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SUMMARY

Associative overdominance arises at an intrinsically neutral locus
through its non-random association with overdominant loci. In finite
populations, even if fitness is additive between loci, non-random asso-
ciation will be created by random genetic drift.

The magnitude of such associative overdominance is roughly propor-
tional to the sum of er '̂s between the neutral and the surrounding over-
dominant loci, where o\ is the squared standard linkage deviation,
defined between any two loci by the relation

a% =E(D*)IE{i>(l-P)q(l-q)},

in which p and 1 — p are frequencies of alleles Ax and A2 in the first locus,
q and 1 — q are frequencies of alleles Bt and B2 in the second locus, and
D is the coefficient of linkage disequilibrium. A theory was developed
based on diffusion models which enables us to obtain formulae for tr |
under various conditions, and Monte Carlo experiments were performed
to check the validity of those formulae.

It was shown that if Ax and A2 are strongly overdominant while Bx
and B2 are selectively neutral, we have approximately

provided that 4iVec > 1, where Ne is the effective population size and c is
the recombination fraction between the two loci. This approximation
formula is also valid between two strongly overdominant as well as
weakly overdominant loci, if 4Nec > 1.

The significance of associative overdominance for the maintenance of
genetic variability in natural populations was discussed, and it was shown
that Nes', that is, the product between effective population size and the
coefficient of associative overdominance, remains constant with varying
Ne, if the total segregational (overdominant) load is kept constant.

The amount of linkage disequilibrium expected due to random drift
in experimental populations was also discussed, and it was shown that
°d = 1/(TC— 1) in the first generation, if it is produced by extracting n
chromosomes from a large parental population in which D = 0.

* Contribution No. 757 from the National Institute of Genetics, Mishima, Shizuoka-ken,
411, Japan. Aided in part by a Grant-in-Aid from the Ministry of Education, Japan.
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166 TOMOKO OHTA AND MOTOO KIMUBA

1. INTRODUCTION

It has been pointed out by several authors that linkage disequilibrium may
create an apparent overdominance at intrinsically non-overdominant loci. In other
words, non-random association with overdominant or ordinarily dominant loci
may result in an apparent heterozygote advantage (Comstock & Robinson, 1952;
Frydenberg, 1963; Chigusa & Mukai, 1964; Maruyama & Kimura, 1968). However,
the underlying mechanism for such apparent overdominance has never been
clarified.

Recently, Sved (1968); Ohta & Kimura (19696) presented theoretical treat-
ments of this problem by considering non-random association between neutral and
overdominant loci due to random drift in finite populations. They showed that
the degree of associative overdominance depends on the square of the coefficient
of linkage disequilibrium, D2, which in turn depends on the effective population
size and the recombination fraction. Sved used a model in which all gene frequencies
are assumed to be held at 50 % by strong overdominance while mutation is so rare
as to be negligible. In considering natural populations, however, it may be more
appropriate to assume a steady state in which random drift, recurrent mutation
and natural selection balance each other.

Ohta & Kimura (19696) developed a more general theory based on diffusion
models to obtain the expected value of D2 at steady state determined by random
drift and mutation. They also showed that associative overdominance may appear
at an intrinsically neutral locus when it is associated with overdominant or
ordinarily dominant loci. Then- treatment is valid under linear evolutionary pres-
sures, such as mutation and migration, but, to extrapolate this to include selec-
tion, even if the selective change of gene frequencies may be linearized without
serious error, should need justification. So, in the present paper, we treat a situa-
tion in which a neutral locus is linked with a strongly overdominant locus.

Thus, the present paper is an extension and elaboration of our previous work
(Ohta & Kimura, 19696), with special reference to the development of associative
overdominance due to linkage disequilibrium. We will first present a theoretical
treatment based on diffusion models and then demonstrate its validity using
Monte Carlo methods.

Also, the bearing of associative overdominance on the maintenance of genetic
variability in natural populations will be discussed.

2. ASSOCIATIVE OVERDOMINANCE

Let us consider two linked loci and assume that a pair of alleles, A1 and A2, are
segregating (with respective frequencies p and 1 — p) in the first locus, and the
other pair, B± and B2 (with frequencies q and 1 — q) in the second locus. No selec-
tion is assumed at the B locus and overdominance or ordinary dominance is
assumed at the A locus. Let the relative fitnesses of A^AX, A1A2 and A2A2 be
respectively 1 — s, 1 — hs and 1, and let px and^)2 be the relative frequencies of Ax
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among Bx-&nd 52-carrying chromosomes. Then the mean fitnesses of BxBlt BXB2

and B2B2, for a given set of values of px and p2, are

WBlBl = 1 - 2hsPl - 5(1 - 2h)p\, |

WBlBi = l-hs(p1+p2)-s(l-2h)p1p2,\

WBB = \-2hsp2-s{\-2h)pl J

(1)

In order to evaluate their expected values, let px = p + bx and p2 = p — b2. If we
denote by g1} g2! g3 and gr4 the relative frequencies of the four types of chromosomes,
A1B1, AXB2, A2BX and A2B2, then

-p-°ih 04 = ^ - W -

Therefore, we have6x = Djqandb2 = D/(l — q), whereD — g^g^ — g^ZiV =
and q = gx + gz. By substituting these relations in the formulae (1), we get the
expected amount of associative overdominance at the B locus:

D

7)2

D
- 0 )

D2

0.(1-

(2)

Here, E stands for the operator of taking expectations and we assume that
E(D) = 0. The quantity, D2/q2(l —q) or D2/q(l—q)2 may be considered as a measure
of association in gene frequencies between neutral and overdominant loci, through
which apparent overdominance is created at the neutral locus. Now, as reported
earlier (Ohta & Kimura, 19696), the squared correlation coefficient (r2) of gene
frequencies between two loci is approximately equal to the squared standard
linkage deviation, i.e. <J\ = E(D2)jE{pq{\—p){\ — q)}. In the present paper, we
are mainly interested in cases in which q takes an intermediate value rather than
considering the expected value. Hence we replace the above expressions by,

(3)
E{WBlB2-WBiBt} = s ( l -

For the special case of symmetric overdominance (with fitnesses of A^^ A1A2 and
A2A2 of 1 — s, 1 and 1 — s), it can easily be shown that the corresponding expressions

are,

j-jj
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168 TOMOKO OHTA AND MOTOO KIMTTRA

The validity of these approximations was checked by Monte Carlo experiments,
as will be shown later. The above expressions are clearly positive, and also expres-
sions (2) and (3) are positive unless h ^ £. We will show in the following sections
that E(D) = 0 at steady state, unless epistatic interaction is very strong or the
recurrent mutations are of special type creating linkage disequilibrium. For example,
if the two loci are multiplicatively overdominant, as shown by Bodmer & Felsen-
stein (1967), stable linkage disequilibrium will be established by selection only
when the recombination fraction between them is less than s2/4. Also, we can show
that E(D) is not zero at equilibrium, if the direction of mutation at one locus
depends on the kind of alleles at another locus.

When B locus is selectively neutral and A locus is overdominant or ordinarily
dominant, we need to estimate associative overdominance at B locus. The gene
frequency at B locus may often deviate from its equilibrium value. So, in con-
sidering associative overdominance we might substitute a possible or obser-
vational value of q.

Comstock & Robinson (1952); Chigusa & Mukai (1964) reported the possibility
of apparent overdominance for the explanation of their data. Their models are
somewhat different from ours in that they assumed selection in all loci. For
simplicity's sake, let us assume complete dominance at both A and B loci (h = 0).
Then, if there is enough negative linkage disequilibrium, the excess of repulsion
double heterozygotes will result in an apparent heterosis. This type of pseudo-
overdominance may be responsible for many transient polymorphisms in experi-
mental populations as well as for hybrid vigour in many crop plants including the
maize. Frydenberg's (1963) interpretation of his experimental result is more similar
to our present model. He concluded that the overdominance observed at his
marker locus was, at least partly, due to its association with the inversion
chromosome, and he termed this phenomenon associative overdominance,
although he did not make any quantitative treatment of his model.

We will now proceed to present out basic theory based on diffusion models.

3. BASIC THEORY

The main aim of this section is to derive formulae for <r\, that is, the square of
the standard linkage deviation at steady state determined by mutation, selection
and random drift, assuming a neutral and an overdominant locus. At the over-
dominant locus, it is assumed that the selection is so strong that gene frequencies
are kept practically constant. If the selection is not strong (with Ne s less than unity),
one may use the result already obtained in our previous paper (Ohta & Kimura,
19696). Namely, for a symmetric overdominance at one locus and with symmetric
mutation rates at both loci, the square of the standard linkage deviation is

where c is the recombination fraction between the two loci, s is the heterozygote
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advantage over both homozygotes and km is the sum of the mutation rates. There-
fore, <r\ x ll{<LNec)i£4JVec is large. In the following treatments, we will show that
even with a very strong overdominance at one locus the relation between a\ and
Nec does not much differ from this.

As shown by Ohta & Kimura (19696), if/ is a polynomial of random variables
describing the stationary distribution, then we have

E{LB(f)} = 0, (6)

where LB denotes the differential operator such that if there are n independent
random variables, xv x2,..., xn, the equation becomes

where MSXi and VSx{ are the mean and the variance of dx{ and WSxi Sx is the covariance
between Sxt and 8XJ per unit time (generation).

Equation (6) enables us to calculate the moments of the frequency distribution.
Let us apply this equation to the treatment of the present problem. We will
assume that overdominance at the A locus is so strong that the frequency p of
allele A1 is constant which we denote by p. At B locus, we assume that a pair of
alleles Bx and B2 are selectively neutral, and we denote their frequencies respec-
tively by q and 1 — q. Furthermore, let qx and q2 be respectively the frequencies of
Bx among Ax- and ^42-carrying chromosomes. Both qx and q2 are random variables.
We will denote by u the mutation rate from Bt to B2, and by v the rate in the
reverse direction. Let Ne be the 'variance' effective size of the population and c be
the recombination fraction between A and B loci. Then the following equation can
be obtained at steady state for qx and q% by taking account of mutation, recombi-
nation and random sampling of gametes.

We now transform the set of independent random variables q1 and q2 into that of q
and D using the relations, A

8 = 0

I a2/
\8q8D

and D =P(l-P)(qi-q2).
Then, equation (8) becomes,

Ne{c + u + v)D^=0. (9)
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We should note here that the same result can be obtained by computing directly
the means, the variances and the covariance of changes in q and D per generation.
Using this equation, we will derive the moments of the distributions of q and D and
therefore cr\ at steady state.

Let / = D in (9), then we get E(D) = 0. Similarly, we get E(q) = v/(u + v) by
putting/ = q in (9). Next, if we substitute three functions, Z>2, q2 and qD for/, we
get the following simultaneous equations for E(D2), E(q2) and E(qD).

1-30(1-0)

2)2 (10)

Solving these equations, we obtain the following formula for

In this equation, k'm = u + v, c is the recombination fraction between the two loci,
and P is the frequency of the overdominant allele A1 supposed to be kept constant
in a population of effective size Ne. For a special case of symmetrical overdomi-
nance at A locus, p = 1/2 and the last term in the denominator vanishes giving

If we compare this formula with the corresponding formula, equation (5) obtained
assuming weak overdominance, we note that for a large value of Nec, they become
practically the same. We may also note that the total mutation rate, k'm in this
formula is the sum only for the B locus, whereas km in formula (5) is the sum for
both. A and B loci, since the effect of mutation is neglected at the overdominant
locus in the present treatment.

When Nec is small, and especially at the limit of Ne(c + km)-+ 0, these two for-
mulae give somewhat different values. Namely, at this limit, o-J in formula (11)
or (12) approaches 1, whereas <r\ in formula (5) approaches a value between
1/2-2 ~ l /3 . Also, for such an extremely tight linkage, and for an intermediate
intensity of selection such as Nes = 2, the exact evaluation of a\ appears to be
very difficult.
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Considering all these results, we may conclude that if Nec is much larger than
unity, we have ^ ^ ^ ^ ^ ( 1 3 )

with good approximation. This simple approximation formula should have a wide
applicability, because in most of the natural populations and for most of the linked
loci, 4Nec > 1 is expected.

It is interesting to note that this approximation formula is also valid for the
case of steady decay (cf. Ohta & Kimura, 1969 a).

4. MONTE CARLO EXPERIMENTS

Using the IBM 360 computer, Monte Carlo experiments were performed simu-
lating a two-locus genetic system. A simple scheme following Ohta (1968) was used
for the experiments, that is, selection and recombination were carried out deter-
ministically and sampling and mutation were performed by generating uniform
pseudo-random numbers X(00 ~ 1-0) using subroutine RANDU in FORTRAN
IV. Each generation consists of mutation, selection, recombination and sampling.
The initial frequencies of four gamete types were read into the computer and the
simulation experiments were continued up to 200 generations so that the results
represent the equilibrium state.

Let us assign the numbers 1, 2, 3 and 4 to four gamete types, AxBlt AXB2>

A2BX and A2B2. We will denote by gt the frequency of gamete i and by zfi the
frequency of the zygote formed by the union of gametes i and j (i,j = 1, 2, 3, 4).

A1B1

X
A2B2

Also we will number eight directions of mutations according to the above
diagram. The process of mutation is as follows: We generate a sequence of eight
random numbers. Then, one mutation of type 1 is induced among the gametes
with AXB2 if the first random number is less than w,Yg2. Similarly, one mutation of
type 2 is induced if the second random number is less than m2g1 and so on. Here,
TOX ~ m8 are constants representing the mutation rates. Next, selection was
exerted on zygotes using the equations,

and z ^
17 w
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where wtj is the fitness (in selective values) of individuals with genotype ij and w
is the average selective value of individuals in the population. The sampling of
zygotes was made by generating pseudo-random numbers N times each generation.
Finally, the recombination was carried out deterministically and the frequencies
of four gamete types to form the next generation were determined.

Table 1. Results of Monte Carlo experiments to check the formula (12)

(Each experimental value is the average of 1200 generations starting with gametic
frequencies of 1/4 for all four types. Throughout the experiments the effective popu-
lation number (Ne) was assumed to be 50 and k, the sum of mutation rates was
k = 001 so that N.k = 0-5.

Monte Carlo

c

0
0-005
0 0 1
002
003
004
005
0-06
007
0-08
009
0 1

r 1 ' Vi ^/•"!•»•£* 4~ if* a 1
-L IltJUX culUfcll

0-333
0-250
0-200
0143
o-m
0091
0-077
0-067
0059
0053
0-048
0043

N.8 =
A

0-362
0-183
0-128
0113
0-076
0100
0074
0-074
0-051
0033
0042
0-038

4

0-257
0123
0080
0074
0048
0-077
0060
0-048
0040
0025
0-028
0035

N.8 =
A,

0-258
0-205
0168
0134
0082
0-080
0073
0064
0041
0-042
0041
0033

20

r2

0134
0173
0133
0108
0-065
0060
0054
0043
0-037
0037
0035
0031

Both cases of large and intermediate selection coefficients were tried. The main
purpose of the experiments was to check the validity of formula (12). The sym-
metric overdominance (sx = s2 = s) was assumed at A locus and no selection was
assumed at B locus. In one set of experiments, we assumed Nes = 4 and in another,
Nes = 20. The population size was 50 and mutation rates were equal in all direc-
tions with Nekm = 0-5. The experiments were carried out for various levels of
recombination ranging from c = 0 to c = 0-1. Each experiment consisting of 1200
generations started with gene frequencies of 1/2 at both loci and without linkage
disequilibrium. In Table 1 theoretical and experimental values of crj are presented
together with corresponding values of r2 obtained from the experiments. In com-
puting a\ from the experiments, we took the ratio between the mean of D2 and
that of pq(\ —p)(l—q) each averaged over all 1200 generations. On the other hand,
r2 was obtained by taking the average of the ratios of these two statistics over 1200
generations.

In order to show the level of accuracy of formulae (3) and (4), we have produced
Table 2 in which (D2[q2(l — <?)> and (D2lq{\ — qfy are compared respectively with
oiKlH1 —P))K9} a nd vKpil —p)yiO- -?)» where < > denotes the average obtained
from the experiments. Also, experimental values are used for a\. In the present
case km (sum of mutation rates at A and B loci) is substituted for k'm (sum of
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mutation rates at only B locus) in the formula, since mutation is not negligible at
the overdominant locus in our experiments. As seen from the tables, the agreement
between the theoretical predictions and the experimental results is satisfactory.
However, the approximation formula (12) seems to overestimate slightly the true
value. The reason for this appears to be that the gene frequency at the over-
dominant locus is not strictly fixed but slightly fluctuating.

Table 2. Experimental check on the approximation involved in formula (3)

(The data are derived from the same experiments which were performed to con-
struct Table 1. In the table, the symbol { ) denotes the average obtained from
the experiments. For details, see text.)

£[ 8 - / ~ \ _2 \r-\- t-i/ / " \ _2 \P\+ Pi)

4 00 0139 0125 0178 0-224
0005 0099 0096 0-076 0069
001 0090 0-079 0059 0043
002 0058 0-041 0-088 0-065
003 0026 0019 0075 0053
004 0-058 0-044 0-056 0051
005 0-056 0040 0-043 0030
006 0061 0046 0-026 0023
007 0013 0014 0-067 0055
008 0047 0021 0-024 0011
009 0045 0024 0026 0016
01 0035 0017 0020 0014

20 00 0058 0077 0165 0-341
0005 0101 0117 0098 0090
001 0073 0063 0116 0114
002 0090 0088 0055 0-051
0-03 0072 0-064 0-029 0029
004 0081 0065 0032 0028
0-05 0047 0033 0058 0038
006 0040 0026 0063 0039
007 0059 0032 0019 0014
008 0019 0016 0049 0034
009 0031 0021 0038 0019
01 0014 0012 0039 0024

5. DISCUSSION

The main aim of the present paper is to estimate, using our formulae for the
square of the standard linkage deviation (erf), the approximate magnitude of
associative overdominance created by linkage disequilibrium. Certainly, it is based
on several approximations, but as demonstrated by the Monte Carlo experiments,
these formulae give us a sufficiently accurate estimate for a\. One problem in our
procedure of estimating associative overdominance is that we substitute the ratio
of the expectations for the expectation of the ratio, cf. formulae (2) and (3). To
see the magnitude of errors involved, we compared a\ = E(D2)jE{p{\ — p)q(l — q)}
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which is the ratio of the expectations, with r2 = E{Dzjpq(l — p)(l — q)} which is the
expectation of the ratio. The latter is the square of the correlation of p and q in
the usual sense. In Table 1, values of o^ and r2 are compared. The values of r2 are
slightly smaller than the corresponding values of a\ mainly due to deviation of
gene frequency (q) from 1/2 at the neutral locus. The reason for r2 < a\ may most
easily be understood by considering the situation in which q happens to become
extremely small. Then r2 must approach 0, but a\ will not be much influenced by
such a deviation. Thus, excluding such extreme situations, we may conclude that,
for large Nec, the approximation a\ w l/{4î e (c + km)} is valid and useful to evaluate
associative over dominance.

It is quite interesting that essentially the same formula for a\ holds also at the
transient state in which the variability is steadily decaying, as long as Nec is large.
Hill & Robertson (1968) found that the square of the correlation of gene fre-
quencies (r2) at steady decay becomes approximately 1/(4^0) when Nec is large.
Ohta & Kimura (1969 a) also showed that under such a situation <r| becomes
approximately l/(42Vec). On the other hand, when Nec is small, there are some
differences in a% between the stationary state and the steadily decaying state.
Also, the effects of selection and mutation become important.

Let us investigate how much associative overdominance will be developed if a
neutral locus is linked with a number of overdominant loci on the same chromosome.
Our model is as follows. We assume that there are nx overdominant loci on the left
and n2 overdominant loci on the right of the neutral locus in such a way that the
recombination fraction between the neutral locus and the ith overdominant locus,
either on the left or on the right, is ic0. Let s be the selection coefficient against
either homozygote in each overdominant locus. We then ask how much associative
overdominance will develop at the neutral locus (B), where alleles B1 and B2 are
segregatingwithrespective frequencies of q and 1 — q. We assume that linkage among
overdominant loci is loose in comparison with the selection intensity, so that these
overdominant loci do not constitute ' super genes' and that they are more or less
randomly combined. However, a small amount of linkage disequilibrium will be
created among them by random genetic drift. If we assume strict additivity in
fitness among the overdominant loci, i.e. additive overdominance, and if cr\
between the neutral and each overdominant locus is adequately given by our
formula (12), the associative overdominance at the neutral locus simply becomes
the sum of the effects of all linked overdominant loci.

For a multiplicative overdominance, we may take logarithms of the individual
fitnesses in the following formulation. Let us suppose that q happens to take an
intermediate value not very far from 1/2. That is, the frequency of Bt or B2 has
increased in the population by random frequency drift. Then, from equation (3),
if we take q = 1/2, the coefficient of associative overdominance s' becomes
approximately,

s' = E{WSiBi-WBlBi} = E{WBlBt-WBtBJ = si S <r!(t)+
U=i t=
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where o\ (i) is the standard linkage deviation between the neutral locus and the
ith overdominant locus, either on the right or on the left. Then, using

we have s' =-^—{2y + logn1 + logn2}, (14)

where y = 0-577 is Euler's constant. For example, if the effective population size
is 1000 and if there are 100 overdominant loci on the chromosome such that
nx = n2 = 50 covering roughly the map length of 100 units (c0 = 0-01), the neutral
locus being located just in the middle, s' becomes about 0-22s. If the population is
ten times as large, s' is 0-022s. An important point to note here is that Nes' remains
constant with varying Ne. If we change the number of overdominant loci such that
the total effect on the given segment does not change (for example, 2n loci
each with homozygous disadvantage s/2 instead of n loci each with s), then the
amount of associative overdominance s' changes relatively little (for example, by
the factor log 2nllogn). For a large value of Ne such as 105 or 106, the value of s'
may be quite small, but it does retard fixation at the neutral locus, since Nes'
remains constant.

So far, we have investigated the amount of pseudo-overdominance developed
at a neutral locus through its non-random association with overdominant loci in a
finite population.

In discussing the effect of such associative overdominance on the amount of
heterozygosity at the neutral locus, we must be careful not to overlook the effect
of mutation at that locus. Namely, at the neutral locus B, if we disregard the effect
of associative overdominance, it can be shown that the expected amount of
heterozygosity is N

^ (15)

where q = v/(u + v). On the other hand, if we include the effect of associative over-
dominance from the A locus, it can be shown using equations (10) that the ex-
pected heterozygosity is

where <r| is given by equation (11).
If 4Ne{u + v) is much larger than unity, HB approaches 2q(l — q) by mutation,

and there may be little room left for pseudo-overdominance to enhance hetero-
zygosity. However, if 4JSfe(u + v) is small, we have

{l + o*a)HB,

provided that trj x l/(4i^gc) is small. Thus, the heterozygosity at the B locus is
enhanced by the fraction l/(4tNec) by associative overdominance caused by A locus.

When a large number of overdominant loci are linked to the neutral locus, their
effect on enhancing heterozygosity at the neutral locus would probably be pro-
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portional to exp(ScrJ), as long as each crjj's is small. A more detailed study on this
subject will be left to our future reports. However, we should mention here that
when both A and B loci are kept polymorphic by strong overdominance, linkage
disequilibrium is created between these two overdominant loci just as between a
neutral and an overdominant loci. Namely, the approximation equation (13) also
holds for them if c is the recombination fraction between them. This can be shown
as follows. Let $ and # be respectively the frequencies of A1 and Bx in these two
loci, and suppose that both fi and # are kept constant by strong overdominance.
At the neighbourhood of D = 0, the sampling variance of D is approximately

because the problem is analogous to that of sampling in 2 x 2 contingency table in
statistics, and we can show that

^ = 2 ^ , ^ / ^ ( 1 - ^ ( 1 - $ ) ] ,
follows approximately Chi-square distribution with one degree of freedom, so that
E(x\) = 1- Thus, noting that MSD = —cD, by recombination, the equation corre-
sponding to (7) becomes

By setting successively / = D and / = D2 in this equation, we obtain E(D) = 0
and E{D2) = 4Necp(l-$)q(l-(}). Therefore,

-$)] = l/(4iVec),
as was to be shown. This formula should be valid when a\ is small.

Finally we intend to discuss problems of linkage disequilibrium in experimental
populations. There are many reports on the experimental measure of fitness values
with respect to isozyme alleles or other marker genes. Very often, however, the
results merely reflect the effects of a group of surrounding genes and hence the
effect of individual alleles on fitness is very difficult to measure. In experimental
populations, initial linkage disequilibrium may be produced by sampling a rela-
tively small number of chromosomes from a large parental population. As shown
by Hill & Robertson (1968), if n chromosomes are sampled to form the first genera-
tion of experimental populations, the values of X = E{jpq(l—p)(l — q)}, Y = E{D
(1 — 2p)(l — 2q)} and Z = {D2} in the first generation is given by

) (
n) n\ n

o ( i - l W x ^ V o *(1_i)(1_?)(1_6),
\ n)\ n) n\ n) \ n)K '

Zo
.TO \ ?i/ n\ n} \ n/ln* \ TO _

(17)
where Xo, Yo and Zo are the corresponding values in the parental population.
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Assuming that the linkage disequilibrium in the parental population is negligible
so that approximately Yo = Zo = 0, then the squared standard linkage deviation
in the first generation of the experimental populations is

Usually, the chromosomes thus sampled are rapidly multiplied from n to n' in the
succeeding generations and then they are used for measuring the fitness of the
marker gene. The following is a very rough estimate of linkage disequilibrium in
such experimental populations. Applying the results of Ohta & Kimura (1969a),
Otf in the t-th. generation may be given as follows,

where A/s are the first three eigenvalues of the Kolmogorov forward equation
involved and OH{'a and Cj/s are the functions of A/s. These parameters are given
in Ohta & Kimura (1969a). The value of <r\ t rapidly approaches to l/2ra'c for
sufficiently large value of n'c. By using the formula (3), one can estimate the
average degree of associative overdominance. Of course this method gives the
overall average due to non-epistatic genes.

If there are strong epistatic effects between loci so that super-genes are formed,
E(D) is not zero and the result becomes much more complex.
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