A CONVERSE PROBLEM IN MATRIX
 DIFFERENTIAL EQUATIONS

BY
WARREN E. SHREVE ${ }^{1}$)

Suppose X and Y are $n \times n$ matrix solutions of the $n \times n$ matrix differential equation

$$
\begin{equation*}
X^{\prime \prime}+P(t) X=0 \quad \text { on } J \tag{1}
\end{equation*}
$$

such that

$$
\begin{equation*}
X X^{*}+Y Y^{*}=I \tag{2}
\end{equation*}
$$

$$
\text { on } J
$$

where J is some interval. Here $P(t)$ is a symmetric $n \times n$ matrix and 0 and I respectively the $n \times n$ zero and identity matrices. Also X^{*} and $\operatorname{tr} X$, denote, respectively, the transpose and the trace of X.

In the scalar case it is well known (1) and (2) together imply $p(t) \equiv k$, a nonnegative constant. See [1] and the references therein. The lower case letters used above indicate scalars which are 1×1 matrices.

Now in the case that $n>1$, we can no longer be sure that $P(t) \equiv K$ a constant matrix, but we can obtain a result which in the scalar case imlies $p(t) \equiv k$. To see that $P(t) \equiv K$ may fail when (1) and (2) are true, we consider the following example. Let

$$
U(t)=\left(\begin{array}{cc}
\frac{1}{\sqrt{3}} \cos 4 t & -\frac{1}{\sqrt{3}} \sin 4 t \\
\frac{\sqrt{2}}{5} \cos 4 t+\frac{8}{5 \sqrt{3}} \sin 4 t & \frac{8}{5 \sqrt{3}} \cos 4 t-\frac{\sqrt{2}}{5} \sin 4 t
\end{array}\right)
$$

and

$$
V(t)=\left(\begin{array}{cc}
\frac{\sqrt{2}}{\sqrt{5}} \cos t+\frac{2}{\sqrt{15}} \sin t & \frac{2}{\sqrt{15}} \cos t+\frac{\sqrt{2}}{\sqrt{5}} \sin t \\
\frac{1}{\sqrt{15}} \cos t & -\frac{1}{\sqrt{15}} \sin t
\end{array}\right)
$$

Further, let

$$
C=\left(\begin{array}{cc}
3 & \sqrt{6} \\
\sqrt{6} & 12
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Received by the editors December 20, 1971 and, in revised form, January 17, 1972.
${ }^{(1)}$ This research has been supported by NSF Institutional Grant for Science GU-3615.
and, note that

$$
e^{B t}=\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)
$$

and $\left(e^{B t}\right)^{*}=e^{B * t}=e^{-B t}$. The following may be easily, but tediously, verified.

$$
U U^{*}+V V^{*}=I
$$

Next we note that U and V are solutions of $U^{\prime \prime}-2 B U^{\prime}+\left(C-B^{*} B\right) U=0$, a constant coefficient matrix differential equation. Defining $X=e^{-B t} U$ and $Y=e^{-B t} V$ we obtain that X and Y are solutions to $X^{\prime \prime}+P(t) X=0$ where $P(t)=e^{-B t} C e^{B t}$ is a nonconstant matrix. Looking at $X X^{*}+Y Y^{*}$, we see that

$$
\begin{aligned}
X X^{*}+Y Y^{*} & =e^{B t} U U^{*}\left(e^{B t}\right)^{*}+e^{B t} V V^{*}\left(e^{B t}\right)^{*} \\
& =e^{B t}\left(U U^{*}+V V^{*}\right) e^{-B t}=e^{B t} I e^{-B t}=I .
\end{aligned}
$$

Hence (1) and (2) are satisfied but $P(t) \equiv K$ fails in this case where $n=2$. It is easy to see that this system can be incorporated into a higher dimensional system thus preventing the conclusion that $P(t) \equiv K$ for $n>2$ also.

We are now ready to state and prove a theorem true for all $n \geq 1$.
Theorem. Let X and Y be solutions of the matrix differential equation (1) where $P(t)$ is a symmetric matrix. Suppose that (2) holds. Then $P(t)$ is positive semi-definite and $\operatorname{tr} P(t) \equiv k$ a constant. Further $P(t)=e^{-\mathrm{Bt}} C e^{\mathrm{Bt}}$ where C is symmetric, and B is skew-symmetric.

Corollary. If x and y are solutions to the scalar differential equation $x^{\prime \prime}+p(t) x=0$ and if $x^{2}+y^{2}=1$, then $p(t) \equiv k \geq 0$.

Proof of Theorem. Differentiating (2) we have

$$
\begin{equation*}
\left(X^{\prime} X^{*}+Y^{\prime} Y^{*}\right)+\left(X X^{\prime *}+Y Y^{\prime *}\right)=0 \tag{3}
\end{equation*}
$$

Let $B=X^{\prime} X^{*}+Y^{\prime} Y^{*}$, then (3) becomes

$$
\begin{equation*}
B+B^{*}=0 \tag{4}
\end{equation*}
$$

Thus B is a skew-symmetric matrix, and, since B is differentiable, B^{\prime} is a skewsymmetric matrix also. On the other hand, $B^{\prime}=X^{\prime} X^{\prime *}+Y^{\prime} Y^{\prime *}-P\left(X X^{*}+Y Y^{*}\right)=$ $X^{\prime} X^{\prime *}+Y^{\prime} Y^{\prime *}-P$ which is symmetric. Thus $B^{\prime}=0$, since the only simultaneously symmetric and skew-symmetric matrix is the zero matrix. So, B is constant. From $B^{\prime}=0$ we obtain

$$
\begin{equation*}
X^{\prime} X^{\prime *}+Y^{\prime} Y^{\prime *}-P=0 \tag{5}
\end{equation*}
$$

Thus P is differentiable and positive semi-definite.
The third differentiation gives us

$$
\begin{equation*}
P^{\prime}=-\left(B P+P B^{*}\right)=P B-B P \tag{6}
\end{equation*}
$$

Taking the trace in (6) we obtain

$$
(\operatorname{tr} P)^{\prime}=\operatorname{tr}\left(P^{\prime}\right)=\operatorname{tr}(P B-B P)=\operatorname{tr}(P B)-\operatorname{tr}(B P)=0 .
$$

Thus $\operatorname{tr} P \equiv k$.
Since P satisfies (6), we know that $P(t)=e^{-B t} C e^{B t}$ where C is constant. But B is skew-symmetric, and, thus, C is symmetric since $P(t)$ is.

Remark. An obvious specialization of the proof of the theorem yields for the corollary an easy and straight forward proof different from any found in [1] or its reference [6].

Reference

1. D. E. Seminar, Some elementary converse problems in ordinary differential equations, Canad. Math. Bulletin, 11 (1968), 703-716.

North Dakota State University, Fargo, North Dakota

