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We demonstrate that a large class of discrete choice models of demand can be
approximated by real analytic demand models. We obtain this result by combining
(1) a novel real analytic property of the mixed logit and the mixed probit models
with any distribution of random coefficients and (ii) an approximation property
of finite mixtures of Gumbel and Gaussian distributions. To illustrate some of the
implications of this result, we discuss how real analyticity facilitates nonparametric
and semi-nonparametric identification, extrapolation to hypothetical counterfactuals,
numerical implementation of demand inverses, and numerical implementation of the
maximum likelihood estimator.

1. INTRODUCTION

Real analyticity is an extreme form of smoothness of a function’s dependence on
its arguments: a real analytic function f(x) is an infinitely differentiable function
whose Taylor series at any point xj in its domain converges to f(x) for x in a
neighborhood of xy (Rudin, 1976). Intuitively, a real analytic function can be
represented as a power series (i.e., an infinite degree polynomial) and manipulated
in the same way as polynomials within an open interval of convergence. In
the context of discrete choice models of demand, the restrictions imposed by
real analyticity can limit the realism of a demand model (e.g., ruling out kinks
and discontinuities) but, when economically affordable, they can also facilitate
econometric implementation. While some recent papers have relied on the high-
level use of real analyticity for specific identification (Fox et al., 2012; Fox and
Gandhi, 2016; Allen and Rehbeck, 2020; Wang, 2023) and estimation (Wang,
2023) results, it is unclear how broad the class of real analytic discrete choice
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models of demand is and in which sense the restrictions imposed by real analyticity
can be econometrically and/or numerically advantageous.

We consider a class of discrete choice models of demand with an index structure
in the indirect utilities (possibly nonlinear), with any distribution of random
coefficients, and—in line with Berry, Levinsohn, and Pakes (1995)—which can
include endogenous regressors. In the first part of the paper, we demonstrate
that this class of models has a dense real analytic subset: any demand model in
this class (which needs not be real analytic) can be approximated uniformly and
arbitrarily well by a real analytic demand model from the same class. We obtain
this result by showing that the mixed logit (McFadden and Train, 2000) and the
mixed probit (Hausman and Wise, 1978) are real analytic for any distribution of
random coefficients, and then by relying on an approximation property of finite
mixtures of Gumbel and Gaussian distributions (Nguyen et al., 2020).

In prior work, Fox et al. (2012) showed that the mixed logit model with
random coefficients defined over a compact support is real analytic. This compact
support condition however rules out distributions of random coefficients such as
the normal and the log-normal, which are commonly used by applied researchers.
We generalize this result and demonstrate that the mixed logit is real analytic for
any distribution of random coefficients. Differently, we are not aware of prior work
showing that the mixed probit is real analytic: for example, Stinchcombe and White
(1998) state (without proof) that the normal cumulative distribution function is not
supposed to be real analytic (first sentence after Thm. 3.10, p. 305). We instead
prove that also the mixed probit model is real analytic for any distribution of
random coefficients. In addition, we further show that any discrete choice model
of demand belonging to our class (not necessarily a mixed logit or a mixed probit)
can be approximated uniformly and arbitrarily well by a real analytic finite mixture
of mixed logits and/or mixed probits.

The class of discrete choice models of demand we consider is economically
“broad” in the sense of McFadden and Train (2000). In their famous “possibility
result,” McFadden and Train (2000, Thm. 1, p. 451) showed that any random
utility model within a large class can be approximated by a flexible mixed logit
model belonging to the class we consider. Our result then implies that one can
approximate uniformly and arbitrarily well any such mixed logit approximant by a
real analytic demand model, therefore uniformly approximating any random utility
model in the class considered by McFadden and Train (2000). In other words, when
dealing with any random utility model in the class considered by McFadden and
Train (2000), one can restrict attention to a subset of real analytic demand models
without any loss of precision.

In the second part of the paper, we discuss the econometric advantages of real
analytic demand models in terms of nonparametric and semi-nonparametric identi-
fication, extrapolation to hypothetical counterfactuals, numerical implementation
of demand inverses in the context of aggregate market-level data, and numerical
implementation of the maximum likelihood estimator (MLE) in the context of
disaggregate individual-level data.
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In order to reduce the potential for misspecification, researchers are often
interested in the nonparametric identification of discrete choice models of demand
(Berry and Haile, 2014, 2018). This allows demand models to be robust with
respect to a broad range of consumer preferences and behaviors, including com-
plex substitution patterns, continuous quantity choices, complementarities across
products, and consumer inattention, and consequently it allows researchers to
perform more realistic counterfactual simulations, such as hypothetical mergers
or the introduction of new taxes (Compiani, 2022). Without further restrictions,
nonparametrically identified demand models can only be used to predict counter-
factual outcomes within the support spanned by the data. However, it is possible
for counterfactual outcomes of interest to fall outside the support of the data, for
example, equilibrium prices that significantly increase after a hypothetical merger.
Identifying such counterfactual outcomes is an extrapolation exercise for which
nonparametric identification may not be sufficient without additional restrictions
on the demand model. We show that real analyticity implies a form of identification
extensibility that overcomes this challenge.

Real analyticity also facilitates the semi-nonparametric identification of discrete
choice models of demand. In this approach, the researcher assumes, for example,
a mixed logit or a mixed probit model, and then wishes to identify the distribution
of random coefficients nonparametrically. Without real analyticity, the semi-
nonparametric identification of demand models usually requires covariates with
large support (restrictive for example with price variables, known to be positive)
and prevents the inclusion of interactions among covariates (Fox et al., 2012; Fox
and Gandhi, 2016; Masten, 2018). These standard assumptions, in some cases,
limit the economic content of discrete choice models of demand. For example,
the approximation result by McFadden and Train (2000) crucially relies on the
inclusion of interactions among covariates (see p. 466). The identification results
by Fox et al. (2012), however, explicitly rule out interactions among covariates
(Assumptions 2 and 3, pp. 207-208). Differently, by generalizing the mixed logit
identification result in Wang (2023) to real analytic discrete choice models of
demand, we show that the distribution of random coefficients is nonparametrically
identified also in the presence of interactions among covariates.

In the context of aggregate market-level data, both the parametric BLP (Berry
et al., 1995) and the semi-nonparametric approach (Wang, 2023) require the
computation of a demand inverse for each market and at each iteration of the
generalized method of moments (GMM) minimization. Inversion can be numeri-
cally challenging (Knittel and Metaxoglou, 2014), motivating different numerical
approaches such as fixed point algorithms (Berry et al., 1995; Lee and Seo, 2016),
the Mathematical Program with Equilibrium Constraints (MPEC) (Dubé, Fox, and
Su, 2012a; Su and Judd, 2012), and the use of an approximate inverse (Salanié and
Wolak, 2019). The real analyticity of the demand model mitigates this challenge
by guaranteeing the desirable numerical performance of Newton—Raphson (NR)
algorithms.

As is well known, the NR algorithm can achieve quadratic convergence to
the unique solution giving rise to the demand inverse when the starting value
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of the iterations is “close” to the unique solution and the demand function is
twice continuously differentiable (Lee and Seo, 2016). However, the extent of
the proximity of the starting value to the unique solution typically depends on
knowledge of the demand model that is not available to the researcher before
estimation. In addition, numerical convergence is usually determined by the
researcher, who must choose some tolerance within which to stop the iterations.
Unfortunately, though, there is little theoretical guidance on how to choose such
level of tolerance, which is often calibrated using heuristic rules of thumb. In fact,
despite achieving numerical convergence on the basis of such rules of thumb, it is
still possible for the NR algorithm to be divergent. Unguided choices of starting
values and of stopping criteria represent a challenge for the numerical convergence
of NR algorithms to the unique solution giving rise to the demand inverse (Dubé
et al., 2012a; Lee and Seo, 2016; Conlon and Gortmaker, 2020).

Building on Smale’s alpha-theory (Smale, 1986), we show that the real analyt-
icity of the demand model leads to simple and verifiable sufficient conditions that
do not require prior knowledge of the parameters one is trying to estimate and that
guarantee the supra-exponential convergence of the NR algorithm to the unique
solution giving rise to the demand inverse.' These verifiable sufficient conditions
are simple to compute, do not require the implementation of any NR iteration, and
provide theoretical guidance for the selection of robust starting values and stopping
criteria that guarantee the quick convergence of the NR algorithm. In Monte Carlo
simulations, we investigate the practical performance of these sufficient conditions
both when used in stand-alone NR algorithms and when embedded in a hybrid
algorithm (HA) that combines FP and NR iterations (Rust, 1987; Iskhakov et al.,
2016). We show that the proposed HA is guaranteed to converge from any starting
value and that its numerical performance in the context of demand inverses is
superior to those of both stand-alone FP and stand-alone NR algorithms.”

In the context of demand estimation with disaggregate individual-level data,
researchers often rely on (parametric) MLE (Goolsbee and Petrin, 2004; Train
and Winston, 2007; Dubois, Griffith, and O’Connell, 2020). For reasons similar
to those discussed above, the real analyticity of the demand model (and so of the
log-likelihood function) also guarantees the desirable numerical performance of
NR algorithms for the implementation of the MLE. The practical performance of
NR algorithms to implement the MLE is subject to the same challenges mentioned
above: the appropriate choices of starting values and of stopping criteria often
depend on knowledge of the demand model one is trying to estimate. As for
the computation of demand inverses, we show that the real analyticity of the
log-likelihood function gives rise to simple and verifiable sufficient conditions for
the supra-exponential convergence of NR algorithms to a local maximum of the

! As shown in Rheinboldt (1988), the supra-exponential rate is of the same order as the rate of quadratic convergence.

2Stand-alone FP algorithms based on contraction mappings are guaranteed to converge to the unique solution from
any starting value, but at a slower rate than the proposed HA. Stand-alone NR algorithms may instead fail to converge
from starting values that are not in the basin of attraction of the unique solution.
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log-likelihood function that do not require any prior knowledge of the parameters
one is trying to estimate. By speeding up the computation of all local maxima of the
log-likelihood function, these sufficient conditions also prove useful in mitigating
the consequences of multiplicity of local maxima in the numerical implementation
of the MLE.

Some caution is needed in interpreting the econometric implications of real
analyticity discussed in the second part of the paper, as they apply directly only to
the real analytic demand models and to the real analytic approximants described in
the first part of the paper, but not necessarily to more general demand models that
are not real analytic, for example, demand models that exhibit discontinuities and
kinks (Smith, 1935). While in this paper, we show that a large class of these more
general demand models can be approximated uniformly and arbitrarily well by real
analytic demand models, it is not known whether some form of “transitivity”” holds
between the real analytic approximants and the targets of approximation, and so
whether any of the econometric implications of real analyticity also hold for the
approximated models.

The rest of the paper is organized as follows: Section 2 introduces the nota-
tion and the class of discrete choice models of demand we consider. Section 3
defines the concept of real analyticity and presents the main results of the paper.
Section 4 discusses the implications of real analyticity for nonparametric and
semi-nonparametric identification. Section 5 discusses the implications of real
analyticity for the numerical implementation of demand inverses and of the
MLE. Section 6 reports some Monte Carlo simulations related to the results from
Section 5. Section 7 concludes the paper. All the proofs, intermediate results,
and details about the Monte Carlo simulations are reported in the Appendix. The
MATLAB code used to perform the Monte Carlo simulations is available on the
authors’ webpages.

2. A CLASS OF DEMAND MODELS

In this section, we describe the class of discrete choice models of demand studied
in the paper.

Each individual i in cell ¢ (e.g., a time period, a market, or a combination of
both) is observed to choose an alternative from choice set {0, 1,...,J}, where 0O
denotes the outside option. Individual i’s indirect utility from choosing alternative
j=1,....Jintis

Ui = gi(xjr, di; Bi) + & + s, @

where g; is a known alternative-specific function of j’s observed K-dimensional
characteristics xj, (e.g., price), individual i’s observed demographics d; (e.g.,
gender, income, and education), and a finite-dimensional vector of individual-
specific random coefficients B; (e.g., price coefficient); & is an unobserved
(7, t)-specific intercept common to all individuals in cell 7 (e.g., demand shock at the
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product-market level), and &, is an idiosyncratic error term. Individual i’s indirect
utility from choosing the outside option O in ¢ is normalized to &,

Uior = &ior-

Remark 1. Our results apply to both cross-sectional and panel data. Each
individual can either be observed only once making a choice from a specific cell ¢
(cross-sectional data) or repeatedly making choices over several t’s (panel data).

Remark 2. We place no restriction on (&, xj;, d;), which can be of any type (e.g.,
discrete or continuous, with unbounded or bounded support) and, in line with Berry
et al. (1995), allow for the possibility of correlation between &, and x;; (e.g., price
endogeneity).

Remark 3. The function g;(x;,d;; B;) does not impose any restriction on the
interactions among its arguments and only needs to be known up to the finite-
dimensional vector of random coefficients S;. For example, as required by the
approximation result in McFadden and Train (2000), one could use sieves or
polynomials to specify a flexible linear index g;(x,d;; B;) = Xj(xj;,d;)B; with
Xj(xj;, d;) being a known vector of interactions among the elements of (x;,d;).

We assume that in each cell ¢, the idiosyncratic errors (z-:,-j,)fzo are distributed
according to G and independently of all other components of (U ijt)j!=0- Moreover,
conditional on the observed demographics d;, §; is distributed according to
F(-;d;) and independently of (fj,,xj,)}z , and (&'jz)f:o- Then, individual #’s choice
probability of j in ¢ is

pijt = OT](EI;XZ’deia G)

2
Z/I{Uijz > Uy, Yr # J}dF (Bi; di)dG(eioys - - -, €int)s @
where & = (fj,)le, X, = (xj,)lzl, and o;(-) is the choice probability function of j.
Discrete choice model (2) can be used in most settings of interest for applied
researchers, including disaggregate individual-level data (Goolsbee and Petrin,
2004; Train and Winston, 2007; Dubois et al., 2020), aggregate market-level data
(Berry et al., 1995; Petrin, 2002; Wang, 2023), and combinations of both (Berry,
Levinsohn, and Pakes, 2004). With aggregate market-level data, the researcher
only observes market shares (pjt);zl , rather than individual choices, and the distri-
bution of demographics within each market ¢, I1;(d;). In this case, 0;(;; X, F, d;, G)
is typically further integrated over d;, so that p;; = faj(é,;X,, F,d;, G)dIl,(d)).

3. REAL ANALYTICITY

In this section, we first define the concept of real analyticity. We then show
that when the distribution G of the J 4 1 idiosyncratic errors (sij,)fzo is either
i.i.d. Gumbel or nondegenerate multivariate Gaussian, the resulting mixed logit or
mixed probit model in (2) is real analytic. Finally, we state our main real analytic
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approximation result: any demand model (2) (i.e., for any distributions F and G)
can be approximated arbitrarily well by a real analytic finite mixture of mixed logit
and/or mixed probit models as in (2).

We use || - || to refer to the Euclidean norm and || - ||, to the L, norm of a function
for p > 0. Moreover, we use F to denote the set of all possible distributions F.

Definition: Real Analyticity.

We define 0j(§;; X;, F,d;,G),j =1, ...,J, to be real analytic with respect to & at &
(and with respect to X; at Xyg) if:

1. 0j(§; X, F,d;, G) is infinitely differentiable with respect to &; at & (and with
respect to X; at Xy).

2. There exists an open neighborhood of &, (and X;() such that the Taylor series of
0j(¢;; X, F,d;, G) at & (and X,0) converges to 0j(&;; X;, F,d;, G) for any &, (and
X,) in this neighborhood.’

When a function is real analytic with respect to one of its arguments at each point in
the corresponding domain, we say that the function is real analytic with respect to
this argument in the domain. The first requirement holds whenever the distribution
G is sufficiently smooth. Violations happen, for example, when the distribution
function G exhibits jumps, so that the resulting demand function is discontinuous,
or again when G has kinks, so that the demand function is non-differentiable
(even though potentially continuous).* Despite these important exceptions, the
first requirement is trivially satisfied by both the mixed logit and the mixed probit
models. In contrast, even for these two relatively simple models, it is not trivial to
verify whether the second requirement holds, mainly because of the unconstrained
distribution of random coefficients F' we consider.

To understand the nature of this challenge, suppose G is i.i.d. Gumbel, so that
model (2) is a mixed logit. Denote by Supp(F) the support of F. The simplest
possible case occurs when Supp(F) = {8}, thatis, Pr(8; = 8) = 1. Then, (2) further
simplifies to a logit model:

pijr = 0j(§1: X1, F,d;, G)
_ exp{&j; +gi(xjr, di; B)} 3)
L+ Y expléy + & (i dis )}
Because exp{&y; + g-(xy;,d;; B)} is real analytic with respect to &, € R for
Jj =1,...,J, then the real analyticity of 0;(&; X,, F, d;, G) holds trivially. Similarly,

when F has finite support, say Supp(F) = {B8',...,8M}, (2) is a mixture of M
logit models each with 8; = ", m = 1,...,M. Because each logit model is

3Following Rudin’s (1976) Theorem 8.4 (p. 176), this definition of real analyticity is equivalent to Rudin’s (1976)
definition based on power series (p. 172).

4Smith (1935) provides an example of a discontinuous demand function, where the discontinuities are generated by
the presence of marginal buyers.
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real analytic and has positive radius of convergence at any & € R’, denoted by
rm(&; G) > 0, then the finite mixture also has positive radius of convergence at &,
r(&; F,G) :==inf, - mrn(&;G) > 0.For |§ —&|| < r(&;G), the Taylor series of
q(é{ ; X1, Fld;, G) at & converges to aj(g; ; X1, F,d;, G) and the second requirement
is thus satisfied.

When Supp(F) is bounded, that is, §; is bounded, intuitively, r,,(&:; F,G) is a
continuous function of m in the closure of Supp(F). Because r,,(&;; F, G) is always
positive, then its minimum in the closure of Supp(F) is guaranteed to be positive
and therefore 7(&;; F, G) = inf,,csupp(r) 1 (§:; G) > 0. As a result, the mixed logit
with bounded random coefficients is also real analytic.

However, when Supp(F) is unbounded, for example, F is Gaussian with
Supp(F) = R’ or log-normal with Supp(F) = Rfr, the argument above does
not apply. Even though each logit model in the mixture has positive radius of
convergence r,,(§; F) > 0, it is not straightforward to see that their infimum in
Supp(F), r(&; F,G), is still positive. The following proposition deals with this
challenge by showing that #(&;; F, G) can be uniformly bounded away from zero by
a constant that depends neither on £ € R nor on the support of F, so that the radius
of convergence of both the mixed logit and the mixed probit with any distribution
F is always positive at any &,.

THEOREM 1. For j=1,...,J, 0;(§; X;, F,d;; G) is real analytic with respect to
g&eR and inf r(&;F,G) > 0when:
geR/ FeF
(a) (mixed logit) G is i.i.d. Gumbel, or
(b) (mixed probit) G is multivariate Gaussian.

In particular,  inf  r(&; F,G) = 400 when G is multivariate Gaussian.
£eR/ FeF

Theorem 1(a) highlights that the radius of convergence of mixed logit (2) for
given F at & depends neither on & nor on F. Theorem 1(b) shows that the real
analyticity of mixed probit (2) is even stronger, with the radius of convergence
being infinity. This stronger result is a consequence of tighter bounds on the higher-
order derivatives of the mixed probit function with respect to &, which alleviate
the requirement on the size of the radius of convergence.’

3.1. Real Analytic Approximations

In this section, we build on Theorem 1 to construct a set of real analytic demand
models (2) that combine mixed logit and mixed probit models and that can be used
to approximate arbitrarily well any demand model (2), that is, not necessarily a real
analytic demand model.

5We thank an anonymous referee for pointing out the importance of these bounds and their potential usefulness in
strengthening several results in this paper.
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We start by defining a set of demand models (2) to which we can extend the real
analyticity from Theorem 1 and that will serve as approximants. First, we define a
set of density functions generated by finite mixtures of density 4: R/*! — R*:

U E_g—mi) &
M= Zciﬁh FT ,Zcizl, ¢; >0, ;L,'ERJ+1,§,~>0,1§i§m;meN .
i=1 i
@

When h = ¢ is a Gaussian density, M? defines the family of Gaussian mixtures
generated by ¢. When h = v is the i.i.d. Gumbel density, MY defines the family
of i.i.d. Gumbel mixtures generated by 1. We also define a more general family
of mixture distributions which includes both M? and MY

M?+ MY ={rgi+(1—r)gs, re[0,1], g1 € M?, g2 € MV}, 5

To simplify exposition, we use the notation G € M”" or F € M" to refer to the fact
that the density function corresponding to G or to F belongs to M".

Second, we define a family of distributions ¢ whose absolute moments can
increase at most at an exponential rate:

i=1

K
F¢={F:3A > 1 such that any « = (a1, ..., ag)th absolute moment of F, mg < AZk:l""‘},

(6)

where mf = f]_[kK:l |Bk|“dF (By, ..., Bk). Leading examples in F*° are distribu-
tions with bounded support, that is, there exists some A > 1 such that |8;| <A
almost surely for k=1, ..., K. Similarly, we define a family of distributions whose
absolute moments can increase at a rate that is the product of an exponential and
the squared root of a factorial rate:

Fet = {F:3A > 1 such that any o = (ay, ...,0ok)th absolute moment of F,

7

It is clear that F¢ C F°*. Because the moments of the Gaussian distribution
increase at a double factorial rate, the multivariate Gaussian distribution with
iid. . .
Bix N (0, 1) belongs to F* (but not to F¢).° Finally, we define the set of density

6To see this, denote by @ the distribution function of the multivariate Gaussian with B R N(0,1). Note that the o =

(CTR ak)th absolute moment of & is m,‘f = ]_[szl (o !!) (l{ak is odd}/2/m + oy is even}), where the double
factorial ax ! = (g ) (ax —2) (ax —4) ... 2 if ag isevenor ag ! ! = (g ) (ax —2) (ax —4)... 1 if g is odd. For any even o,
ap!=ap! ! x (g — D= (o ! 1)? (1+ ﬁ) X+ x 2 < (a!1)?2%/2 For any odd a, ! < (e !1)?(3/2)@—1/2 <

(112292, As aresult, m® < /2Zi1/2[TK_ | oyt and @ € Fet,
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functions generated by finite mixtures of density f,, where f,; is the density
corresponding to the distribution function F,; € F¢*:

noo B~ <
Met+ = Zciife"' k=l T ,Zcizl,ci>0,uieRK,gi>O,1§i§m;meN .
o sk Si i=I
()]
COROLLARY 1.

(a) Suppose that G € M? + MV in (5). Then, (0;(&;X,,F,d; G))f=1 is real
analytic with respect to & e R’ and  inf  r(&;F,G) > 0.
&eR) FeF
(b) Suppose that G € M? + MV in(5), 8i(xjr; Bi) =Xt Bi, and F € F* in (6). Then,
(0;(6s X, F,d;; G))le is real analytic with respect to (£, X;) € R’ x R”*X and

inf r(étaXt; G) > 0, where r(&-th; G) = infme.S‘upp(F) rm(ét’Xt; G)
&eR/ X, eRIXK

(c) (Mixed probit) Suppose that G € M? in (4), 8i(xjs; Bi)) = xjBi, and F € Met
in (8) with F,. € F¢* in (7). Then, (0;(6i; X1, F, dj; G))f:1 is real analytic with

respect to (£, X,) € R x R"*X and inf r(&,X;G) > 0.
£€R), X, cRIXK

Corollary 1(a) extends Theorem 1 to any finite mixture of mixed logit and mixed
probit models (2). Focusing on the linear index specification, Corollaries 1(b) and
1(c) extend real analyticity with respect to & to real analyticity with respect to
(&, X,). Because of the stronger real analytic property of the mixed probit (relative
to the mixed logit), Corollary 1(c) extends real analyticity with respect to X; to any
finite mixture of mixed probit models (2) with moments of the random coefficients
increasing at a faster rate, such as the squared root of a factorial rate (e.g., the
Gaussian distribution or mixtures of it).

An important implication of Corollary 1 is that any demand model (2)—not
necessarily real analytic—can be approximated, in terms of & (and X;), by a
sequence of real analytic demand models. This is important because, while the
real analytic demand models in Corollary | are subject to restrictions (in terms of
G and, in Corollaries 1(b) and 1(c), also F and g;(x;;; B;)), finite mixtures of these
preserve real analyticity and can approximate any more general demand model
(2) that does not need to satisfy the restrictions of Corollary 1. As an example,
consider a finite mixture of mixed probit models. According to Nguyen et al.
(2020) (their Thm. 5(f)), for any distribution G with density g, we can find a
sequence of distributions G%, € M? such that ||g— g%/, — 0 as m — oo. Then,

sup|o;j(&:; X, F, di, G) — 0j(&1: X, F,d;, G3)| < sup / WUy > Uyjr Vr # j}dF (Bi;dy) |g(e) — g% (e)| de
P& &

<Mrlg—gS L,

— 0,

)
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dF (B:d;)
dp
excludes any mass point. According to Corollary 1(a), 0;(&;; X, F, d;, Gﬁl) is real
analytic with respect to & € R’. We can then obtain a uniform approximation of
0j(&: X, F,d;,G) by a sequence of 0;(§; X, F.,d;, Gf;,) that are real analytic with
respect to & € R’. Similarly, we can achieve such uniform approximation jointly
in terms of (§;, X;) on the basis of the real analytic demand models in Corollaries

1(b) and 1(c). The next proposition formalizes these approximation results.

where My = max [ 1, supges } and B is the subset of the support of j; that

THEOREM 2. For any G and F with densities g and f defined in R/t
and RX, respectively, there exists a sequence of real analytic demand systems
(0 (& X Fodi, )} and (016 Xo, Fonedis Go) )55 with Gy € M® + MY in (5)
and F,, € F¢ in (6) such that:

(@) lim sup; . 0j(€: X,. F.di, G) — 0j(E: X F.di, G)| = 0.

(b) Suppose g;(x: B) =:B;. Then lim sup, ¢ v, |0(&:: X,, F.d, G) — 0y(&1: Xe, F
dia Gm)l =0.

(c) (Mixed probit) Suppose gj(xj; Bi) = xj: ;. Then for any G and F with densities
g and f defined in R and RX, respectively, there exists a sequence of real
analytic demand systems {o (&;; X;, F i, di, Gm)};giﬁ with Gy, Fy € M® in (4)
such that

lim sup |0j(&;X,,F.di,G) — 0j(&;: X,, Findi, Gy)| = 0.

M=) &, X,

Theorem 2(a) presents a uniform approximation in terms of & by the real
analytic demand models in Corollary 1(a), while Theorems 2(b) and 2(c) restrict
attention to linear indices and characterize uniform approximations in terms of
(&, X,) by the real analytic demand models in Corollaries 1(b) and 1(c), respec-
tively. On the one hand, the approximants in Theorems 2(b) and 2(c) rely on the
same linear indices as the demand models to be approximated. On the other hand,
the two results rely on distinct families of distributions (F¢ and M?, respectively)
for the approximation in terms of X;: G, and F,, in Theorem 2(b) belong to
different families, while they are both Gaussian mixtures in Theorem 2(c).

An immediate implication of the joint approximations in terms of (&,X;) in
Theorems 2(b) and 2(c) is that any random utility model (RUM) in the class con-
sidered by McFadden and Train (2000) (see paper for details) can be approximated
arbitrarily well by a real analytic demand model.

Remark 4. For any RUM in the class considered by McFadden and Train
(2000), there exists a sequence of real analytic demand models as defined in

Theorem 2(b) (or 2(c)) that uniformly converges to it in terms of (£,X,) € R/ x
RJXK'

Remark 4 builds on McFadden and Train (2000), who show that any RUM can
be approximated in terms of (&, X,) by a mixed logit model with linear indices
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(including polynomials of X;, see Remark 3) and a flexible F. Note that the mixed
logit approximant proposed by McFadden and Train (2000) is more flexible in
terms of F' than the real analytic demand models considered in Corollaries 1(b)
and 1(c), and thus its real analyticity does not follow from these. However, using
Theorem 2(b) (or 2(c)) and the fact that polynomials of X, are also real analytic,
one can approximate uniformly and arbitrarily well any such flexible mixed logit
approximant by a real analytic demand model with the same index structure,
therefore uniformly approximating the original RUM (see Appendix C).

To summarize, Theorem 2 and Remark 4 imply that, when dealing with demand
models generated by (2) or any RUM in the class considered by McFadden
and Train (2000), one can restrict attention to a subset of real analytic demand
models without any loss of precision. In the reminder of the paper, we discuss the
econometric advantages of dealing with such real analytic demand models in terms
of both identification and numerical implementation. To facilitate exposition, we
suppress from our notation d; when referring to o; and the subscript i when referring
to pijs-

4. IMPLICATIONS FOR IDENTIFICATION

In this section, we discuss how real analyticity facilitates the nonparametric
and semi-nonparametric identification of demand model (2) with linear indices
8i(xjr; Bi) = x;:B;. In this case, (2) can be equivalently expressed as 0;(5;; X;, F, G),
a function of the J-dimensional vector of average utilities §; = (5 jle with jth
element §; = x;; 8 +&;,, where B is the population average of the vector of random
coefficient B; and B; = B + AB;. Define o(8;X,, F,G) = (0j(6; X, F, G))le.
Analogously, the real analyticity of o (;; X}, F, G) with respect to & (and X;) can
be equivalently restated with respect to §; (and X;).

4.1. Nonparametric Identification

Researchers are often interested in identifying o (é;; Xy, F,G) as a function of
(6+,X;), what can be referred to as the nonparametric approach (Berry and Haile,
2014, 2018). In this approach, one wishes to remain agnostic about the functional
forms of G and F, so to reduce the potential for misspecification. This flexibility
allows demand model (2) to subsume a broad range of consumer preferences and
behaviors, including complex substitution patterns, continuous quantity choices,
complementarities across products, or consumer inattention, and consequently
it allows researchers to perform more realistic counterfactual simulations, for
example, hypothetical mergers or the introduction of new taxes (Compiani, 2022).

The real analyticity of demand model (2) implies a powerful form of identifica-
tion extensibility, which is crucial to enable researchers to perform hypothetical
counterfactuals on the basis of the nonparametric approach. Without further
restrictions on o (8;; X;, F, G), the nonparametric identification of o (§;; X}, F, G) in
the support of (8;, X;) spanned by the data, €2, only allows the researcher to predict
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counterfactual outcomes within the same support. However, it is possible for some
counterfactual outcomes to fall outside of €2, for example, new equilibrium prices
that significantly increase after a hypothetical merger or the introduction of a
new tax. Identifying such counterfactual outcomes is essentially an extrapolation
exercise for which the nonparametric identification of o (§;; X}, F, G) in  may
not be sufficient in the absence of additional restrictions on o (8,;:X;, F,G).” The
identification extensibility due to real analyticity proved in the next proposition
overcomes this challenge: the nonparametric identification of a real analytic
o (6 X;, F, G) is sufficient for any extrapolation outside of €2.

CorOLLARY 2 (Identification extensibility). Denote by Q2 the support of (8;, X;).
Suppose that G € M? + MY in (5) and that Q contains an open subset.
(a) Denote by Q25 the domain of §,. Then, for any X;,
0 (61, X1, F, G) is identified for §; € Qs — o (81; Xy, F, G) is identified for §; € R’.
(b) Suppose F € F¢ in (6). Then,
o (8, X, F, G) is identified for (§,,X;) € R
= 0(8;:X,, F,G) is identified for (8;,X;) € R’ x R7*K,
(c) Suppose G,F € M? in (4). Then,
o (61X, F, G) is identified for (6;,X;) € Q
= (8 X, F,G) is identified for (5, X;) € R’ x R/*K,
Corollary 2 holds due to two properties highlighted in Theorem 1 and Corollary 1.

First, because o (8;;X,, F,G) is real analytic for any (6,,X;) € R/ x R/*X, then
for any [|(8/,X)) — (8, X))l < r(8;,X;; F,G), where r(8,,X;; F,G) is the radius of

et
convergence at (;, X;), we have

o (X, F,G) =0 (8 X1, F,G)

Hf:l(ls,/y —8j)% l_[j<J p<P(xjp/, — Xjpr) ¥ ¥
5> Z

J(P+1)
L= IZJ(PH) k=1
x]_[a“f [[ &0 G:X.F.G). (10)
j=1 J=<J;p<P

or, in words, the Taylor series of o(8;;X],F,G) at (8;,X,;) converges to
o(8);X],F,G). Because 0(8,,X,,F G) is 1dent1ﬁed for (6,X;) € Q, we then
identify all its derivatives ]_[ 135 ]_[j<J <P Bgﬁ”’a((S,;X,,F, G) for (8;,X,) € Q.
Second, we know from Theorem | and Corollary 1 that r =inf, g/ y,cgixk 1(8;, Xi;
F) > 0. As a result, when (§;,X;) approaches the boundary of 2, we can

7Differently, the semi-nonparametric approach we discuss below in Section 4.2 does not suffer from this extrapolation
problem: once F is identified, one can evaluate demand model (2) at any value of (8;, X;).
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extrapolate o (8;;X},F,G) using the identified right-hand side of (10) for
18/, X)) — (8, X,)|l < r and (8,X)) ¢ Q, identifying o (8);X),F,G) in QY =
{(6;;X)) : (8 X,) € Qsuchthat |(5;X]) — (6 X,)|| < r}. By repeating the
procedure, we identify o (§;; X, F, G) in R/ x R/*K 3.9

To illustrate the usefulness of Corollary 2 for the nonparametric identification
of hypothetical counterfactuals, we discuss two common examples from industrial
organization (Nevo, 2000; Dubois et al., 2020) that are typically hard to evaluate
absent identification extensibility.

Example 1 (Merger). Suppose J = 2, with each product being sold by a different
firm who chooses its price p;, j = 1,2. Suppose the two products are substitutes and
the cross-price elasticities are always positive. The variable profits of the two firms
are:

m1(p1;p2) = (p1 —c)o1(p1; p2),
2 (p2; p1) = (P2 — €2)02(p2; p1)-

The observed prices p} and p; are generated by a simultaneous Bertrand pricing
game with constant marginal costs ¢; < p} and ¢, < p3, respectively. Then, the
corresponding first-order conditions (FOCs) are

o (pt; pi do1 (p7,
%=0 — %(P —c)+o1(pi.py) =0,
1 1
oy (p5; ph) 302 (p1.p3)
IW5PD _ () ey ORPLLD (0 ) 1 oy(ptpt) =00
81)2 ap2

In the case of a hypothetical merger between the two firms, the merged entity
maximizes the joint profits generated by both products, ;(p1;p2) + m2(P2:p1),
and post-merger equilibrium prices (pY', p3') satisfy the following FOCs:

S0 , do: s
M(p _ 1)+M(p2—cz)+01(l717172)=0
ap opi 11
9o do s
M@ C2)+M(P1—Cl)+02(ﬂ1,172)=0
aps op2

Because ‘3"‘ > (0 and 3;2 > 0, both FOCs in (11) are then positive when evaluated

P2
at the observed prices (p},p3):

8In the same spirit but in the context of identification, Allen and Rehbeck (2020) obtain the nonparametric
identification of indirect utility functions by relying on the unique continuation property implied by real analyticity
(see their Cor. 3). Similarly, one of the key identifying assumptions in Fox and Gandhi (2016), Assumption 4 (p. 127),
is satisfied by multivariate real analytic utility functions again because of the unique continuation property (see their
appendix).

9This extension procedure also implies a constructive estimation of o (&;; X;, F, G) for (8;,X;) ¢ 2 by estimating its
(higher-order) derivatives and extrapolating using its estimated Taylor series (up to a finite order). This is beyond the
scope of the paper and we leave it for future research.

https://doi.org/10.1017/50266466624000148 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466624000148

REAL ANALYTIC DISCRETE CHOICE MODELS OF DEMAND 15

do1(p},p3) d02(pYsp3) d02(p},p3)

T—c)+ 5—c)+o1(pl.py) = 5 —c2) >0,

1 (p] 1 i (029 1(p1:P3 a1 12

d02(p1,p3) do1(p.p3) do1(py,p3)

— P s — )+ —— L (pt — ) + oo (P py) = —— 2 (pf —c1) > 0.
p2 op2 op2

Under standard regularity conditions on (crj)f:, (e.g., single-peak property), this

implies that the merged entity has an incentive to increase post-merger prices

relative to (py,p3) and therefore p* > p7 for j=1,2. If products 1 and 2 are strong
. . P *’ * ) *; *

substitutes (i.e., 02;1;11 P2 and 2! g’pzz Py

maximal value of p¥ observed in the data and the corresponding counterfactual

demand (o (p'; py), 02 (p5'; p|')) may not be identified.

are very positive), then p;* may exceed the

Example 2 (Tax). Consider a similar setting to that in Example 1 but with only
one product (so we suppress the subscript referring to products). In the observed
data, the firm chooses the price by maximizing variable profit:

T (p) = (p—c)op).
Then the observed optimal price p* satisfies the FOC:
do (p)

P =0 +o(p*)=0.
ap

Suppose that the government announces an ex-factory tax r > 0 such that the final
price consumers face will be p, = p+ 7. Then, the equilibrium price p? satisfies

90 (p)
dp
where the ex-factory tax 7 is equivalent to an increase in the marginal cost of

production. Because @ < 0 (i.e., the law of demand), then FOC (12) evaluated
at p = p* (the observed optimal price in the absence of the tax) is positive:

0D eyt = 27
ap ap

As a result, if the tax 7 is large enough, p¥ may exceed the maximal value of p*
observed in the data and the corresponding o (p}) may not be identified.

Pp—c—1)+0(p)=0, (12)

7> 0.

4.2. Semi-Nonparametric Identification

Real analyticity also facilitates the semi-nonparametric identification of demand
model (2) with linear indices g;(x;;; ;) = x;;f;. In this approach, the researcher
takes G as known (e.g., i.i.d. Gumbel or Gaussian) and aims at identifying the
distribution of the random coefficients F. The main advantage of this approach
is that knowledge of G and of F allows the quantification of the distribution of
welfare effects resulting from hypothetical counterfactuals, a task for which the
nonparametric approach may be inadequate (Compiani, 2022).
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Without real analyticity, the semi-nonparametric identification of discrete
choice model (2) with linear indices usually requires large support for X,
(restrictive for example with price variables, known to be positive) and prevents the
inclusion of interactions among covariates (Fox et al., 2012; Fox and Gandhi, 2016;
Masten, 2018). These standard assumptions, in some cases, limit the economic
content of discrete choice models. For example, the approximation result by
McFadden and Train (2000) mentioned after Remark 4, crucially relies on the
inclusion of interactions among covariates (see p. 466). The identification results
by Fox et al. (2012), however, explicitly rule out interactions among covariates
(Assumptions 2 and 3, pp. 207-208).

Differently, as shown by Wang (2023), when G is i.i.d. Gumbel, the identifi-
cation of F can be obtained by relying on at most one single variation in X; (i.e.,
the support of X; is not singleton).'” This support requirement on X, substantially
relaxes standard conditions routinely used in the literature and is satisfied in most
settings. In particular, it allows for interactions among covariates as required by the
approximation result by McFadden and Train (2000). Wang’s (2023) identification
result for mixed logit models crucially relies on the identification of o (;; X}, F, G)
as a function of §, € R’. According to the identification extensibility property from
Corollary 2(a), when o (8;; X;, F, G) is real analytic, this can be achieved as long
as o (6:; Xy, F, G) is identified for §; in a (bounded) open set. Importantly, this local
condition is not only weaker, but also consistent with standard economic models.
For instance, Wang (2023) shows that, in the context of Berry et al. (1995), it
is implied by a simultaneous price-setting game of complete information among
producers.

The next proposition extends Wang’s (2023) identification result for mixed
logit models with linear indices to any demand model (2) with linear indices and
GeM?+ MV

COROLLARY 3. Suppose that G € M?® + MV in (5) and the following two
conditions hold:

1. 0(8;;X:, F, G) is identified as a function of (8;,X;) € 2, where the domain of §,,
Qs, contains an open set in R’.
2. There exists (8;,X;) € Q such that X, is of full column rank.

Then, F is identified.

5. IMPLICATIONS FOR NUMERICAL IMPLEMENTATION

Depending on the type of data, different methods can be used to estimate model (2).
We discuss the implications of real analyticity for the numerical implementation
of two methods routinely used in the empirical literature for the estimation of
demand models: on the one hand, the parametric BLP (Berry et al., 1995) and

10For details, see Wang’s (2023) Theorems 1 and 2 and the discussion therein.
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the semi-nonparametric approach (Wang, 2023) dealing with aggregate market-
level data; on the other, the MLE dealing with disaggregate individual-level data
(Goolsbee and Petrin, 2004; Train and Winston, 2007; Dubois et al., 2020). In both
cases, we focus on the linear index specification g;(xj; 8;) = x;if;.

5.1. BLP and Semi-Nonparametric Implementation

In the context of demand estimation with aggregate market-level data, both the
parametric BLP and the semi-nonparametric approach require the computation of
a demand inverse for each market and at each iteration of the GMM minimization.
For given market ¢, observed p,, and guess F’, one must look for a §; such that!!

pr=0(8;: X, F,G). 13)

This can be numerically challenging on a computer (Knittel and Metaxoglou,
2014), motivating different numerical approaches in the economics literature, such
as Fixed Point (FP) approaches (Berry et al., 1995), MPEC (Su and Judd, 2012;
Dubé et al., 2012a), and the use of an approximate inverse (Salanié¢ and Wolak,
2019).

The real analyticity of o (§;; X, F’, G) with respect to §, mitigates this challenge
by guaranteeing the desirable numerical performance of Newton-Raphson (NR)
methods. In the NR implementation of the unique solution of (13), starting from
8@, one performs the following iteration from n = 1 until numerical convergence:

50 = 50D 350 (8™ X, F,G)] ' (0 (6™ X, F,G)—p,), (14)

where 9d; refers to the derivative with respect to §. The common wisdom regarding
(14) is that if 8© is “close” to the solution 8 (i.e., 8O is in the basin of attraction
of §7), then (14) can achieve quadratic convergence as long as o(8;X;, F',G)
is twice continuously differentiable with respect to 8.'> Achieving quadratic
convergence then crucially relies on selecting a starting value §© which is
close to §;, but the extent of such proximity typically depends on knowledge
of the true §; (or ds50 (8;;X,, F',G)) that is not available to the researcher before
estimation. In addition, numerical convergence is usually determined by the
researcher, who sets some small tolerance for the step lengths || set 5 || and
||a(6(”);X,,F ' G) — p,||. However, there is little theoretical guidance on how to
choose such levels of tolerance, which are often calibrated using heuristic rules of
thumb. In fact, despite achieving numerical convergence on the basis of such rules
of thumb, it is still possible for (14) to be divergent. Together, unguided choices

Hwhen demographics d; enter o, demand system (13) is defined as
P = /U(Bx;XnF,di,G)dH(di)-

The result presented in this section solely depends on the real analyticity with respect to &, that is, Corollary 1(a).
Train and Winston (2007) also implement inverses of this demand system in the context of MLE with individual-level
data. Instead of inverting market shares, they invert choice probabilities obtained from observed individual choices.

12Quadratic convergence means that there exists a constant M such that [|§@+D — 5@ || < m||s® — s¢=1 )2,
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of starting values and of stopping criteria represent a challenge for the numerical
convergence of NR methods to the unique solution of (13) (Dubé, Fox, and Su,
2012b; Lee and Seo, 2016; Conlon and Gortmaker, 2020).

We show that the real analyticity of o (8;X,,F’,G) gives rise to simple and
verifiable sufficient conditions that do not require knowledge of the true §; (or
950 (8); X;, F', G)) and that guarantee the convergence of (14) to the unique solution
of (13). Following Smale (1986), we define @ as an approximate zero of (13) if
8O satisfies'?

2)171_]
5 — 50 < (%) [60 =50, forn = 1. (15)

If the iterations in (14) start with an approximate zero 8, then 6§ is guaranteed to

converge to 8, at supra-exponential rate, | §® — §;|| < 1 (%)2}1 1 [0 =8O (Prop.
1 at p. 188 of Smale, 1986), a rate of the same order as the rate of quadratic
convergence (see Rheinboldt, 1988 for details) and that does not depend on the
dimension of the demand system (i.e., the number of alternatives J). For example,

n—1
with n = 6, we have % (%)2 ~4.07 x 10719,
When o (8;; X, F/, G) is real analytic with respect to §; € R/, Smale’s (1986)

Theorem A characterizes a sufficient condition for 8’ to be an approximate zero:

(8 < ap ~ 0.130707,
(16)

—1
a () = H [aao(a“”;xt, F, G)] @9 X, F,G)—py)

where

1
1850 (8; X, F,G) | =T

[950(8; X, F',G)] k'

y(8) := sup
k>1

k]

with the operator 8§‘ denoting the kth derivative with respect to § as a k-linear
map (see Chap. XIII of Lang, 2012 for a definition), and the norm || - || of a linear
operator L : E — W being defined as

ILI:= sup LMW lw,

veE, vlg=1

with || - |g and || - ||w denoting norms defined in the spaces E and W, respectively.
In theory, one can compute each component of 2 (8©) and then compare it to
o to verify whether 8 is an approximate zero. In practice, while computing
[830(6;X,,F’, G)]ila((S;X,,F’, G) is straightforward, computing y(8) is more
involved due to the higher-order derivatives and the sup operator. However,
relying on our previous results (Lemmas A2 and A3 in Appendix A), when
Ge M?4+ MV, we can derive simple upper bounds for the higher-order

3For the original definition of an approximate zero, see page 187 of Smale (1986). A value of § that is an approximate
zero is also in the basin of attraction of the unique solution of (13), but the converse does not need to be true.
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derivatives of o (-; X;, F',G) and for y (§). This allows us to obtain a practically
simpler (but stronger than (16)) sufficient condition for approximate zeros
that circumvents the computational complexity in the general formulation of
Theorem A by Smale (1986). Denote S = min{¢ig, ..., Smy 155125 - - - » Smy2} S
the minimal standard variance among the distributions in the mixture that defines
G e M? 4+ MV (see (B.1)).

COROLLARY 4. Suppose that G € M® + MV in (5). Then, for § € R,

1
J =
I[85 (8: X, F',G)]~V||su [(r <)L +(1_r)el/<e—l>(e—1)’<>]
I[050 (5: X; Iswp | (~(55)

y(d) =<

s

2min{1, ¢2}

where C is a constant defined in (A.11) in Appendix A (that does not depend on J)
and r is the probability of the Gaussian mixtures in G (see (B.1) in Appendix B).
Moreover, any § is an approximate zero as long as

&®) = |[406:X.F.0)] " (06: X, F.G) = po)

1
J k—1
. i —1 C 1 _ 1/(e—1) _1\k
J[850 (8 X, F.G)] ”ii?[(r(?h) L =ne e e—1) )]
2min{l,£2}

X

< op.

Given 8, one can easily obtain @(8) by computing H [3s50(8; X, F, G)]_l o(8; X,

F',G) H and H[B(;G(S;X,,F/, G)]_1 , where [850 (8: X, F',G)]~! is the inverse of
the Jacobian matrix 950 (8;X;, F’,G) and ||[850(8;X,,F’, o]! || is its maximal
eigenvalue. Then, it is straightforward to establish whether the starting value §©
is an approximate zero by verifying whether @(8§”)) < e, an operation that does
not require any NR iteration.

More in general, at any iteration n of (14) one can compute

&™) = ”5<n+1) _gm

1

k—T

J

&) rne e
<10 6 x,. P 617" i‘i‘f[(’(ﬂ> Ja+ A =ne DD

2min{1, g2}
and verify whether the step length
Ha(n+1) _sm| <
AF Zaomin{l,EZ}

1"

1

J H [050 (8™ ; X;, F/,G)]~! ” sup |:(r (L)J L 4 (1—p)el/e=D(e— l)k):| .
k>1 \/ﬂ \/F
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When this condition holds, one can conclude that §" is an approximate zero
and so that supra-exponential convergence is guaranteed thereafter, ruling out
any improper numerical convergence (i.e., 6D —§™| is “small” while (14)
is divergent). The computation of A* is usually immediate. For example, in the
case of the mixed logit model it can be simply approximated by (see Appendix
E.1 for details)

A* n 2OP0r min; <;</{p;}
2.64J

where py; = 1 — Zlepj,. For instance, with J = 10, min;<j<;p;, = 0.05, and
por = 0.4, we would obtain A* & 1074,

In practice, while NR algorithm (14) converges to the unique solution much
faster than classic FP algorithms from a starting value that is an approximate
zero (due to the supra-exponential convergence of (14) versus the exponential
convergence of FP algorithms based on contraction mappings), in general it is not
guaranteed that any §) is an approximate zero or even in the basin of attraction of
the unique solution (see footnote 13). As is well known, when §? is not in the basin
of attraction of the unique solution, then (14) may not converge. In contrast, the
convergence of classic FP algorithms based on contraction mappings is guaranteed
from any starting value, even though it may take a long time. Some researchers
address this trade-off by proposing Hybrid Algorithms (HAs) that combine the
relative advantages of both FP and NR algorithms: the numerical search starts with
a FP algorithm based on a contraction mapping to generate a starting value in the
basin of attraction of the unique solution and then switches to a NR algorithm until
convergence.'* In the context of demand inverses, such HA can be expressed as
the following.

Algorithm 1 (Hybrid Algorithm). Starting at §©,

, a7)

FP step. From n = 0, update §® to §"*! using a FP algorithm based on a
contraction mapping untiln =N — 1.

NR step. From n = N, update §” to §"*! using a NR (14) until numerical
convergence.

The number of iterations in the FP step, N, is calibrated by the practitioner. If N
is “too” small, the starting value for the NR step, sV, may not be in the basin
of attraction of the unique solution and therefore the convergence of (§),=y4 1
may not be guaranteed. Differently, if N is “too” large, §™*1 is likely to be in
the basin of attraction and (8 ("))nzNJr | to converge, but the total execution time of
Algorithm | could be “too” long due to unnecessary extra iterations in the FP step
instead of an earlier switch to the NR step.

Corollary 4 provides theoretical guidance for the calibration of N in the context
of Algorithm 1. Because of the supra-exponential rate of convergence of (14) after

l4gee Rust (1987) and Iskhakov et al. (2016) for examples in the setting of dynamic discrete choice models.

https://doi.org/10.1017/50266466624000148 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466624000148

REAL ANALYTIC DISCRETE CHOICE MODELS OF DEMAND 21

reaching an approximate zero, we propose an implementation of Algorithm 1
that switches from the FP step to the NR step when §?) is guaranteed to be an
approximate zero. In the case of the mixed logit model, Corollary 4 implies the
following sufficient condition for §™ in the FP step to be an approximate zero
(see Appendix E.1 for details):

||8(N+l) _ 5(N) || < A; — A*pOty (18)

where po, =1— Zle pji- Because an approximate zero is guaranteed to be in the
basin of attraction of the unique solution, but not the converse (see footnote 13), it
is also plausible for more lenient criteria than (18) to work well in practice. As we
illustrate in Section 6, we find in Monte Carlo simulations that Algorithm 1 with
N calibrated according to our proposed criteria always converges from “distant”
starting values (i.e., starting values from which the NR algorithm alone does not
converge) and it is faster than classic FP implementations of demand inverses
commonly used in practice.

5.2. MLE Implementation

In the context of demand estimation with disaggregate individual-level data,
researchers often rely on (parametric) MLE by assuming that G is known and
specifying B; = Zv;, where the distribution of v; € RF*!, F,, is given (e.g.,
multivariate Gaussian) and ¥ is an unknown matrix of size K x P. Consider a
cross-sectional setting in which for each cell r = 1, ..., T, the researcher observes
I individuals each making one choice, denoted by y; € {0, 1, ...,J}, alternatives’
characteristics (xj,)j{:], and demographic information d;. Given these data, the
researcher wishes to estimate the “fixed effects” & = (§j)1<j<s 1</<r and the
parameters X of the distribution of random coefficients F,.'>'® Denote by £; (£, %)
the log-likelihood function for individual i in cell #:'7

J
Ci(€,T) = L(E, D1 X yi) =In / [Tloi +x:2vi: &))" dF, ),
j=1

where o;;(-; G) is the choice probability function of an individual with random
coefficients B; = Xv;, and £ (£,%) =},  £;1(§,X). In the NR implementation of

15The population mean of x;;B; is absorbed by &j; and is not a parameter to be estimated. The results in this section
also hold if one observes x;;; rather than xj;. Moreover, it is possible that the researcher has panel data and observes
multiple choices for the same individual over time. This complicates the individual likelihood function (see footnote
17) but the results in this section continue to apply.

16When T is large enough (i.e., a nonlinear panel model with large / and large T'), one can also directly estimate
(ﬂ[)f:, rather than the distribution F. See Dubois et al. (2020) for such an empirical specification and Mugnier and
Wang (2022) for theoretical results. In this case, model (2) is often simpler and real analytic (e.g., simple multinomial
logit or probit) and the results in this section apply.

T a panel setting, instead of having an it-specific log-likelihood function, we have an i-specific log-likelihood
because f; is common among the choices over time of the same individual:

T J
6T =1n / [T o +x2vi: 6] ar, ).

1=1j=1
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this likelihood maximization, starting from (£(©, £(©) one performs the following
iteration from n = 1 until numerical convergence:

—1
(EPHD R E+Dy — g0 500y _ l:aé,z)g(g(n)’ >:<”>)] de.5) LE™ 2M). (19)

Similar to (14), under standard regularity conditions (such as the non-singularity
of 8(25,2)‘,2” (£,%) at a true solution), NR method (19) can achieve quadratic
convergence by starting from a (£©, X ©) that is “close” to a true solution
as long as ¢; (and therefore .¥) is “smooth enough.” However, the practical
performance of NR method (19) is subject to the same challenges mentioned in
the previous section in the context of (14): the appropriate choices of a starting
point and of a stopping criterion usually depend on prior knowledge of the demand
model one is trying to estimate. For reasons similar to those behind Corollary 4,
the real analyticity of ¢; with respect to (£,X) alleviates both such challenges
also in the implementation of MLE. Denote a := inf<;<; 1</<71, 1<j<s £(§, 2 Xir,J)
and X = max; ; |Xj;|max» Where | - |max indicates the maximal absolute value of the
elements in x;.

COROLLARY 5. Suppose that G € M® + MV in (5) and that F, € F¢ in (6), or
alternatively that G,F, € M? in (4). Then, for (§,%),

[aé,wf@’z)} max d 1. [aé)mj(g,z)}

1
3) < —
v(§,%) T T

—IT

| Adle=Dg T+ DVITED N g7 4 kP2
X | max 5 (a+1)1/(JT+KP)_1 3 )

where A, is the constant corresponding to F, when F, € F¢, and A, = V2 when
F, € M? (see footnote 6). Moreover, any (€ ©, £©) is an approximate zero of (19)
as long as

30,50 = [ 5, 2E 0. 5O e, 2E 0, 5|

2 0 (01! 2 ) 50y ]!
8(;,2)3(5( ), > ( )) _r 3@,;)3(5(‘)7 3 ( ))
IT ’ IT

AVJ(e—1)5_156(614-1)]/(]””) =3 JT+KP\ /2
< o [ max 1, (a+ 1)/UT+KP) _ ( 3 ) . (20)

When G is i.i.d. Gumbel or Gaussian (or a mixture of both), given y;, because
of Corollaries 1(b) and 1(¢), [T, [0(& +x:Zvi: G)] """ ™ = 0, (& + 5 Zvis G)
is real analytic with respect to (£, ¥) in their domains with a uniform radius
of convergence and its higher-order derivatives are bounded by factorial rates
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(as in Lemmas A2 and A3 in Appendix A) as long as F, € F¢ (or F, € Me+
when G € M?, with f,, the density corresponding to the distribution F,, € F¢T).
Consequently, | ]_[f=1 [oij(g,~|—x,~,2v,-; G)]l{y =) dF,(v;) is still real analytic with
a uniform radius of convergence and its higher-order derivatives are bounded by
factorial rates. As shown in Lemma F1 in Appendix F, these two properties still
hold after the log transformation in £; (&, X) and lead to Corollary 5 by following
the same strategy as in the proof of Corollary 4.

Different from the demand inverse of (13), which has a unique solution, .Z (&, X)
will often have multiple local maxima and therefore 9 x)-Z (£, ¥) = 0 multiple
solutions. Corollary 5 guarantees the practical usefulness of the NR method also in
mitigating the consequences of such multiplicity. Thanks to the supra-exponential
convergence rate of (19) (see discussion around (15)), one will be able to quickly
back out all the solutions of (19) by performing the NR method multiple times for
different starting values. For each of the starting values, one finds a local maximum
by performing a few more iterations after having established that (£, £™) is an
approximate zero, using (20):

” (S(n+1)’ E("'H)) _ (S(n)’ E(")) ”

-3
Avd(e=D)g ™ x(a+ 1)1/ VTHEP) ) -3/2
a (max{l, ol Gl }) (Lkr)

(a+ ])l/(.lT+KP) —1 3

<IT ; N
02 . LEM smy ] 02 L LEmW sy ]
|: &%) max 1’ . %)

21

T T

Once all solutions of (19) are recovered, one can finally select the global maximum
(i.e., the MLE) as the solution corresponding to the largest value of the log-
likelihood function.

6. MONTE CARLO SIMULATIONS

In this section, we perform Monte Carlo simulations to illustrate the practical
uses of Corollary 4 in implementing demand inverses in the context of the
BLP approach.'® As documented by Conlon and Gortmaker (2020) in extensive
numerical experiments, Newton-type methods can be more effective than classic
FP algorithms to implement demand inverses. While Conlon and Gortmaker
(2020) focus on starting values in the basin of attraction of the unique solution (i.e.,
“close” starting values),'” it is however possible for NR algorithms not to converge
when the starting values are “distant” from the unique solution. In contrast, as
discussed in Section 5.1, while slower in the proximity of the unique solution, the

18The MATLAB code of the simulations can be downloaded from the authors’ websites.

J .
19Conlon and Gortmaker (2020) use the vector of log-shares (log(pj) — log(pu))j:] ,wherepgp=1— ijj, as starting
values. This would be the unique solution of the demand system in the case of a multinomial logit model (without
random coefticients). Their numerical results illustrate that these conventional starting values are “close” to the unique
solution, in the sense that the Newton-type methods they implement always converge to it.
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convergence of FP algorithms based on contraction mappings is guaranteed from
any starting value. This suggests that HAs along the lines of Algorithm 1 may be
more effective in the case of “distant” starting values.

We investigate these possibilities relying on a data generating process along the
lines of Conlon and Gortmaker (2020). In a first set of experiments, we study the
role of approximate zeros in the numerical performance of FP algorithms based
on contraction mappings versus NR algorithm (14) in the case of “close” starting
values (i.e., close to the unique solution). In a second set of experiments, we
then investigate the relative performance of FP algorithms based on contraction
mappings versus HAs (Algorithm 1) in the case of “distant” starting values (i.e.,
starting values from which NR algorithms alone typically do not converge). In what
follows we summarize the results of our numerical experiments, while we report
the details of the data generating process, the generation of “close” and “distant”
starting values, and the formulation of the FP algorithm in Appendix G.

On the one hand, Corollary 4 implies that NR algorithm (14) converges to
the unique solution at supra-exponential rate after reaching an approximate zero.
However, from a starting value that is “close” to the unique solution, the theory
is silent regarding the number of iterations required to reach an approximate zero.
On the other hand, FP algorithms based on contraction mappings are ensured to
achieve exponential convergence from any starting value. As a consequence, if (14)
takes a short time to reach an approximate zero, the overall convergence time could
be shorter than that of a FP algorithm. Otherwise, if (14) takes a long time to reach
an approximate zero, even in the case of “close” starting values, FP algorithms
could be numerically more convenient.

Table 1 reports the execution times of FP and of NR algorithms in the case
of “close” starting values. We study scenarios with different choice set sizes
(J =125, 50, and 100) and with or without a random coefficient on price. For
each scenario and algorithm, Table 1 summarizes the time needed to reach an
approximate zero (i.e., to satisfy condition (17)) from a “close” starting value, the
time needed for convergence from an approximate zero, and the total of the two.
All times are measured in seconds and are computed as the average among 200
randomly drawn starting values within a close distance from the unique solution.
In line with the numerical findings by Conlon and Gortmaker (2020), from “close”
starting values the NR algorithm is much faster than the FP algorithm to achieve
numerical convergence in all scenarios considered: between 6 and 8.5 times faster
and, in relative terms, faster for larger demand systems (larger J). Decomposing
the total execution times, we find both that the NR algorithm is faster in reaching
an approximate zero than the FP algorithm and that, after having reached an
approximate zero, the NR algorithm greatly accelerates its speed of convergence
while the FP algorithm does not.

When the starting values are “distant” from the unique solution, the NR
algorithm may take a long time to converge or even fail to converge. In such cases,
FP algorithms still deliver numerical convergence in theory, but potentially at a
slow pace. As discussed in Section 5.1, some existing papers (e.g., Rust, 1987;
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TABLE 1. Fixed Point (FP) versus Newton—-Raphson (NR): “Close” Starting

Values
No. of products J=25 J=50 J =100
Algorithm FP NR FP NR FP NR

No random coefficient on price
Execution time (s)
Total time 0.1542  0.0248 0.2567 0.0368 0.3741  0.0441
Time before approx. zero  0.0643  0.0203 0.1193  0.0309 0.1985 0.0379
Time after approx. zero 0.0899 0.0045 0.1374 0.0059 0.1756  0.0062

Random coefficient on price

Execution time (s)
Total time 0.1506  0.0243  0.2632 0.0358 0.3696  0.0449
Time before approx. zero  0.0622  0.0200 0.1220 0.0303  0.1948  0.0385
Time after approx. zero 0.0884 0.0043 0.1412 0.0055 0.1748 0.0064

Note: Step tolerance level is 1014, Average statistics over 200 starting values randomly drawn within
a distance of [§; — 1,8; + 1] along each dimension j around the unique solution (Sj)le. Max number of
iterations is 1,000. See Appendix G for specification of data generating process and further details.

Iskhakov et al., 2016) propose HAs (such as Algorithm 1) that combine a FP step
with a NR step, so to benefit from the relative strengths of both procedures. While,
in general, it is unclear after how many iterations of the FP step to switch to the
NR step, Corollary 4 suggests to switch to the NR step after having reached an
approximate zero, that is, when, during the FP step, condition (18) is satisfied.
Note that, because not all points in the basin of attraction of the unique solution
need to be approximate zeros, switching rule (18) is sufficient but may not be
necessary for an efficient switch to the NR step. To explore this possibility, we
also implement a more lenient switching rule than (18) that replaces Aj; by the
larger threshold m .

Table 2 reports the execution times of the FP algorithm and the HA (Algorithm 1
in Section 5.1) in the case of “distant” starting values. We study the same scenarios
as in Table 1 and decompose execution times into its FP and NR components (for
the case of the “pure” FP algorithm, the total execution time only corresponds to
the “FP time”). All times are measured in seconds and are computed as the average
among 200 randomly drawn starting values within a large distance from the unique
solution.”’ We use two different switching rules to implement the HA, one based on
the sufficient condition for an approximate zero, |§"+1 — 8™ || < A}, (denoted by
HA A}y and the other based on the more lenient [[§"+1 — 8™ | < YA}, (denoted

by HA J/AY).

20With these “distant” starting values, in more than 90% of cases the NR algorithm alone fails to converge, stressing
the practical importance of the FP step to initialize the NR step.
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TABLE 2. Fixed Point (FP) versus Hybrid Algorithm (HA): “Distant” Starting

Values
No. of products J=25 J =50 J =100
Algorithm FP  HA A}y HA JA}; FP HA AR HA JA, FP HA AR HA JAR

No random coeftficient on price
Execution time (s)

Total time 0.1597 0.0804 0.0434 0.2745 0.1436  0.0743  0.3910 0.2245  0.1175
FP time 0.1597 0.0702  0.0300 0.2745 0.1309 0.0568 0.3910 0.2123  0.0923
NR time - 0.0102  0.0134 - 0.0127  0.0175 - 0.0122  0.0252

Random coefficient on price
Execution time (s)

Total Time 0.1664 0.0805 0.0471 0.2848 0.1453 0.0721 0.4049 0.2204 0.1133
FP time 0.1664 0.0709  0.0328 0.2848 0.1328  0.0554 0.4049 0.2086  0.0893
NR time — 0.0096 — 0.0143 0.0125 0.0167 — 0.0118  0.0240

Note: Step tolerance level is 10~14. Average statistics over 200 starting values randomly drawn within
a distance of [§; —5,8; + 5] along each dimension j around the unique solution (5_,-){=l . The HA
(Algorithm 1 in Section 5.1) is implemented using two switching rules: “HA A};” switches from the FP
step to the NR step when an approximate zero is reached (H se+ 5 H < A}y, while “HA [J/A};” is

more lenient and switches from the FP step to the NR step when ”6("“) —8m || < /Ajj- Max number
of iterations is 1,000. See Appendix G for specification of data generating process and further details.

Across all scenarios considered, as expected, both FP and HA always converge
to the unique solution despite the “distant” starting values. Moreover, HA A}
tends to converge to the unique solution in approximately half the time needed
by FP, and in turn, HA m tends to require half the time needed by HA Aj.
This suggests that switching to the NR step guarantees large time savings when
an approximate zero is identified, but also that switching rule (18) may be “too”
stringent. Increasing the switching threshold from Aj; to m leads to significant
time savings, implying that efficient switches to the NR step can be implemented
prior to satisfying (18), in that the more lenient switching threshold \3/??{ already
identifies the basin of attraction of the unique solution.

6.1. Practical Suggestions for Numerical Implementation

Taken together, the theoretical results from the previous section and the Monte
Carlo simulations highlight some practical recommendations useful to speed up
the numerical implementation of demand inverses in the BLP approach:

e To start with, one can use the vector of log-shares (log(pj) — log(po))j:l as
starting values (see footnote 19) and a NR algorithm along the lines of (14) with
(i) step tolerance level of 10~'* and (ii) 1,000 as maximal number of iterations.

o When the NR algorithm (14) does not converge within the maximal number of
iterations, this is evidence of considerable unobserved heterogeneity and that
the multinomial logit starting values may be “distant” from the unique solution.
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o In this case, one can still rely on the same starting values (log(pj) - log(po))j= |
but use an HA along the lines of Algorithm 1 with (i) step tolerance level
of 1074, (ii) 1,000 as maximal number of iterations, and (iii) switching rule
between the FP step and the NR step along the lines of f/?;‘_l (with Ay = A*py,
and A* as defined in (17)).

e If the procedure at the previous bullet point fails to converge, the lenient
switching rule m is then too loose. In this case, we suggest to tighten the
switching rule between the FP step and the NR step to Aj; so that numerical
convergence is guaranteed (at the cost of a longer execution time).

7. CONCLUSIONS

We consider a class of discrete choice models of demand with an index structure in
the indirect utilities, with any distribution of random coefficients, and which can
include endogenous regressors. In the first part of the paper, we demonstrate that
any model in this class can be approximated uniformly and arbitrarily well by a
real analytic demand model. In the second part of the paper, we discuss the econo-
metric advantages of real analytic demand models in terms of nonparametric and
semi-nonparametric identification, extrapolation to hypothetical counterfactuals,
numerical implementation of demand inverses in the context of aggregate market-
level data, and numerical implementation of the MLE in the context of disaggregate
individual-level data.

On the one hand, these results are encouraging as Theorem | and Corollary 1
illustrate that the class of real analytic demand models is relevant in practice, in
that—to the best of our knowledge—most empirical papers dealing with demand
estimation in applications with more than a few products typically specify mixed
logit or mixed probit models. In addition, for any other demand model which is
not real analytic, Theorem 2 shows that there exists a real analytic counterpart that
can approximate it uniformly and arbitrarily well.

On the other hand, however, these results are subject to at least two caveats
whose investigation we leave to future research. First, Theorem 2 is an “existence”
or “possibility” result which does not provide practical guidance on how to select
the real analytic approximants: they exist and they have the general mixed logit and
mixed probit forms described in the theorem, but we may not know how to specify
them in concrete examples. Second, the econometric advantages discussed in the
paper apply directly to the real analytic demand models described in Theorem 1
and Corollary 1 and to the real analytic approximants in Theorem 2, but not
necessarily to demand models that are not real analytic. Lack of real analyticity
can occur, for example, when the distribution function G has jumps, so that the
resulting demand function is discontinuous (Smith, 1935). Or again when the
distribution function G has kinks, so that the resulting demand function is non-
differentiable (even though potentially continuous). In such cases, Theorem 2 is
silent on whether any of the properties of the real analytic approximant carries
through the underlying demand model targeted by the approximation.
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While this paper studies some of the econometric advantages of real analyticity
for a class of static demand models along the lines of Berry et al. (1995), future
research could extend the investigation to other popular classes of economic
models. In particular, the estimation of many structural models relies on FP inner
loops which are similar in nature to solving demand inverses in the BLP approach.
For example, dynamic demand models (Rust, 1987; Gowrisankaran and Rysman,
2012) and (static and dynamic) entry models with incomplete information (Seim,
2006; Aguirregabiria and Mira, 2007) share this common feature. On the one hand,
solving such FP inner loops typically gives rise to numerical problems similar to
those faced in the context of demand inverses and sometimes even worse due to
additional complexities such as large state spaces or multiplicity of equilibria. On
the other hand, however, many of these structural models are real analytic and
their practical implementation could be greatly simplified thanks to numerical
advantages similar to those presented in this paper.

APPENDIX

To simplify exposition, we refer to F(-; d;) simply as F and suppress from the notation d;, ¢,
and G, when these are all held constant. We also suppress G from the notation of the radius
of convergence r(&; F, G). Throughout the Appendix, we use the following inequality that
follows from the multinomial theorem:

<L+Z_l>= ,Z ) < Z I (A.D

J
!
r:llr:L er:L Hr_l "

A. Proof of Theorem 1
Proof of Statement (a), Mixed Logit. When G is i.i.d. Gumbel, we obtain

exp{§; +g;(xj; Bi)}
1+ Z{:] exp{é&r +gr(xr; Bi)}

0j(E:X.F) = / dF ().

exp{&+g;(xj; Bi)}
1+ expletgr (s B}
81(7,'}'

the higher-order derivatives of oj; with respect to &, AT where [ is an integer and
r=195r

Z{:l I = 1. This is achieved by the following two lemmas.

For simplicity, we denote oj; = . The key of the proof is to bound

LeEmMmA Al. For any nonnegative integer I,

!
Ulj

[

r

sup <A,

&, Bij.r

where Aj = (e — I)ZZIi:O m
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Proof. Define a; = sup
& BiJ.r

Lo
Zi | and note that
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forany j,r=1,...,J. Then,

-1
l
<1

a < +Z(k)ak

k=0

-1
a 1 a, 1
< S .
n—n +l§) k! (I—k)!

We now show that l'l < A; by induction. For [ = 0, the result holds trivially. For [ = 1, we

a .
have a; = sup BSU
»

& Bijsr

holds fork=1,...,/— 1. Note that A; = ﬁ—k(e— 1)Aj—1 > Aj_1, for any [ > 0. Then,

a 1 d a1
= S
n=n +/§) k! (I=k)!
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1
< ﬁ +A;_1(e—1)
— A, (A.3)
lg..
As a consequence, the inequality holds for any / > 0 and a; = sup 03;77 < Ayl!. This
&.Bijirl T
completes the proof of Lemma Al. (]

3l
The next lemma controls %.
r
r=1 35;*

LEMMA A2. Foranyj=1,...,J,1>0,and ¥)_ 1, =1,

Bloij

J
1/(e—1) i
<e (e—1) ||lr!.
I}
IT/_ 08"

r=1

sup
S ER‘,, ﬂIERK

Proof. We prove the result by induction. For [ = 0, the result holds trivially. For / = 1, the
result follows directly from Lemma A1 with / = 1. Suppose that / = 2. When /- = 2, accord-

2

ing to Lemma A1, we have 370 l] <Ap2!. NotethatA2—(e—l)2 (l—l—e 1—|—2(e 1)2)
j

eV/e=De—_1)2 Forl,=ls=1,r#s,
J

exp{§j + g (x;: Bi)} = 0y X (1 + ZCXP{Sr-Fgr(xr;ﬂi)}) )
r=1

aza,j

= 1 r r\Xr, 5 r\Xrs

0= 53, ( +Zexp{s +gr(xrs /31)}> s 85 B)) s +8r (s B},

Bzaij dojj 80,]

= —0j——— —
A T P
" 25
By using ? e | <landojs +0jr < 1, wehave supg g, ;?‘fjgs' <l<el/le=De— 1)2.

As a consequence, the conclusion holds for / = 2.

Suppose that fork =0, ...,/ — 1 the inequality holds for any Z{: 1Ir = k. First, remember
that A; = (e — 1)122=0m, as defined in Lemma A1, is smaller than e!/©=D (e — 1)/
Hence, the conclusion holds for any / > 0 with /- = /. It remains to show that the conclusion
holds also when I, [y > 0, for some r # s.

By taking /,th derivatives of both sides of the first equation in (A.2) with respect to &,
we obtain
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alr i J
1r = j)expl& + &3y ) = a;j T+ Y explés + 85553 ) (A4)
r s=1
+Z(1’>8 {6+ 2003 ).
eXpisr rXr; Pj
k=0 k 85,« P ’

Note that, by taking derivatives of both sides of equation (A.4) with respect to &, s # r, the
left-hand side vanishes. We then have

81r+1ya-
1+ Z exp{&m + gm(xm; Bi)}
35/3& m=1
L1 alrtho, =1 Pt oy
+ {&s + g5 (xs: B} ( ) + (& +&r(xrs B} (i‘) l-
CXpiss T 8s(Xs; Pi Z asr Sk exXp 8rix t kg() k 8&;{3%—53

Finally, using Zf: 1 0ir < 1, we obtain

dloy; / J ol ety
0= —— 7|1+ ) explém+emCom: B} | + ) explés +25(xs: B} D ()

[T, 08/ ot} nm#as""’

m=1 s=1 k=0
Oir D EE——
1_[ r=1 35, nx;ér 35

( 1 ) ( alglj ) Z lrz_l |: :| 8lilr+k0ij
lr )
Mo\ 08 ) = <lr—k)"<'ﬂs¢r’s! 08K [y 05
1 alaij Ir—1 1 1 alflr+ko.ij
oo )\ ael )| = 21 Z(1 "ot \ T ) ek aeh I
r=11tr 1_[,-:1 &r k=0 " s#Er'S &y l—Ix#r 0&s

,,,,,

(A.5)
Consequently, applying the conclusion for any k =0, ...,/ — 1 to the last inequality in (A.5),
we obtain
-1
1 alaij 1 : 1
(e=1) I—l+k
sup <e max (e—1)
£ B; ‘ _, 0! Bér r=l e d kg(:) (Ir—k)!
l
1
_ =D, 1\l 1ok A6
=e e—1)" max 1 (A.6)
(=1 max 2 =D
k=1
<el/e=D l)l(e(e—l)’l -
<el/e=D_pl.
lgi:
Hence, Supg g, ﬁ < el/(efl)(e — l)l]_[{:1 [;! and the conclusion holds for
Z{ler = [. This completes the proof of Lemma A2. a
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Using Lemmas Al and A2, we can express the Taylor series of o;(§ ".X,F)at& as

L

2 1' {Z(g g,)g} 0j(£; X, F) <Z L )3 JL!

! N
L=0 r=1 L_O Y=L [Tr=y 2!

J
<el/le- UZ L Z ' (e—l)Ll_[l,z
r=1

L—O : Y=L 1!

aLoj(&; X, F)
H{:] 35/

<el/(e I)Z(e 1)LdL Z (1)

Si=L

<D dt e -1k, A7)

L=0
where the last inequality results from (A.1) and d = ||’ — &]. Consequently, whenever
d<d*= J(e L the Taylor series (A.7) converges. Finally, given any d < d*, by applying

Taylor’s theorem to the multivariate function aj(é/ ; X, F), we obtain that uniformly for

15" =&1 <d,
R L
aj(s’;x,n—z I Z(s, £) - 5, | TEXD
L=0 r=1
B 8R+1U'(E/'X F)
<dR+1 ——su , R A
- erz ]‘[1, Plgr—g)<a T aeh
<e!/@ Ve —1nnkt!

—0

as R — oo. To conclude, the Taylor series of aj(s’;X, F) at & converges to Gj(%”;X, F)
and aj(é/ :X,F) is therefore real analytic with respect to &’ at &. Finally, the radius of
convergence r(&s; F) is at least d* = ﬁ and only depends on J but not on & and F.
As aresult, infét er/, p1'(Er; F) > 0. This completes the proof of Theorem 1, statement (a).

Proof of Statement (b), Mixed Probit. Without loss of generality, suppose that
j=1and & = (g;0 — &i1,€i2 — &il, - - -, €iy — €i1) follows a centered multivariate Gaussian
distribution with a positive-definite variance—covariance matrix.>! Denote by £XT the
unique Cholesky decomposition of the variance—covariance matrix with ¥ > 0. It then
follows that

J
o1(EX.) =@ = [ [T (G+05:80) dF ),
=1

210ne can include the mean of &jj as a constant in the definition of g; such that each ¢;; is centered. Moreover, the
variance—covariance matrix of  is positive-definite as long as (g, ..., €i7) is a nondegenerate Gaussian random
vector.
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where @ denotes the standard normal distribution function and
E=x ¢ 6. 5 -8,
g0 B) = = Mg (13 B 81(x1 B) — 82023 Bi). e 81 (13 BY) — g7 (i B T

Proving statement (b) of Theorem 1 is equivalent to proving that « (£) is real analytic with
respect to £ € R’ and the radius of convergence is +oo at any . To start, we first prove the
following lemma.

LeEMMA A3. For Z 11i =L, we have

i)
75/ <(C/W)JH\/>,

j=1

where C is a constant defined in (A.11).

Proof. First, we prove the statement for /; > 1 for any j = 1,...,J. Denote by ¢ the
standard normal density function. Note that

L E J oali—l 45 s g
) _ / IOGHBGI
l_[ 135 j=1 98/

J P ~ = - 2
_J _L £+ 8j(x;: Bi) £+ 8j(x;; Bi)
=7 2(—1)J+L2 2f1_[Hl__1 (J”)exp _(1”> dF(B;)
=1 V2 V2

- 2
_J & +8i(xj; Bi) & +8i(x;; Bi)
L1yt /1—[ l,—l ( i b:;/; )exp _( j 8;//;/ )

exp {_ <sj+gf,§cj;ﬂ,~))

}dF(ﬂi),

where Hy,, (x) = (—1)™ eXp{xZ} % exp( —x2} is the Hermite polynomial of order m. Accord-
ing to Theorem 1 in Krasikov (2004), for any m > 6, we have

- 2C, 15 12
2 2 2 m
H? = supH exp{—x“}< ————exp} — |1 + —— | ¢, A.8
= et = 50 T p{S[ 4<2m)1/3—9]} (4.8)
where

2m/Am—2(m!)” if m is even,

/8m2—8m+3((m/2)1)2’

V16m2 —16m+6m!(m—1)! )
2m—=1[((m—1)/2)'1> ’ if m is odd.

Cm =

Using Stirling’s formula to approximate m!,

~2m(m/e)" exp {

12ml+1 } <m! <2 (m/e)mexp{ 121 } (A9)

https://doi.org/10.1017/50266466624000148 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466624000148

34 ALESSANDRO IARIA AND AO WANG
we can bound Cy, by Cy, < Ej X 2™m!, where
f { 1 } 8m?2 —8m+3 8m2 —4m
Ep=,—expy ——————— max s
T 12(m—1)(6m —5) 8m2 —12m+4"\ 8m2 —8m—+3

Then, for m > 6, we have

i 2E,, 15 12
i _Em el 2 (1 ——2 VU com2
"=\ 32m) /6 eXP{ 16 < T iam —9)} x "

While form=0,1,...,5, we have

Hy < x 22/l

Hp
max {———
0=<m=5 [ 2Mm/2/m!
H,, . . 2E,, 15 12
Note that maxg<j,<5 {m} is finite. Moreover, /W exp { e (l + 74@”),/379)}

is decreasing in m and therefore bounded by its value at m = 6. We can then write

Hypy = sup [Hp(x)|exp{—x2/2} < C x 2"™2/m), (A.10)

xeR

where

c 2E¢ {15 <1+ 12 )} { Hy, }
=max{ | ———exp{ — — )}, max | ——— 1.
302176 P16 ' " ax (1213 =9 )| 05mzs | 272 /1

3 K(S)

(A.11)

As a result, plugging (A.10) in , we obtain

1:1 j
oL 7 - G+ )’ '
o < (C/V2m) 1‘[,/(1 w/]'[e { SITEEPE N ar )
7

< (CNE)’]'[\@.
j=1

Second, without loss of generality, suppose there exists j = 1, ...,k such that /; = 0. Then,

oL WG E 450 B
& _ -/ [0+ 0560 [ LR L)
1_[ =1 é Jj=1 Jj=k+1 3%'1-

k
— = k- /l‘[ OE + (x5 1)
j=1

J z ~ z ~ 2 = ~ 2
& +8i(xj i) & +8i(xj; Bi) (& +8i(x;5 Bi)
x H27 ( ] J ] )exp _ ( ] J N ) exp {_ J J YT }dF(,Bl)
LN e 7 4
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Using the same arguments as above, C > +/27, ® < 1, and k > 0. We then obtain

oL (E) I
—— | = c/V2m) T /i
1_[]1:13%1, j=1\/7

The proof is completed. (]

As in the derivation of inequality (A.7), we can bound the Taylor series of k() at&:

L
& L i (@)
Z Z(sr sr) k(&) SZEdL > [ oEh

L= 0 r=1 L=0 """ S h=L nrzllr-

<N Y d- Y ——

L=0 Y l=L+f l_[f=1 I!

< (€Y Yy db | Y ,l
120 | Th=r =t t!

Z()

< (Cc/V2ry! Z ([fd) (A.12)

where d = ||§’ — £||. Note that the radius of convergence of the power series (as a function

- - - DRV |
of d) on the right-hand side of (A.12) is lim7 _, o ‘ YNy —+o00. Consequently,

the convergence of the Taylor series in (A.12) is always achieved. Then, for any d* > 0and
uniformly for ||E’ —&|| < d*,
L
R J R+1
; ! £ gy (VId)**
k@)=Y =Y G -E— | k®)|=(C/Vr)) T =0
§ LZ:jL! rzzls, bz | «®|=@ T

as R — oo. Therefore, the Taylor series of « (§') at £ converges to « () and « (£') is real
analytic with respect to &’ at £ and the radius of convergence is +oco. This completes the
proof of Theorem 1, statement (b).

B. Proof of Corollary 1

In statements (a) and (b), we suppose that

mi ny
Gle)=rYy cii®i(e)+ (1= cpW(e)

i=1 i=1

—rZCzl ]+l

i=1 Sil

(Ej)fzo — Kil
Sil

my N
1 (?/)':0 KHi2
+1-N)Y oV | —= ,

=1 S si2
(B.1)
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(&)= Hi (&)= hi .
where ®; := (%ﬁ), v =v (%), and ® and W are, respectively, the

distribution functions of i.i.d. standard Gaussian random variables and of i.i.d. Gumbel
random variables in R/+!, Then,

mj my
0j(E: X.F.G) =1y _cj1oj(&; X.F,®)+(1—1)Y_ cnoj(&: X, F, W)
i=1 i=1
mi mp
=rY cioj(sy € —inisy X F. @)+ (=1 cpoj(sy (6 — )iy X.F. W),

i=1 i=1

where ;1 = (1 );:1 — w01 and fip = (M,‘jz)le — wi02. Without loss of generality, we
prove the corollary forj=1.

Proof of Statement (a). Because of Theorem 1, o (§; X, F, ®;) and o1 (§; X, F, ¥;)
are real analytic with respect to £ € R’ with radii of convergence uniformly bounded away
from zero for £ € R/ and F. Then, 0j(§; X, F,G) is real analytic with respect to & € R’ and

inf r(&;F)>0.
£eR/F

Proof of Statement (b). 1t suffices to prove that 0j(§;X,F,¥) and 0;(§; X, F, ®)
are real analytic with respect to (§,X) € R’ x R/*K with radii of convergence uniformly
bounded away from zero for (§,X) € R’ x R7*K  For both cases, the proof is similar to that

aLo;(&;:X,F,G) .
. — with L= : ; lig.
J ljo Tik g kY
=1 08" [Ti<j<s 1 <k<k 9%
When G = W, because of g;(xjs; B;) = x;;8;, we have

of Theorem 1 and the key is to bound

K
Loj(&: X, F, @) S 9oy
— W= [185% oK l_de(ﬂi).
=108 [Ti<j<s, 1<k<k 9% k=1 [1L, 05"

Then, using Lemma A2 and F € F*, we obtain

loj(&: X, F. @)

J K
YR | = TP ale =D G,
[Ti=19¢" [Ti<j<r1<k<k 9% Jj=1 k=0

where L=, <j<J,0<k<K ljr, and the constant A is detailed in the definition of F €. Then,
the Lth term in the Taylor series of aj(s’ ; X, F, W) at & can be bounded as

L
0;j(§; X, F,®)

J
1 0 ,
7l Z(gr/_ér)g‘f'(xrk_xrk) Z
r=1 r

1<r<J,1<k<K Yk

aloj(&: X, F, @)

dt L
< o Z
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L,
noikgl( lrk!

</ Vgae-nt Y >

S L=L ()r YN g le=Ly, 1<r<J =1

J
=/ Daae-nit Y J] > L!

I L!
171 Lr:LrZ] ZO<k<K lrk:Lr O=k=K"n

= !/ Dgae -t Z ]_[(K+1)LV
I L=Lr=l

<l e Digare — & + D,

where d = ||(€/,X)) — (£,X)|.22 Note that uniformly for ||/, X)) — (£,X)| <
AT e=D(KFT)" the sum of the residuals bey.ond the Lth term is bounded by 1 /2L7]
and converges to zero as L — oo. Then, following the proof of Theorem 1, statement (a),
we obtain that 0j(§; X, F, W) is real analytic with respect to (§,X) € R’ x R7*K and that
its radlus of convergence is uniformly bounded away from zero (and it is at least equal to
2dAJ ﬁf l)éK +1) ).

en ®, following the same strategy as for the proof of Theorem 1, statement (b),
it suffices to show that x in Lemma A3, which here equals

J
« = [ [ToG+iar
=1

is real analytic with respect to (£,%) € R’ x R/*K_To do so, we control the bound of
the higher-order derivative of x with respect to (§,%). We derive the bound for the case
of Zszo lix = 1 forany j=1,...,J, and the bound for the other case, that is, Zszo lx=0
for some j, can be obtained in a similar manner. We compute

Lo / Hazgﬂ%(gfﬁ“fﬁl dF (B) (B.2)
05/0n14<11<k<1(3 " j=1 35/0 e 13~[/k l .

=n*%(—1>’“27%/HHszoz.k_l (gj}?ﬁ)exp[ (Sﬁx]ﬂl) }Hﬂz’ ar ).
= T

Then, using the same techniques as in the proof of Theorem 1, statement (b), and F € F¢,

we obtain
s o~ J K
3tk (€, L J
TR | <A /2 TT Ot (B.3)
=108 [T <j<s, 12k <k 0% ra\
22The norm || - || should be understood as the Euclidean norm on the space of vectorized (£, X).
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and

L
J
-~ ~ 0 0 ~
E (f;—ér)g‘*'(}/rk—xrk) E = (&%)

=1 r 1<r<J 1<k<k 77k

- f Z L oLk (€,%)
= Yi<r<s,0sksk =L Mi<r=rosk=r ! J 85’ [li<r<ri<k<k 8x
J T
< (C/V2mylaalr Y > ﬁ
Z{:l L=L (lrk)r,k:ZkK:O le=Ly, 1=r<J r=1 O<k<k e
1 ! L!
<Vomylaalr Y ——1]] > =

J 11 L !
/ lLr=L‘/1_[ 1Ll =t \ S g =L, 1 HOSKSKTD

L,
= (C/V2amy laal: Y I o &+ D™
Zr:lL"_L l_[ Lr

<N dak+n1E |y L > M

J
Ly!
J =] =r J
y=1Lr=L " y=1Lr=L

1
< (C/N2m) [dAK + DI —,
/ Nz
where d = ||(§,X") — (£,X)||. Then, given any d* and uniformly for || (¢§’,X") — (£, X)| < d*,
the sum of the residuals beyond the Lth term converges to zero as L — oo. Then, following

the proof of Theorem 1, statement (b), we obtain that K(é ,X) is real analytic with respect to
(&,%) € R’ x R/*K with radius of convergence +00.

Proof of Statement (c). The difference in the proof relative to that of statement (b)

Lz
in the case of G = & is the bound on 8k (&%)

m , because the moment

[ 35 T, <j<J.1<k<K 3x,k

|:Hk | ,BZ’ b ] may increase faster when F € M/e+ . Note that

K ;o m . K ;o -,
]E{Hlﬁiklzfllf" :Z;—K/rllﬂiklzf:‘l’kfe+ (L g/t >d,3i
r=1°>" k=1 "

k=1

m K
J
= e [ TTisotut nal™m e e
r=1 k=1

m K
=Y ast [T]
r=1 k=1

s
=i, (1)t

Hrk
tik+ —
,

_lk
j=114
—1 Lk Mok | SN 1e—
<Zcr§r/l_[ > ( g H)" [ == [ =1 e (1)t
k=1 ¢=0
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Z 14 Z ik k T -] K
1]k Mk | =1 ax
—Zc,g, o> Tl i | e [ T1ealfos trdti
71=0 gx=0 k=1 Sr k=1

Yl Yk g

<2eraX1A}LL Z S 1—[[( Hﬂc)'@
a=0  qx=0 k=1 & Sr

L l-a] K
[TVax!
k

=1

[ ; J
m j=141 ,;:1 jK K J Sy lk—qk K
L_L Yo e\ | ok |1
<Tomnarst & ()T
r=1 q1= k=1

'(zleljk> ‘M DAL
q Sr

k=1

where A = max{1,A} (& + ), i = max,—1,__ ket . & {irkl) and & = max,—i__ nlsr).

As aresult, we only need to multiply the rlght-hand side of (B.3) by AL ]_[ k=0+/ (Z =1 L.
Consequently,

J ~ _ 9 9 L B
Y& =6 og =) > | *ED
r=1 r

X
l<r<J 1<k<k 7"k

< (C/Vam)laAdlr Y- > H F[o il
<k<K'r

Zr—l Ly=L (lrk)r k- Zk ()lrk—L l<r<_]r—

J
< (Vo) laaal Y ] > b

M Lt!
K lrk
I L=L7=1 \ Xo<kzk =Ly O<k=k

J
= (C/V2mylaaalt Y [+t
roi Li=Lr=1
< (C/V2r) [dAAK + 1)1,

where d = ||(§,X) — (£,X)|. Note that uniformly for ||(§/,X") — (§,X)| < m the

sum of the residuals beyond the Lth term converges to zero as L — oo. Then, K (E,%) is
real analytic with respect to (£,%) € RY x R/*K and its radlus of convergence is uniformly

bounded away from zero (and it is at least equal to m) The proof is completed.
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C. Proofs of Theorem 2 and of Remark 4

Theorem 2, Statement (a).  Similar to the proof for the case M? reported in the main
text before Theorem 2, the density of the i.i.d. Gumbel distribution satisfies the conditions
of Theorem 5(f) in Nguyen et al. (2020). Consequently, the family of finite mixtures MY
(and therefore M? 4+ MV') has the same approximation property.

Theorem 2, Statement (b). For any distribution F with density f, we construct the
following sequence of distributions {Fy, : m = mg,mg + 1,...} C F¢, where Pr(||8;| <
mg) > 0 and?>

Pr([[Bill<m)’ if |Bill < m,
g otherwise.

fm(Bi) = {

Then, as m — oo, we have

1
m— =\ —1 idi+/ dBi = 2Pr(|| B 0,
Vi —FliL, (Pr(||/3,«|| - )/”.ﬂiuﬁmf(ﬂ) B |\/3,~||>mf(ﬁ) B c([|Bill > m) —
and therefore
sup |0j(&: Xr, F, di, G) — 01 X1, Fin, iy G| (C.1)
J En Xp)

< _(ZUI-;()/‘I{Uzjt > Uiy, Yr # jY fm(Bi; di)gm(€) — f(Bis di)g(e)| dBide
Js (&1, &g

< .(SEUI;()/I{Uijt > Ujjr,Vr # j} fm(Bis di) —f (Bis di) | dBigm (e)de
J> (&1, &g

+ sup [ UUys > Uy Vr £ ) lgm () — ()| def (Bisd)df;
Jo &6, X1)

< lIgmllL, W =fmliL, + Wl llgm — gliL,
— 0.

According to Corollary 1(b), each o;j (&5 X1, Fin, d;, Gi) in the sequence is real analytic with
respect to (&, X;) € RY x RT*K,

Theorem 2, Statement (c). Because of the approximation property of Gaussian

mixtures, we can find a sequence of distributions Fﬁ, € M® such that If — ffﬁ lz, = Oas
m — oo. Similar to the proof of statement (b), we obtain that SUp;. (£, X,) |aj($,; Xt F.di,G)—

(rj(s,;X,,F%,d,-, G%)| — 0 with (rj(E,;X,,F;ﬁ,di,G%) being real analytic with respect to
(&, Xr) € RY x R7*K pecause of Corollary 1(c) and ¢ € Fet.

Proof of Remark 4. According to Theorem 1 in McFadden and Train (2000, p. 451),
any random utility model (RUM) in the class considered by that paper (see McFadden and

23The probability Pr(|| ;|| <m) is intended with respect to the distribution F.
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Train, 2000 for details) can be approximated arbitrarily well by a specification of mixed logit
model (2) with linear indices (&Xj(xj, d;) ﬂi)l!: 1 asin Remark 3. Because we can approximate
arbitrarily well any such mixed logit approximant using the models defined in Theorem
2(b) or Theorem 2(c) with the same indices (&Xj(xjy, di)ﬁ,-)j!: 1> then we can approximate
arbitrarily well the original RUM using these models. Note that these models are real
analytic with respect to (&, Xj(xj,d;)) in their domains and Xj(xj;,d;) are polynomials of
X; (and therefore real analytic with respect to X; € R/*K ). It then follows that these models
are real analytic with respect to (&, X;) € R/ x RI*K,

D. Proof of Corollary 3

This proof follows that of Theorem 1 in Wang (2023) and consists of two steps. In the
first step, we identify the distribution of X;8; conditional on X;. In the second step, using
Condition 2 of Corollary 3 and using the same strategy in the proof of Theorem 1 in Wang
(2023), we identify the distribution of g;, F.

We now adapt the proof in Wang (2023) to prove the identification of the distribution
of X;B; conditional on X;. First, we use Corollary 2(a) to extend the identification of
o (8 X1, F,G) for 8, € 5 to R Second, following the same argument in Appendix A (from
equations A.1 to A.4) of Wang (2023) and using Remark 2 in the same appendix, it suffices
to prove his Lemma 2 holds when G € M® + M'//, that is, the zero set of the characteristic
function of &; = (&;1 —€jo, - - - , €i7 — €i0) 18 of zero Lebesgue measure. Following the strategy
used in his proof of Lemma 2, it is then sufficient to prove that the real (or imaginary)
part of the characteristic function is real analytic. Note that because ¢; is a finite mixture
random vector with mixing parameters equal to (i1, 5:'1);21 and (o, giz);":zl in (B.1), &;
mj
i=

is then a finite mixture random vector with mixing parameters equal to (&;1, ;1)
- m
(2, Si2); =y

- 1 (E-fy N e
G(E):chil—Jfb( §M11>+(1—r)2q2—]\11< ’2>,
=1 Sil

il i—1 Sin Si2

1 and

where ® and W are the distribution functions of & when ¢; is distributed according to ®
and W with, respectively, i;1 = (i1 — 14i01 )jj=1 and Lo = (Wi — Mi02)]!=1 . Then, we can

write E [exp{itTEi}] as

mj
E [explir™ | = r ) cir explir g [explitsnn el
i=1
my
+(1=n Y cpexplil in)Eq [explitsin & .

i=1

where Eg and Ey;, refer to the expectations with respect to ® and U, respectively. Note that
@ is still a Gaussian distribution and the real/imaginary part of its characteristic function is
real analytic with respect to r¢;; € R’ and therefore t € RY. Moreover, according to the proof
of Lemma 2 in Wang (2023), the real/imaginary part of the characteristic function of ¥ is
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real analytic with respect to ¢jp € RY and therefore r € R/, Consequently, the real/imaginary
part of E [exp{itTé,-}] is real analytic with respectto r € R’. The proof is completed.

E. Proof of Corollary 4

The norm || - || of a linear operator L : E — W is defined as

ILI:= " sup  ILO)Ilw,
veE, |vlg=1

where || - || and || - ||w denote norms defined in the spaces E and W, respectively. When
E and W are Euclidean spaces, we will use the corresponding Euclidean norms. Therefore,
|IL]| is the maximal eigenvalue of L.

Using Theorem A in Smale (1986), it suffices to prove that

1
J —1
s 65 P 61 swpees | (#() i+ =l De= ) |

@ = 2min(1, <2}

Note that

[1850 5 %, G171 0o (03X, F,6)| < 050 8: X, F. G I x 10 (33 X0, ', G,

where ||[050 (8; Xy, F/, O s equal to the reciprocal of the minimal eigenvalue of
950 (8; Xy, F', G). Moreover, 8§0(8;Xt, F.G)= (Bgoj(é;Xt, F/, G))jJ:1 defines a linear map-

ping from R/*k to RY and can be written as: for m = 1,...,J,
k
050 (8: X, F,GY(v1, ..., vp) = > 0§ on(8: X0, F',G)(ejy, - i) [ [ vies
Gloeenji):1<js <, s=1,....k s=1
0*on(8: X, F.G) {*
= Z k 98: Viss
Gloeenji):1<js <, s=1,....k [T5=1 9%, s=1

k

N *0n(8: X F,G) 11
R R evaes wrry U A
Go¥_ ell,.. T}k Hj:l BSJ. ! s=1

where e; is the standard basis vector with the jth element being 1 and the oth-

. 9%6,,(8: X1, F,G
ers being 0 and 8§am(8;X,,F’,G)(ejl,...,ejk) = O’m(f;aj)
S= s

Bé‘am(S;X,, F',G)(v1,...,vy) is a polynomial of (vq,...,vy). Each term in this polynomial

. In other words,

corresponds to a term in the polynomial ]_[]S‘: 1 (Z,J: 1 Vjs>. For the term []§_, vj,; with

o (8: X, F,G)
k .

J oo g Wis=i}

[T=198;°

Ok s =13, ..., KL 145 = J)th derivative of 0y, with respect to 8. Then,

G1s---5Jk) € {l,.‘..,J}k, the corresponding coefficient is , that is, the

https://doi.org/10.1017/50266466624000148 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466624000148

REAL ANALYTIC DISCRETE CHOICE MODELS OF DEMAND 43

1950m(8: X, F/,G) | = sup ]agam(a;xt,F’,G)(vl,...vk)’
lvi,.vi)ll=1
Ko (8; X1, F',G) (1, . vg) k (J
=< sup X V; X sup l_[ Zh}]sl
It v ll=1 (vl I0tevol=1 51 \ S
FKomS: X, F,G)| [k
= max — % 3
Iy 1) L=k J j
(R HBY H]:188j
Using Lemmas A2 and A3, we then obtain
1 C J Jk
o : X, F G| < — r<7> Vi + (1= el /€D e — 1ykkr U
” s§Ym t || gk o kk

k! c\ 1 1(e—1) AW
:gk<r<m> ﬁ—i—(l—r)e (e—1) &

Because ||[050 (5; X7, F’,G)]_1 || > 1and C > +/27, we finally obtain

(8) <sup | [I[3s0 (8: X, F'.G)]™! ! ( ¢ )J ! +(1=ne/Ve—1)k a
u o(8; X, F', —rl—=) — —r)e e— —
v 7k>I1) ’ ' k 2] k! Kk

1
J =)
Jsupy. | [(r(J%) ﬁ +(1=rel/le=D(e— l)k)]
2min{1, g2} ’

< I[8s50 (8; X, F',G)17 1|

E.1. The Case of the Mixed Logit Model

In the case of the mixed logit model, r = 0 and ¢ = 1 in the expression of y (). Then,

Je!/ =D (e —1)?
2

We now bound the eigenvalues of 350 (8; Xz, F', G). Note that the Jacobian matrix

y(8) < 1350 (8; X, F,G)1 7! ~ 2,64 x ||[850 (8; X1, F',G) 1.

350 (8: X1, F',G) = / [oj1{j=r}— UijUir]j’rdF(ﬁi) = / [Diag(ai) - UiU,T] dr (),
where o; = (01, ...0j7) denotes the vector of multinomial choice probabilities with the
random coefficients 8 equal to B;. Denote by A; the minimal eigenvalue of Diag(o;) — a,-al.T
and v; the corresponding eigenvector. Without loss of generality, suppose that the maximal
element of v; in absolute value is its first coordinate v;; # 0. Then, for any v € R/,

Va5 (8: X, F',Gyv = / VT [Diag(ai) —JiaiT] VdF (B;)

— 505X FG)v = / KlVIPAF ().
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Moreover, we have

J
~ T
[Dlag(ﬁi) —0i0; ] vi=Avi = 0j1 (i1 — Y 03vij) = Aivil
J=1
J
Zj:[ OijVij

Vil

= r=0i|1-

J
Zj=1 ojjlvijl

>0 | 1=
[vitl

J
o | 1= 0y
j=1

= 01005

where ;9 =1 — Zf:l ijj- Then, any eigenvalue of dso (8; Xy, F ' G)is greater than or equal
to [oj0 min| <j<y 0;dF(B;) ~ opmin| <j<y aj.24 Then, plugging this inequality into the
expression for A*, we obtain the desired approximation of A*.

To obtain Al”jl in (18), note that, in the classic BLP fixed point algorithm based on

contraction mappings, § "1 — 5 s

s s —1ng (5™ X, F/,G) —Inp;
~ Diag(1/p1s, ... 1/pi) (@ (6™ X0, F|,G) = py)
. 1
= —Diag (1/p1s . 1/pan) [0s0 6N X, P, G) | (55 =8,

where 61(\;'; b_ 8™ refers to the (n+ 1)th step in NR algorithm (14) if one switches from
the FP step to the NR step at (V. Then,

HW“) —s™| ~ HDiag(l/plt, 1) [350(5(N);X1, F, G)] (5{\?;1) - a<")) H .

When §®) is close to the unique solution, the minimal eigenvalue of

Diag (1/p1s,-- 1/pi) 950 6V: X0, F,6)

/
por, and H‘SI(\IA{{H) —sM H < Ay = A¥py, implies H‘SI(\IAI]{H) -5 H < A*,thatis, 8™ is an

approximate zero.

‘SI(\?IQ_ D _ s H is approximately bounded by H 81(\?];_ D _s0m

is approximately pq,. Then, ‘

24More precisely, Cov(ajp, minj<j<y0jj) = fa,-o min; <j<j 03;dF(B;) — ogminj<j<y oj. The approximation holds
when Cov(cjp, minj<j<y 0jj) is small.
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F. Proof of Corollary 5

LemMA F1. Suppose ©(0) : ® — R is a positive real analytic function in ® C R™ and
T(0) > a for any 6 € ®. Moreover, for any (11, ...,ln) with kazl Iy =L, we have
e

k| = H“‘ D

where A and A are constants that do not depend on 6. Then, for L > 1,

L 1/ L m
0'nt®) | _ (Aclat " T (F.2)
MLy d6f |~ \@+ DV =1) )

Proof. Without loss of generality, suppose A = 1. Otherwise, we can normalize 7 () to
7(0)/A and any derivative of In(t(0)/A) will be equal to that of Int ().

The techniques used in this proof are similar to those used in Lemmas A1 and A2. Denote
(at+p!m

= arnim . By induction, we first prove the lemma for L=1. Fork=1,...,m, we
have
37 (0)

0nt®) | _ | T | _Ac _ Acat+ D"
Ct® |7 a  (a+Dlm—

The lemma then holds for L = 1. Now suppose that the lemma holds up to L — 1. Then, we

have
37(0)
dlnt(0) L
0y 1)
dlnt(®) 9dt(H)
() =
=10 96,
;12_1122 Z (ll )( ) (’m)ﬁzkmfl(’k—’knnr(e) pli=1 @ alz(e)
.. ] m Tk T [/
A=0r=0  rm=0 ml T 6 =19 ThL 6
BLlnr(G)
T, 96
< 1( 2 (ll_l)ﬁ(lk) a%i=1 =0 In7.(g) 92k=1 k7
= L —r m Tk
“ 0<r1 <1 —1,0=r <[ ¥k=2, 3" ry>0 k= N 1‘[’" Gk ' iz
oLz o
+ mi()zk
[Tz 6%
1 | ofme@) | 1 hi—r !
:ALnlk' m anlk S; Z h 2 =) !
oL | Tz 99y 0<ry <l — 10 < Vk=2, 3 >0 Az [e=ro!
a2tz =m0 10 7 (0) 1 szmzlrkf(e) 1 k()
= Tk L !
s o [aZ* Int | T 6 " eI [T o)
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-1 1
L 1~ 2
ﬁ% m Sl 1+ Z Z Z sz 1(lk ) _ BL
Az[Tl! l_[m—l aekk a r1=0r=0  rp=0
] -1 I
_ 1+BL B ., —rm _ pL
y > ZB Y B B
ri=l1 =0 rm=0
1 oLz 1 1-g~h 2 p=lk—1
— @ ) _1 1+BL71_[7 B
ALTT! nzﬂ_laglik a 1-B-1 1-B-1

1 1
<- <1+BL7 7BL> =Bl
a (1—B~hym

Consequently, the lemma holds for any (/f,...,L,) with > [y = L. The proof is
completed. |

We now prove Corollary 5 for the case of G € M? + MY and F,, € F¢ using Lemma
F1. Given yj, the likelihood function £(§, 2;x1,y;5) = lnfa,-yit(él + x;; 2vj; G)dFy (v;).
First, for any j = 1,...,J, applying Corollary 1(b), faij(ét + x;; Zv;; G)dFy(v;) is real
analytic with respect to (&:,x;;X) in their domains and its higher-order derivatives satisfy
(F.1) with the corresponding constant A being equal to r(C/«/ﬂ)J + (- rel/e=D and
A being equal to W’ where C is a constant defined in (A.11). Then, fal:,'(&‘, +
Xit 2vi; G)dFy(v;) is real analytic with respect to (£, $) in their domains and its higher-
order derivatives satisfy (F.1) with A; equal to M;lx”‘m‘”‘. Denote m = JT + KP.
Using Lemma F1, we obtain that the higher-order derivatives of ¢;; are bounded by
(Avf(e—ng‘|x,-,\max(a+1>‘/'"

(a+ D171

> [T¢Z Ik!. Consequently, the higher-order derivatives of

AJ(e=D)c V(a+1)l/m L
L(£,%) are bounded by ( (E(H)f)l R ) TT7 4! S s iy Following the

arguments in the proof of Corollary 4, we then obtain

sup 19, 5, £E )01,
IO vid =1 v, ve€R™

_ —1 1/m k k
) AyJe—Dg™ (a+1) k! m—ZIXitlk
= (@+l/m—1 NETE

and

—1
{ enZE E)} 11

,T) <
y(§, %) < sup NT

k>1

_ k+1 1/(e=1)
Avde—Dg™ at+!/m mktl Y i
(a+1l/m—1 (k+ Dk+1 NT

& ! . 3

> el 1/m

<max{1, L@) max ],Avf(e Dg™'X(a+1) (T>3/2.
NT @+ Hi/m_1 3
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To prove the second statement, it suffices to replace y (&, ) in the definition of o (&, X) by
the upper bound above. The proof is completed.

G. Monte Carlo Simulations: Details

In this Appendix, we detail the data generating processes and the fixed point algorithm used
in Section 6. Our Monte Carlo setting resembles that in Section 5 of Conlon and Gortmaker
(2020). Because our Monte Carlo experiments focus on the numerical performance of
different implementations of demand inverses rather than the GMM estimator, we simulate
data for only one market and ignore the market index .

There are two firms that sell products j = 1,...,|J/2] and j = [J/2] +1,...,J, respec-
tively, with constant marginal costs of production ¢; = [1,x;, w;ly + w;. We specify

Uij = Bioprice; + Binxj +a + & + ¢,

where (‘Sij)]!:o is i.i.d. Gumbel (i.e., which gives rise to a mixed logit) and (pricej)j]:1
is generated by a simultaneous Bertrand price-setting game as in Conlon and Gortmaker

(2020). Demand and supply shocks (&, w;) follow a mean-zero Gaussian distribution with

o2 = %2) = 0.2 and 0¢,, = 0.1, and are independent across j = 1, ...,J. Moreover, o« = —1

and (B0, Bix) follows a Gaussian distribution:
2
lef 0
(Bio, Bix) ~N<(—2, 6). [6’ QD.

The configuration “No random coefficient on price” in Tables I and 2 refers to op =0,
that is, Bjp = —2 for any 7, and “Random coefficient on price” refers to o, = 0.2. To
simulate market shares and prices, we use 1,000 independent draws of (B, Bix) and
for J =25,50,100, where J = 50 is equal to the maximal number of products in the
configurations considered by Conlon and Gortmaker (2020).

The fixed point algorithm we use in Section 6 and in the FP step of Algorithm 1 is the
original one by Berry et al. (1995): forj=1,...,J,

3;""—1) = 8;'1) —(Inp; — anj(S(");price,x, G)). (G.1)

“Close starting values” in Table 1 refer to a situation where we draw starting values from a
small neighborhood of the true values (8]-);: 1= (—2pricej +6x;—1+ Sj)j!: 1- In practice,
we draw 200 starting values from the uniform distribution on a “tight” neighborhood of
the true values [8§; —1,8] + 1] x --- x [67 — 1,67 4 1]. Instead, “Distant starting values”
in Table 2 refer to a situation where we draw the same number of starting values from a
uniform distribution on the “wider” neighborhood of the true values [§{ — 5,81 +5] x - -+ x
[65—5,67+5].
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