x − xB| 6 r 6 1, θ ∈ [0, 1], p ∈ [1, 2],
1

p
+

1

p ′
= 1,

m

ρ
+

n

pρ
< l <

m

ρ
+

n

pρ
+

1

ρ
,

1

2
< c1 < 2c2 < ∞ and j > 1,

the following estimate holds:

(3.3)

{ ∫

c12 j rθ<|y−xB|<c22 j+1rθ

|K(x, x − y) − K(xB, xB − y)|p ′

dy

} 1
p ′

. 2− jlr l(ρ−θ)−m− n
p .

Proof Using the Littlewood-Paley partition of unity introduced previously, we set

Kk(x, z) =
∫

ei〈z,ξ〉ak(x, ξ) dξ and observe that

{ ∫

c12 j rθ<|y−xB|<c22 j+1rθ

∣∣K(x, x − y) − K(xB, xB − y)
∣∣ p ′

dy

} 1
p ′

6

∞∑

k=0

{ ∫

c12 j rθ<|y−xB|<c22 j+1rθ

∣∣Kk(x, x − y) − Kk(xB, xB − y)
∣∣ p ′

dy

} 1
p ′

.

(3.4)

We now set A j := {y | c12 jrθ < |y − xB| < c22 j+1rθ}, choose k0 such that

2k0 |x − xB| ∼ 1, and split the sum on the left-hand side of (3.4) as

∑

k>k0

{∫

A j

|Kk(x, x − y)|p ′

dy

} 1
p ′

+
∑

k>k0

{∫

A j

|Kk(xB, xB − y)|p ′

dy

} 1
p ′

+
∑

k<k0

{∫

A j

∣∣Kk(x, x − y) − Kk(xB, xB − y)
∣∣ p ′

dy

} 1
p ′

=: I1 + I2 + I3.
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The estimates for I1 and I2 are similar, so we only carry out that of I1. To this

end we observe that if y ∈ A j and |x − xB| 6 r, then the triangle inequality yields

that |y − x| > 2 jrθ(c1 − 2− jr1−θ), and since r 6 1 and j > 1, one actually has

|y − x| & 2 jrθ. Therefore, using the Hausdorff–Young inequality we have

I1 .
∑

k>k0

2−l jr−lθ

{∫

A j

|Kk(x, x − y)|p ′

|x − y|p ′ ldy

} 1
p ′

.
∑

k>k0

2−l jr−lθ
∑

|α|=l

{∫
|∂α

ξ ak(x, ξ)|pdξ

} 1
p

.
∑

k>k0

2−l jr−lθ2k(m−lρ+ n
p

).

Hence, taking l > m
ρ + n

ρp
and recalling that 2k0 |x − xB| ∼ 1, we obtain the estimate

(3.5) I1 . 2−l jr−lθ2k0(m−lρ+ n
p

) . 2−l jr−lθ|x − xB|
lρ−m− n

p 6 2− jlrl(ρ−θ)−m−n/p.

To estimate I3 we observe that

I3 6
∑

k<k0

{∫

A j

|Kk(x, x − y) − Kk(xB, x − y)|p ′

dy

} 1
p ′

+
∑

k<k0

{∫

A j

|Kk(xB, x − y) − Kk(xB, xB − y)|p ′

dy

} 1
p ′

:= I3,1 + I3,2.

Reasoning in the same way as we did for I1, the Hausdorff–Young inequality and

the mean-value theorem yield

I3,1 .
∑

k<k0

2−l jr−lθ

{∫

A j

∣∣Kk(x, x − y) − Kk(xB, x − y)
∣∣ p ′

|x − y|p ′ ldy

} 1
p ′

.
∑

k<k0

2−l jr−lθ
∑

|α|=l

{∫
sup

x
|∂x∂

α
ξ ak(x, ξ)|pdξ

} 1
p

|x − xB|

.
∑

k<k0

2−l jr−lθ2k(m−lρ+ n
p

+1)|x − xB|

. 2−l jr−lθ|x − xB|
lρ−m− n

p 6 2− jlrl(ρ−θ)−m−n/p,

(3.6)

provided that l < m
ρ + n

ρp
+ 1

ρ .
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Now, to estimate I3,2 we observe that

(y − xB)α
(

Kk(xB, x − y) − Kk(xB, xB − y)
)

= (y − xB)α
∫

(ak(xB, ξ)ei〈x−y,ξ〉 − ak(xB, ξ)ei〈xB−y,ξ〉)dξ

= (y − xB)α
∫

ak(xB, ξ)ei〈xB−y,ξ〉
(

ei〈x−xB,ξ〉 − 1
)

dξ

= (−1)|α|
∫

ei〈xB−y,ξ〉∂α
ξ {ak(xB, ξ)(ei〈x−xB,ξ〉 − 1)}dξ

= (−1)|α|
[
∂α
ξ

{
ak(xB, ξ)(ei〈x−xB,ξ〉 − 1)

}]̂
(y − xB),

where [ · ]̂ denotes the Fourier transform in the ξ variable.

Therefore,

∣∣ y − xB

∣∣ l∣∣Kk(xB, x − y) − Kk(xB, xB − y)
∣∣

.

∣∣∣∣
[ ∑

|β+γ|=l, |γ|>0

∂β
ξ ak(xB, ξ)∂γ

ξ

(
ei〈x−xB,ξ〉 − 1

)

+
∑

|β|=l

∂β
ξ ak(xB, ξ)(ei〈x−xB,ξ〉 − 1)

]̂
(y − xB)

∣∣∣∣ .

So once again, the Hausdorff–Young inequality, mean value theorem, and using again

the fact that 2k0 |x − xB| ∼ 1 yield

I3,2 .
∑

k<k0

2−l jr−lθ

{ ∫

A j

|y − xB|
p ′ l

∣∣∣Kk(xB, x − y) − Kk(xB, xB − y)
∣∣∣

p ′
} 1

p ′

(3.7)

.
∑

k<k0

2−l jr−lθ

{∫ ∣∣∣∣
[ ∑

|β+γ|=l
|γ|>0

∂β
ξ ak(xB, ξ)∂γ

ξ (ei〈x−xB,ξ〉 − 1)

+
∑

|β|=l

∂β
ξ ak(xB, ξ)

(
ei〈x−xB,ξ〉 − 1

)]∣∣∣∣
p

dξ

} 1
p

.
∑

k<k0

2−l jr−lθ
∑

|β+γ|=l, |γ|>0

2k(m−ρ|β|+ n
p

)|x − xB|
|γ|−1|x − xB|

+
∑

k<k0

2−l jr−lθ
∑

|β|=l

2k(m−ρ|β|+ n
p

+1)|x − xB|
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.
∑

k<k0

2−l jr−lθ
∑

|β+γ|=l, |γ|>0

2k(m−ρ|β|+ n
p

)2−kρ(|γ|−1)|x − xB|

+
∑

k<k0

2−l jr−lθ2k(m−ρl+ n
p

+1)|x − xB|

.
∑

k<k0

2−l jr−lθ2k(m−ρl+ n
p

+1)|x − xB|

. 2−l jr−lθ|x − xB|
lρ−m− n

p 6 2−l jrl(ρ−θ)−m−n/p,

provided that we take l < m
ρ + n

ρp
+ 1

ρ . Thus putting the estimates (3.5), (3.6), and

(3.7) together yields (3.3).

Theorem 3.3 Let a ∈ Sm
ρ,δ , with 0 < ρ 6 1, 0 6 δ < 1 and m = n(ρ− 1). Then for

u ∈ C∞
0 and p ∈ (1,∞) one has that

(3.8) (a(x,D)u)♯(x0) . Mpu(x0).

Proof Given x0 ∈ R
n, we let B be a ball containing x0, with centre xB and radius

r, and we let B ′ be the ball concentric to B with radius 2r. Let u ∈ C∞
0 (R

n) and

decompose u as

u = uχB ′ + u(1 − χB ′) =: u1 + u2.

This yields

1

|B|

∫

B

|a(x,D)u(x) − (a(·,D)u)B|dx

6
2

|B|

∫

B

|a(x,D)u1|dx +
1

|B|

∫

B

|a(x,D)u2(x) − (a(·,D)u2)B|dx

:= I + II.

To estimate I we just use Hölder’s inequality and the Lp boundedness of pseudo-

differential operators of order m = n(ρ− 1), which yields

I 6 2
{ 1

|B|

∫

B

|a(x,D)u1(x)|pdx
} 1

p

.
{ 1

|B|

∫

Rn

|u1|
pdx

} 1
p

.
{ |B ′|

|B|

} 1
p
{ 1

|B ′|

∫

B ′

|u|pdx
} 1

p

. Mpu(x0).

Here we would like to emphasize the fact that the estimate of I is completely inde-

pendent of the radius of B.
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In order to estimate II we consider first the case of balls B with radius r > 1. We

aim to show

II . Mu(x0),(3.9)

which in turn can be bounded by Mpu(x0), because of the fact that the Lp maximal

functions Mp are increasing in p (this follows from a simple application of Hölder’s

inequality).

To show (3.9), let Bk be the ball with centre xB and radius 2k+1r. Then II can be

estimated by

1

|B|

∫

B

|a(x,D)u2(x) − (a(·,D)u2)B| dx

=
1

|B|

∫

B

∣∣∣ 1

|B|

∫

B

a(x,D)u2(x) − a(z,D)u2(z) dz
∣∣∣ dx

=
1

|B|

∫

B

∣∣∣ 1

|B|

∫

B

∫

Rn

u2(y)

∫

Rn

(a(x, ξ)ei〈x−y,ξ〉 − a(z, ξ)ei〈z−y,ξ〉) dξ dy dz
∣∣∣ dx

×

∫

Rn

|u2(y)|

{
1

|B|

∫

B

∣∣∣
∫

Rn

a(x, ξ)ei〈x−y,ξ〉 dξ
∣∣∣ dx

+
1

|B|

∫

B

∣∣∣
∫

Rn

a(z, ξ)ei〈z−y,ξ〉 dξ
∣∣∣ dz

}
dy

6 2

∞∑

k=1

1

|B|

∫

B

∫

2kr6|y−xB|<2k+1r

|u(y)|
∣∣∣
∫

Rn

a(x, ξ)ei〈x−y,ξ〉 dξ
∣∣∣ dy dx

.

∞∑

k=1

∫

B

2nk

|Bk|

∫

2kr6|y−xB|<2k+1r

|u(y)|

|x − y|n+1
|x − y|n+1|K(x, x − y)| dy dx

.

∞∑

k=1

rn2nk(2kr)−n−1 1

|Bk|

∫

Bk

|u(y)| dy . r−1

∞∑

k=1

2−kMu(x0) . Mu(x0),

where we have used that supp u2(y) ⊂ {y; |y − xB| > 2r}, and also (3.2), which

holds here because the radius r > 1.

Therefore, for balls B containing x0 with radius r > 1 we have

(3.10)
1

|B|

∫

B

|a(x,D)u(x) − (a(x,D)u)B| dx . Mpu(x0).

Here we remark that (3.10) is actually valid for all balls of radius r > 1 and all

a ∈ Sm
ρ,δ with 0 6 δ < 1, 0 < ρ 6 1 and m 6 n(ρ − 1)| 1

p
− 1

2
| + min(0, n(ρ−δ)

2
) for

which the Lp boundedness is known (see [1]).

It remains to estimate II in the case that the radius of B is less than one. We set

CB := 1
|B|

∫
K(xB, xB − y)u2(y)dy. Since supp u2 ⊂ {y | |y − xB| > 2r}, applying
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Lemma 3.2, with c1 = c2 = 1, θ = 1 and m = n(ρ− 1) yields

1

|B|

∫

B

∣∣a(x,D)u2(x) −CB

∣∣dx

=
1

|B|

∫

B

∣∣∣
∫ (

K(x, x − y) − K(xB, xB − y)
)

u2(y)dy
∣∣∣dx

6

∞∑

j=1

1

|B|

∫

B

{ ∫

2 j r<|y−xB|<2 j+1r

|K(x, x − y) − K(xB, xB − y)|p ′

dy
} 1

p ′

×
{ ∫

|u2(y)|pdy
} 1

p

dx

. sup
x

∞∑

j=1

{ ∫

2 j r<|y−xB|<2 j+1r

∣∣K(x, x − y) − K(xB, xB − y)
∣∣ p ′

dy

} 1
p ′

×

{ ∫

2 j r<|y−xB|<2 j+1r

|u2(y)|pdy

} 1
p

.

∞∑

j=1

2− jlrl(ρ−1)−n(ρ−1)− n
p (2 jr)

n
p Mpu(x0) .

∞∑

j=1

2 j( n
p
−l) Mpu(x0),

(3.11)

provided that l < n. Furthermore, in order to be able to sum the series
∑

j>1 2 j( n
p
−l)

we need to take l > n
p

. The main problem here is that we need to combine this

condition on l with that of the Lemma 3.2, which in the case of m = n(ρ − 1) is

n − n
ρ + n

pρ < l < n − n
ρ + n

pρ + 1
ρ .

Combining these conditions means requiring

max
{ n

p
, n −

n

ρ
+

n

pρ

}
< l < min

{
n, n −

n

ρ
+

n

pρ
+

1

ρ

}
.

Since n − n
ρ + n

pρ 6 n
p

and n
p
< n for p > 1, this is possible provided

n

p
< n −

n

ρ
+

n

pρ
+

1

ρ
.

Rearranging this, we see that this is equivalent to

0 < n
(

1 −
1

ρ

)(
1 −

1

p

)
+

1

ρ
,

which is the case if we take p sufficiently close to one.

Hence choosing an admissible l, summing the series in (3.11), and once again

recalling the increasing behaviour of Mp in p, we obtain

1

|B|

∫
|a(x,D)u2 −CB|dx . Mpu(x0),
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for all balls B with radius less than one. Now taking the supremum over balls of

various sizes that all contain x0 yields (3.8) for all p ∈ (1,∞).

It is well known that sharp function estimates of the above form imply L
p
w es-

timates for all weights w ∈ Ap; see e.g., [10]. Therefore Theorem 3.3 yields the

following theorem, whose proof we omit.

Theorem 3.4 Let a ∈ Sm
ρ,δ , with 0 < ρ 6 1, 0 6 δ < 1 and m 6 n(ρ− 1). Then for

each p ∈ (1,∞) and each Muckenhoupt weight w ∈ Ap the following weighted norm

inequality holds:

‖a(x,D)u‖L
p
w
. ‖u‖L

p
w
.

We note that in some cases the ranges of ρ, δ, and m in Theorem 3.4 cannot be

extended. The case δ = 1 includes the class S0
1,1 that fails to be L2 bounded. In the

case ρ = 1, the range of m 6 0 is clearly sharp by considering a(x, ξ) = 〈ξ〉m. Finally

ρ = 0 is excluded purely as a technicality to avoid dividing by 0 in Lemma 3.2.

Using complex interpolation, we can show weighted boundedness for a rather

large class of operators, but only for a subclass of all weights. This turns out to be

sufficient in establishing Lp-boundedness of commutators of pseudodifferential op-

erators with BMO functions.

Theorem 3.5 Let p ∈ [1, 2], 0 6 ρ 6 1, 0 6 δ < 1 be fixed numbers. Suppose

that there exists M1 ∈ R such that for all a1(x, ξ) ∈ Sm
ρ,δ with m < M1, the operators

a1(x,D) are bounded from Lp to itself. Furthermore, assume that there exists M2 < M1

such that for all a2(x, ξ) ∈ Sm
ρ,δ with m < M2 and all w ∈ Ap, the operators a2(x,D)

are bounded from L
p
w to itself. Then for each m < M1 there exists α ∈ (0, 1) depending

on p, ρ, δ, and m, such that the operator a(x,D) is a bounded on L
p
wε for all ε ∈ [0, α],

all w ∈ Ap and a(x,D) ∈ OPSm
ρ,δ .

Remark 3.6 Here in the assumptions of the theorem we implicitly assume that the

boundedness of the various operators require only finitely many derivatives of the

corresponding symbols. Since for a generic pseudodifferential operator the Lp and

weighted Lp boundedness only require differentiability in the symbol up to a finite

order depending on the dimension n and p, for the purpose of the proof of this

theorem the symbol estimates in the proof of the theorem can be restricted to only a

finite number of derivatives in ξ and x.

Proof If m < M1, then there exists M ′ such that m < M ′ < M1. We put me :=

M ′ − m, which is obviously a positive number. Also, let M ′ ′ be a number less than

min(m,M2). Then we put mb := M ′ ′ − m, and therefore mb is a negative number.

Now for a ∈ Sm
ρ,δ we introduce a family of symbols az(x, ξ) := 〈ξ〉za(x, ξ), where

z ∈ Ω := {z ∈ C; mb 6 Re z 6 me}. It is easy to see that for |α + β| 6 C1 with C1

large enough and z ∈ Ω,

|∂α
ξ ∂

β
x az(x, ξ)| . (1 + |Im z|)C2〈ξ〉Re z+m−ρ|α|+δ|β|.

Given u ∈ C∞
0 and w ∈ Ap, we also introduce the operator

Tzu := w
z−me

p(mb−me) az(x,D)
(

w
− z−me

p(mb−me) u
)
.

https://doi.org/10.4153/CMB-2011-122-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-122-7


566 N. Michalowski, D. J. Rule, and W. Staubach

Since p ∈ [1, 2], Ap ⊂ A2, which in turn implies that both w
1
p and w

−1
p belong

to L
p
loc. Therefore, for z ∈ Ω, Tz is an analytic family of operators in the sense of

Stein and Weiss [13]. Now we claim that for zb ∈ C with Re zb = mb, the oper-

ator (1 + |Im zb|)
−C2 azb

(x,D) is bounded on L
p
w. Indeed the symbol of this opera-

tor is (1 + |Im zb|)
−C2 azb

(x, ξ), which belongs to Smb+m
ρ,δ uniformly in z, and since by

construction mb + m = M ′ ′ < M2 and w ∈ Ap, our assumption about the L
p
w-

boundedness of the operators of order less than M2 yields

‖Tzb
u‖

p
Lp = (1 + |Im zb|)

pC2

∥∥∥ (1 + |Im zb|)
−C2 w

zb−me
p(mb−me) azb

(x,D)(w
−

zb−me
p(mb−me) u)

∥∥∥
p

Lp

. (1 + |Im zb|)
pC2

∥∥∥w
−

zb−me
p(mb−me) u

∥∥∥
p

L
p
w

= (1 + |Im zb|)
pC2

∥∥∥w
−

zb−me
p(mb−me) u

∥∥∥
p

L
p
w

= (1 + |Im zb|)
pC2‖u‖

p
Lp ,

where we have used the fact that |w
±

zb−me
p(mb−me) | = w± 1

p . Similarly if ze ∈ C

with Re ze = me, then |w
± ze−me

p(mb−me) | = 1 and since the symbol of the operator

(1 + |Im ze|)
−C2 aze

(x,D) belongs to Sme+m
ρ,δ uniformly in z and me + m = M ′ < M1,

the Lp-boundedness assumption for operators of order m < M1 yields

‖Tze
u‖

p
Lp . (1 + |Im ze|)

pC2‖u‖
p
Lp ,

‖T0u‖
p
Lp =

∥∥∥w
me

p(me−mb) a(x,D)(w
me

p(mb−me) u)
∥∥∥

p

Lp
6 C‖u‖

p
Lp .

Hence, setting α =
me

me−mb
we have α ∈ (0, 1) and ‖a(x,D)u‖L

p

wα
. ‖u‖L

p

wα
. Now

interpolation of this estimate with ‖a(x,D)u‖Lp . ‖u‖Lp , using interpolation of op-

erators with change of measure [12], we finally arrive at ‖a(x,D)u‖L
p

wε
. ‖u‖L

p

wε
for

all ε ∈ [0, α], a ∈ Sm
ρ,δ with m < M1 and w ∈ Ap.

Corollary 3.7 For pseudodifferential operators, one has the following weighted esti-

mates:

(i) Let p ∈ (1, 2], 0 < ρ < 1, 0 6 δ < 1, m < n(ρ − 1)| 1
p
− 1

2
| + min{0, n(ρ−δ)

2
}

then there exists α ∈ (0, 1) such that for all ε ∈ [0, α], a(x, ξ) ∈ Sm
ρ,δ , a(x,D) is

bounded on L
p
wε , for all w ∈ Ap.

(ii) If a(x, ξ) ∈ Sm
1,δ with m 6 0 and δ < 1, then a(x,D) is bounded on L

p
wε , for all

ε ∈ [0, 1], p ∈ (1,∞) and w ∈ Ap.

Proof (i) Let us take M1 = n(ρ− 1)| 1
p
− 1

2
| + min{0, n(ρ−δ)

2
} and M2 = n(ρ− 1),

in Theorem 3.5. Then for m < n(ρ − 1), p ∈ (1,∞), 0 < ρ < 1, 0 6 δ < 1,

a(x,D) ∈ OPSm
ρ,δ is a bounded operator on L

p
w for all w ∈ Ap (as a consequence of

Theorem 3.4), and for

m < n(ρ− 1)
∣∣∣ 1

p
−

1

2

∣∣∣ + min
{

0,
n(ρ− δ)

2

}
, p ∈ (1, 2],

0 < ρ 6 1, 0 6 δ < 1, a(x,D) ∈ OPSm
ρ,δ
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is bounded on Lp (see [1]). Consequently, all the assumptions of Theorem 3.5 are

fulfilled, and therefore we obtain the desired result.

(ii) If a(x, ξ) ∈ Sm
1,δ and m 6 0, δ < 1 then we have the L

p
w-boundedness of

a(x,D) from Theorem 3.3 and also, in particular just Lp-boundedness. Interpolation

with change of measure between these two results yields the claim.

4 Applications to the Boundedness of Commutators

In this section we show how our weighted norm inequalities can be used to derive

the Lp boundedness of commutators of these operators with functions of bounded

mean oscillation. We start with the following lemma.

Lemma 4.1 Let a(x,D) ∈ OPSm
ρ,δ be an L2 bounded operator. Given f ∈ BMO

with ‖ f ‖BMO = 1 and u and v in C∞
0 , there exists λ > 0 such that the function

Φ(z) :=
∫

ez f (x)a(x,D)(e−z f (x)u)(x)v(x) dx is holomorphic in the disc |z| < λ.

Proof First of all, we can assume that the symbol of a(x,D) is compactly supported

in the x variables. Indeed since the function v(x) in the definition of Φ is compactly

supported, by multiplying the integrand defining Φ(z) with a compactly supported

function equal to 1 on the support of v, we can make the x-support of the symbol

of a(x,D) compact. Given g ∈ C∞
0 , we now take a smooth cut-off function χ(y, ξ)

equal to 1 in a neighbourhood of the origin, take ε ∈ (0, 1], and define the function

aε(x,D)g(x) :=

∫∫
a(x, ξ)χ(εy, εξ) ei〈x−y,ξ〉 g(y) dy dξ.

It is well known (see [11, p. 258]) that aε(x,D)g converges in the Schwartz class S

to a(x,D)g. Since convergence in S also implies uniform convergence on compact

sets, this together with the assumption of compact support in x of the symbol a(x, ξ),

yields that if g ∈ C∞
0 , limε→0 ‖aε(x,D)g − a(x,D)g‖L2 = 0.

Due to density of C∞
0 in L2 and the L2-boundedness assumption on a(x,D) (and

that of aε(x,D) with uniform bounds in ε), it is easy to show that for all g ∈ L2,

(4.1) lim
ε→0

‖aε(x,D)g − a(x,D)g‖L2 = 0.

Now recall the fact mentioned in Section 2 about functions f ∈ BMO, namely

the local integrability of er| f (x)| for r < 1. This means er| f | ∈ L2
loc if r < 1

2
, and

hence for u ∈ C∞
0 and |z| < 1

2
, one has u e±z f ∈ L2. Now, if we define Φε(z) =∫

v(x) ez f (x)aε(x,D)(e−z f (x)u)(x) dx, then since the integral defining Φε is absolutely

convergent and its integrand is holomorphic in z for |z| < 1, it follows that Φε is a

holomorphic function in |z| < 1. Now we claim that for γ, as in (2.2),

lim
ε→0

sup
|z|< γ

2

|Φε(z) − Φ(z)| = 0.
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Indeed, since γ
2
< 1

2
, for |z| < γ

2
,

|Φε(z) − Φ(z)| =

∣∣∣∣
∫

v(x)ez f (x)
[

aε(x,D) − a(x,D)
]

(e−z f u)(x) dx

∣∣∣∣

6 ‖v ez f ‖L2‖
[

aε(x,D) − a(x,D)
]

(u e−z f )‖L2

6 ‖v‖L∞

{∫

supp v

e2Re z f (x) dx

} 1
2

‖[aε(x,D) − a(x,D)](u e−z f )‖L2 .

Using the assumption ‖ f ‖BMO = 1, and (2.2), it follows that for any compact set K,∫
K

e±2Re z f (x)dx 6 Cγ(K), for |z| < γ
2

. Therefore, (4.1) yields

lim
ε→0

sup
|z|< γ

2

|Φε(z) − Φ(z)| = 0,

and hence Φ(z) is a holomorphic function in |z| < γ
2

.

An application of the above lemma yields our main result on the boundedness of

BMO commutators.

Theorem 4.2 Let a ∈ Sm
ρ,δ , with either 0 6 δ < ρ < 1 and m < n(ρ − 1)| 1

p
− 1

2
|

or ρ = 1, 0 6 δ < 1 and m 6 0. Then for all p ∈ (1,∞) and all f ∈ BMO, the

commutator [ f , a(x,D)] is bounded on Lp.

Proof Without loss of generality we can assume that ‖ f ‖BMO = 1. Let us first con-

sider the case 1 < p 6 2, 0 6 δ < ρ < 1 and take u and v in C∞
0 with ‖u‖Lp 6 1

and ‖v‖Lp ′ 6 1. Define the function Φ(z) :=
∫

ez f (x)a(x,D)(e−z f (x)u)(x)v(x)dx.

Since a(x,D) is bounded on L2 ([11]), Lemma 4.1 yields that Φ(z) is a holomor-

phic function in the disc |z| < λ, and the Hölder inequality applied to Φ(z) and the

assumption on v yield

|Φ(z)|p 6

∫
ep Re z f (x)|a(x,D)(e− z f (x)u)|p dx.

In the proof of the Lp boundedness, we first consider the case 1 < p 6 2 and 0 6 δ <
ρ < 1, m < n(ρ− 1)| 1

p
− 1

2
|. Our first goal is to show that the function Φ(z) defined

above is bounded on a disc with centre at the origin and sufficiently small radius. At

this point we recall a lemma due to Chanillo ([3]), which states that if ‖ f ‖BMO = 1,

then for 2 < q < ∞, there is an r0 depending on q such that for all r ∈ [−r0, r0],

er f (x) ∈ A q
2
.

For p ∈ (1, 2], taking q = 2p in Chanillo’s lemma, we see that there is some r1

depending on p such that for |r| < r1, er f (x) ∈ Ap. Now let α be the parameter from

Corollary 3.7, for which a ∈ OPSm
ρ,δ with m < n(ρ − 1)( 1

p
− 1

2
) is L

p
wα bounded

for 1 < p 6 2. Then with λ as in Lemma 4.1, we claim that if R := min (λ, αr1

2
)

and |z| < R, then |Φ(z)| . 1. Indeed since R < αr1

2
and 1 < p 6 2, we have

|Re z| < αr1

p
and therefore | pRe z

α | < r1. Therefore Chanillo’s lemma yields that for
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|z| < R, w := e
pRe z
α f (x) ∈ Ap and since ep Re z f (x)

= wα, Corollary 3.7 and the Lp

bound on u imply that for |z| < R,

|Φ(z)|p 6

∫
ep Re z f (x)|a(x,D)(e− z f (x)u)|p dx =

∫
wα|a(x,D)(e− z f (x)u)|p dx

.

∫
wα|e− z f (x)u|p dx =

∫
wαw−α|u|p dx . 1,

and therefore |Φ(z)| . 1 for |z| < R. In the the case of 1 < p 6 2, ρ = 1 and

m 6 0, we just need to take R = min(λ, r1

2
), and since by Chanillo’s lemma for

|z| < R, ep Re z f (x) ∈ Ap, in a way similar to the above argument, Theorem 3.4 yields

the boundedness of Φ(z), on the aforementioned disc.

Finally, using the holomorphicity of Φ(z) in the disc |z| < R, the Cauchy’s integral

formula applied to the circle |z| = R ′ < R, and the estimate |Φ(z)| . 1, we conclude

that

|Φ ′(0)| 6
1

2π

∫

|z|=R ′

|Φ(ζ)|

|ζ2|
|dζ| . 1.

By construction of Φ(z), we actually have that Φ ′(0) =
∫

v(x)[ f , a(x,D)]u(x) dx,

and the definition of the Lp norm of the operator [ f , a(x,D)] together with the as-

sumptions on u and v yield at once that [ f , a(x,D)] is a bounded operator from Lp

to itself for a(x,D) ∈ OPSm
ρ,δ with 0 6 δ < ρ < 1 and m < n(ρ − 1)| 1

p
− 1

2
| and

a(x,D) ∈ OPSm
1,δ with m 6 0 and 0 6 δ < 1 (in both cases 1 < p 6 2).

To handle the case 2 < p < ∞, we just use duality in both cases and the fact

that for a ∈ Sm
ρ,δ and δ < ρ, the adjoint a(x,D)∗ ∈ OPSm

ρ,δ . Furthermore, since
1
p

+ 1
p ′

= 1, then for p ∈ (2,∞), 1 < p ′ < 2 and m < n(ρ − 1)| 1
p
− 1

2
|, then

m < n(ρ − 1)| 1
p ′

− 1
2
|. Therefore the results of the previous case of p ∈ (1, 2] yield

that ‖[ f , a∗(x,D)]‖Lp ′→Lp ′ . 1. Hence

‖[ f , a(x,D)]‖Lp→Lp = sup
‖u‖Lp61

sup
‖v‖

Lp ′61

|〈[ f , a(x,D)]u, v〉|

= sup
‖u‖Lp61

sup
‖v‖

Lp ′61

|〈u,−[ f , a∗(x,D)]v〉|

6 ‖[ f , a∗(x,D)]‖Lp ′ ‖v‖Lp ′ ‖u‖Lp . 1.

This concludes the proof of the theorem.
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