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Multipliers on Vector Valued
Bergman Spaces

Oscar Blasco and José Luis Arregui

Abstract. Let X be a complex Banach space and let Bp(X) denote the vector-valued Bergman space

on the unit disc for 1 ≤ p < ∞. A sequence (Tn)n of bounded operators between two Banach

spaces X and Y defines a multiplier between Bp(X) and Bq(Y ) (resp. Bp(X) and `q(Y )) if for any

function f (z) =
∑

∞

n=0 xnzn in Bp(X) we have that g(z) =
∑

∞

n=0 Tn(xn)zn belongs to Bq(Y ) (resp.
(

Tn(xn)
)

n
∈ `q(Y )). Several results on these multipliers are obtained, some of them depending upon

the Fourier or Rademacher type of the spaces X and Y . New properties defined by the vector-valued

version of certain inequalities for Taylor coefficients of functions in Bp(X) are introduced.

1 Introduction

Operator valued multipliers between spaces of vector-valued functions have been re-

cently considered by different authors and for different reasons (see [32], [22], [1]

and [10]). In particular, a big effort has been done in the case of spaces of vector-

valued analytic functions such as BMOA, Bloch and Hardy spaces (see [9], [10] and

[13]). In this paper we shall study multipliers on Bergman spaces in the vector-valued

situation.

Given 1 ≤ p < ∞ any complex Banach space X we shall use the notation Bp(X)

for the space of X-valued analytic functions f : D → X defined on the unit disc D

which are p-integrable against the Lebesgue measure in the disc D denoted by dA(z).

We shall use the norm

‖ f ‖Bp(X) =

(∫ 1

0

M
p
p ( f , r) dr

) 1/p

where Mp( f , r) = (
∫ 2π

0
‖ f (reit)‖p dt

2π )1/p .

Let 1 ≤ p, q < ∞ and let X and Y be complex Banach spaces, a sequence of

bounded operators (Tn)n in L(X,Y ) is said to be a multiplier between Bp(X) and

Bq(Y ), to be denoted (Tn) ∈
(

Bp(X),Bq(Y )
)

, if for any function f (z) =
∑∞

n=0 xnzn

in Bp(X) we have that g(z) =
∑∞

n=0 Tn(xn)zn belongs to Bq(Y ).

A closed graph argument shows this to be equivalent to the existence of a constant

C > 0 such that

∥∥∥
N∑

n=0

Tn(xn)zn
∥∥∥

Bq(Y )
≤ C

∥∥∥
N∑

n=0

xnzn
∥∥∥

Bq(X)
(1)
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for any N ∈ N and x1, x2, . . . , xN elements in X.

We shall be denoting by `p(X) the space of sequences (xn)n in X such that

‖(xn)‖p = (
∑∞

n=0 ‖xn‖p)1/p < ∞. As above, a sequence of bounded operators

(Tn)n in L(X,Y ) is said to be a multiplier between Bp(X) and `q(Y ), to be denoted

(Tn) ∈
(

Bp(X), `q(Y )
)

, if for any function f (z) =
∑∞

n=0 xnzn in Bp(X) we have that

the sequence
(

Tn(xn)
)

belongs to `q(Y ).

Again this is equivalent to the existence of a constant C > 0 such that

( N∑

n=0

‖Tn(xn)‖q
) 1/q

≤ C
∥∥∥

N∑

n=0

xnzn
∥∥∥

Bq(X)
(2)

for any N ∈ N and x0, x1, . . . , xN elements in X.

The infimum of the constants C verifying (1) or (2) is the multiplier norm, which

coincides with the operator norm between Bp(X) and Bq(Y ) or `q(Y ) respectively.

We shall try to give necessary and sufficient conditions for a sequence (Tn) to be

multiplier in
(

Bp(X),Bq(Y )
)

or
(

Bp(X), `q(Y )
)

.

In the scalar-valued case the complete characterization in known in many cases.

The reader is referred to [11] and [25] for a recollection of the old and new re-

sults about multipliers for spaces of analytic functions, which, in particular, apply

to Bergman spaces. We list here those which are completely described and which will

be studied later on.

If 1 ≤ q ≤ ∞ then (see [18])

(B1, `q) =
{

(λn)n : sup
k≥0

2k
( 2k+1∑

n=2k+1

|λn|q
) 1/q

<∞
}
.(3)

The reader is also referred to [7] or [11] for a proof obtained from a very general

principle of operators acting on B1.

If 2 ≤ p < ∞, 1 ≤ q ≤ ∞, 1/s = 1/min(q, 2) − 1/2 and 1/r = 1/min(p, q) −
1/p then (see [27], [11] or [25])

(Bp, `q) =

{
λn :

(∑

k≥0

2kr/p
( 2k+1∑

n=2k+1

|λn|s
) r/s

) 1/r

<∞
}
.(4)

If 1 ≤ q ≤ ∞ then (see [25], [7] or [11])

(B1,Bq) =
{
λ(z) =

∞∑

n=0

λnzn : sup
0<r<1

(1− r)1/qMq(λ ′, r) <∞
}
.(5)

If 1 ≤ q ≤ 2 ≤ p <∞ and 1/r = 1/q− 1/p then (see [33])

(Bp,Bq) =
{
λn :

(∑

k≥0

2−k sup
2k+1≤n<2k+1

|λn|r
) 1/r

<∞
}
.(6)
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Some alternative proofs of (6) were given independently in [2], [8] and [24].

The conditions appearing in (3), (4) and (6) can be formulated in terms of certain

mixed norm sequence spaces, denoted by `(p, q), consisting of sequences (λn) such

that ‖(λn)‖p,q =
(∑

k≥0(
∑2k+1

n=2k+1 |λn|p)q/p
) 1/q
<∞. Also it is known that the con-

dition apperaring in (5) is equivalent to the Lipschitz condition ‖∆tλ‖q = O(|t|1/q ′)
(see Section 5).

The paper is divided into four sections. The first one is devoted to introduc-

ing and proving some results on the mixed norm spaces `(p, q,X). It is shown that(
`(p1, q1,X), `(p2, q2,Y )

)
= `

(
p, q,L(X,Y )

)
where 1/p =

(
(1/p2) − (1/p1)

)+

and 1/q =
(

(1/q2)− (1/q1)
)+

and some reformulations for the norms in `(p, q) are

given.

In Section 3 we prove some results on Taylor coefficients of vector valued functions

in Bp(X). We introduce the properties of Bergman type and cotype. Given 1 ≤ p ≤
2 ≤ q ≤ ∞, a Banach space X is said to have Bergman type p or Bergman cotype q if

there exists a C > 0 such that
∥∥∥∥
( xn

n1/p

)

1≤n≤N

∥∥∥∥
p ′,p

≤ C‖ f ‖Bp(X)

or

‖ f ‖Bq(X) ≤ C

∥∥∥∥
( xn

n1/q

)

1≤n≤N

∥∥∥∥
q ′,q

for all N ∈ N, x1, . . . , xN in X and f (z) =
∑N

n=0 xnzn respectively.

It is shown that, for 1 ≤ p ≤ 2, spaces of Fourier type p must also have Bergman

type p and Bergman cotype p ′ where 1/p + 1/p ′ = 1.

Section 4 is devoted to analyze the extension of (3) and (4) to the vector valued set-

ting, showing that the result for B1(X) has a natural extension with no condition on

the Banach spaces, while each of the embeddings in (4) relies upon certain geometric

properties on the spaces such as the Bergman, Rademacher or Fourier type.

Finally in Section 5 we deal with the vector-valued interpretation of (5) and (6).

Again a version of (5), and some equivalent description in terms of Lipschitz classes,

is obtained without conditions on X and Y . Also the embeddings of the correspond-

ing result for (6) can only be proved under some assumptions on X and Y . In partic-

ular (6) holds for operators (Tn) ⊂ L(X,Y ) between Hilbert spaces X and Y .

Throughout the paper C denotes a constant that may vary from line to line, α+
=

max{α, 0} for α ∈ R and p ′ stands for the conjugate exponent of p, i.e., 1/p +

1/p ′ = 1.

2 Mixed Norm Sequences Spaces

Let us now introduce a family of sequence vector spaces with mixed norms, in terms

of which many on the results on multipliers in the following sections will be obtained.

Definition 2.1 Let 1 ≤ p, q ≤ ∞, and let Banach X be a Banach space. `(p, q,X)

denotes the space of sequences (xn)n ⊂ X such that
(
‖(xn)n∈Ik

‖`p

)
k
∈ `q, where

Ik = {n ∈ N; 2k−1 ≤ n < 2k} for k ∈ N and I0 = {0}.
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For 1 ≤ p, q ≤ ∞, the spaces `(p, q,X) become Banach spaces under the norm

‖ · ‖p,q given by

‖(xn)‖p,q =

( ∞∑

k=0

(∑

n∈Ik

‖xn‖p
) q/p

) 1/q

,

with the obvious modifications for q =∞ or p =∞.

As usual, when X = C we simply write `(p, q).

Let us prove the vector-valued extension of the characterization of multipliers be-

tween `(p, q) spaces proved in [26]. First we show the following extension of Hölder’s

inequality.

Proposition 2.2 Let X and Y be Banach spaces, 1 ≤ p1, p2 ≤ ∞ and p such that

1/p =
(

(1/p2)− (1/p1)
)+

. Then

(
`p1

(X), `p2
(Y )
)
= `p

(
L(X,Y )

)

with equality of norms.

Proof Using ‖Tn(xn)‖ ≤ ‖Tn‖.‖xn‖ and Hölder’s inequality one obtains the embed-

ding `p

(
L(X,Y )

)
⊂
(
`p1

(X), `p2
(Y )
)

.

For the other embedding, let us take (Tn) ∈
(
`p1

(X), `p2
(Y )
)

with norm 1. Hence

for any (αn) ∈ `p1
and any (xn) in the unit ball of X one has that Tn(αnxn) ∈ `p2

(Y )

and ∥∥(Tn(αnxn)
)∥∥
`p2

(Y )
≤ ‖(αn)‖`p1

.

Now, given ε > 0, choosing (xn) in the unit ball of X such that ‖Tn‖ < ‖Tn(xn)‖ +

ε/2n one gets that ∥∥ (‖Tn‖.|αn|)
∥∥
`p2

≤ ‖(αn)‖`p1
+ Cε.

This gives that (Tn) ∈ `p

(
L(X,Y )

)
and

∑∞
n=0 ‖Tn‖p ≤ 1.

Theorem 2.3 Let X and Y be Banach spaces and 1 ≤ p1, p2, q1, q2 ≤ ∞. Then

(
`(p1, q1,X), `(p2, q2,Y )

)
= `
(

p, q,L(X,Y )
)

with equality of norms, where 1/p =
(

(1/p2) − (1/p1)
)+

and 1/q =
(

(1/q2) −
(1/q1)

)+
.

Proof Let (Tn)n and (xn)n be sequences in L(X,Y ) and `(p1, q1,X). Applying

Hölder’s inequality twice, one has for any k ∈ N

‖(Tnxn)n∈Ik
‖p2
≤ ‖(Tn)n∈Ik

‖p ‖(xn)n∈Ik
‖p1

and that

‖(Tnxn)‖p2,q2
≤ ‖(Tn)‖p,q ‖(xn)‖p1,q1

.
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Hence `
(

p, q,L(X,Y )
)

isometrically embeds into
(
`(p1, q1,X), `(p2, q2,Y )

)
.

Conversely, let (Tn) be a multiplier in
(
`(p1, q1,X), `(p2, q2,Y )

)
and let us write

βk = ‖(Tn)n∈Ik
‖p.

Given N ∈ N we may choose a family of nonnegative numbers (αk)1≤k≤N with

norm in `q1
equal to 1 and such that ‖(βk)1≤k≤N‖q = ‖(αkβk)1≤k≤N‖q2

.

Now, for each k ≤ N we take a family of vectors (xn)n∈Ik
⊂ X with norm in `p1

(X)

equalling αk and with ‖(Tnxn)n∈Ik
‖p2

arbitrarily close to αkβk.

The norm in `q2
of the sequence

(
‖(Tnxn)n∈Ik

‖p2

)
1≤k≤N

is then as close

as we wish to ‖(αkβk)1≤k≤N‖q2
= ‖(βk)1≤k≤N‖q, necessarily less or equal to

‖(Tn)1≤n<2N‖(`(p1,q1,X),`(p2,q2,Y )) ‖(xn)1≤n<2N‖p1,q1
.

Therefore for every N it holds that

‖(βk)1≤k≤N‖q ≤ ‖(Tn)1≤n<2N‖(`(p1,q1,X),`(p2,q2,Y ))

as we wanted.

Now we list some useful reformulations for the norms in the spaces `(p, q).

Lemma 2.4 (see [16] or [7]) Let (αn) be a sequence of nonnegative numbers and β >
0. Then

∑∞
n=1 αnrn

= O
(

( 1
1−r

)β
)

(r → 1) if and only if (αn

nβ
) ∈ `(1,∞).

Lemma 2.5 Let (αn) be sequence of nonnegative numbers and β > 0. Then

supn αnrn
= O( 1

(1−r)β
) (r → 1) if and only if (αn

nβ
) ∈ `∞.

Proof The function r 7→ rn(1 − r)β attains its maximum at n/n + β and

(n/n + β)n(β/n + β)β ≤ C/nβ . Therefore

(1− r)β sup
n
αnrn ≤ C sup

n

αn

nβ
.

The converse follows by taking r = 1− 1/n.

Lemma 2.6 (see [11] or [27]) Let (αn) be sequence of nonnegative numbers and 0 <
q, β <∞. Then

∫ 1

0

(1− r)βq−1
( ∞∑

n=1

αnrn
) q

dr ∼
∞∑

k=1

(∑

n∈Ik

αn

nβ

) q

.

In particular, ( αn

n1/q ) ∈ `(1, q) if and only if
∑∞

n=1 αnrn ∈ Lq

(
(0, 1), dr

)
.
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3 Taylor Coefficients of Functions in Bp(X)

If f (z) =
∑∞

n=0 xnzn with xn ∈ X then, for each n and r ∈ (0, 1), we have that

xnrn
=

1

2π

∫ π

−π

f (reiθ)e−inθ dθ.

This implies that for any n ∈ N and 0 < r < 1 we have

‖xn‖rn ≤ M1( f , r).(7)

This simple observation allows us to get the following results on Taylor coefficients

of functions in Bergman spaces.

Proposition 3.1 Let 1 ≤ p < ∞ and f (z) =
∑∞

n=0 xnzn. If f ∈ Bp(X) then

‖xn‖ = o(n1/p) and
∑∞

n=1
‖xn‖

p

n2 <∞.

Proof Since Mp( f , ·) is increasing in (0, 1), from (7) one gets that

(1− r)‖xn‖prnp ≤ (1− r)M
p
p ( f , r) ≤

∫ 1

r

M
p
p ( f , s) ds

for each r ∈ (0, 1).

Hence, for any n, by taking r = 1− 1/n, we see that

1

n
‖xn‖p ∼ 1

n
‖xn‖p

(
1− 1

n

) np

≤
∫ 1

1−1/n

M
p
p ( f , s) ds.

This shows that
‖xn‖
n1/p → 0.

Now observe that the norm in Bp(X) can be estimated from below as follows:

∞∑

n=1

∫ 1−1/(n+1)

1−1/n

M
p
p ( f , r) dr ≥

∞∑

n=1

∫ 1−1/(n+1)

1−1/n

‖xn‖prnp dr

≥ C

∞∑

n=1

‖xn‖p 1

n(n + 1)

(
1− 1

n

) np

∼
∞∑

n=1

‖xn‖p

n2
.

Let us get an improvement of Proposition 3.1 by making use of the spaces

`(p, q,X).

Theorem 3.2 Let 1 ≤ p <∞. There exist C1,C2 > 0 such that

C1

∥∥∥∥
(

xn

n1/p

)∥∥∥∥
∞,p

≤ ‖ f ‖Bp(X) ≤ C2

∥∥∥∥
(

xn

n1/p

)∥∥∥∥
1,p

for any f ∈ Bp(X) with Taylor coefficients (xn).
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Proof Since ‖ f ‖Bp(X) ≤
(∫ 1

0
M

p
∞( f , r) dr

) 1/p
and M∞( f , r) ≤

∑∞
n=0 ‖xn‖rn then

Lemma 2.6 implies

‖ f ‖Bp(X) ≤
(∫ 1

0

( ∞∑

n=0

‖xn‖rn
) p

dr

) 1/p

≤ C

∥∥∥∥
(

xn

n1/p

)∥∥∥∥
1,p

.

For the other inequatily, we observe that

∫ 1

0

M
p
p ( f , r) dr ≥

∞∑

k=0

∫ 1−2−(k+1)

1−2−k

M
p
p ( f , r) dr

≥
∞∑

k=0

∫ 1−2−(k+1)

1−2−k

(sup
n∈Ik

rnp‖xn‖p) dr

≥
∞∑

k=0

(1− 2−k)p2k+1

2−(k+1) sup
n∈Ik

‖xn‖p.

Therefore

‖ f ‖p
Bp(X) ≥

∞∑

k=0

2−k sup
n∈Ik

‖xn‖p ∼
∞∑

k=0

(
sup
n∈Ik

‖xn‖p

n

)
∼
∥∥∥
( xn

n1/p

)∥∥∥
p

∞,p
.

We can now get the following corollary for lacunary functions.

Corollary 3.3 (see [27] or [12]) Let 1 ≤ p <∞ and f (z) =
∑∞

n=0 xnz2n

. Then

‖ f ‖Bp(X) ≈
( ∞∑

n=0

‖xn‖p2−n
) 1/p

.

Let us mention some estimates which hold true in the scalar-valued case.

For p = 2, from Plancherel’s theorem, we have

‖ f ‖B2
≈
( ∞∑

n=0

|αn|2
n + 1

) 1/2

.(8)

For each 1 ≤ p ≤ 2 there exist positive constants C p and C ′p such that

( ∞∑

n=1

|αn|p
n3−p

) 1/p

≤ C p‖ f ‖Bp
(9)

and
∥∥∥
( αn

n1/p

)∥∥∥
p ′,p
≤ C ′p‖ f ‖Bp

(10)
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for all f (z) =
∑∞

n=0 αnzn ∈ Bp.

For each 2 ≤ q <∞ there exists a positive constant C ′′q such that

‖ f ‖Bq
≤ C ′′q

∥∥∥
( αn

n1/q

)∥∥∥
q ′,q

(11)

for all (xn) ∈ `(q ′, q,X) and where f (z) =
∑∞

n=0 αnzn.

These results follow easily by interpolation and duality. Proposition 3.1 gives (9),

Theorem 3.2 gives (10) and a duality argument gives (11).

Let us study the validity of these inequalities in the vector valued setting.

Remark 3.1 Let us point out that (9) actually follows from (10).

Indeed, for 1 ≤ p ≤ 2,

∞∑

n=1

‖xn‖p

n3−p
≤ C

∞∑

k=0

(∑

n∈Ik

‖xn‖p
)

2−k(3−p)

≤ C

∞∑

k=0

(∑

n∈Ik

‖xn‖p ′
) p/p ′

2k(1−p/p ′)2−k(3−p)

= C

∞∑

k=0

(∑

n∈Ik

‖xn‖p ′
) p/p ′

2−k

≈
∥∥∥
( xn

n1/p

)∥∥∥
p

p ′,p
.

Remark 3.2 Let 1 ≤ p, q < ∞, α ∈ R, X = `q and F(z) =
∑∞

n=1 xnzn with

xn = nαen where (en) stands for the canonical basis of `q.

A simple computation shows that

( xn

n1/p

)
∈ `(p ′, p, `q) if and only if α < 1/p − 1/p ′(12)

and

F ∈ Bp(`q) if and only if α < 1/p − 1/q.(13)

The following example shows that the estimates (9) (and hence (10)) and (11) do

not hold in general for vector-valued functions.

Example 3.1 Let 1 < p ≤ 2 ≤ q <∞. Then X = `r fails (9) (and hence (10)) for

any r > p ′ and X = `s fails (11) for any s < q ′.

Proof Assume 1 < p ≤ 2 and take α = 1/p − 1/p ′. Hence (13) implies that

F ∈ Bp(`r). On the other hand ‖xn‖ = nα and then
∑∞

n=1
‖xn‖

p

n3−p =
∑∞

n=1
1
n
=∞.

Assume 2 ≤ q <∞, s < q ′ and take α = 1/q− 1/s. Now (12) and (13) give that

( xn

n1/q ) ∈ `(q ′, q, `s) but F /∈ Bq(`s).
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This leads to the following definitions:

Definition 3.4 Let X be a complex Banach space and 1 ≤ a ≤ 2 ≤ b <∞. X is said

to have Bergman type a (resp. Bergman cotype b) if there exists a constant Ca > 0

(resp. Cb > 0) such that

∥∥∥
( xn

n1/a

)∥∥∥
a ′,a
≤ Ca‖ f ‖Ba(X)(14)

for all f (z) =
∑∞

n=0 xnzn ∈ Ba(X), (resp.

‖ f ‖Bb(X) ≤ Cb

∥∥∥
( xn

n1/b

)∥∥∥
b ′,b

(15)

for all (xn) ∈ `(b ′, b,X) where f (z) =
∑∞

n=0 xnzn.)

Remark 3.3 Any Banach space has Bergman type 1 (see Theorem 3.2).

There is also a notion for q = ∞ in the previous definition. We need to consider

the extreme case as

Bloch(X) = { f : D −→ X analytic : sup
|z|<1

(1− |z|2)‖ f ′(z)‖ <∞},

and to observe that

sup
|z|<1

(1− |z|2)‖ f ′(z)‖ ≤ C‖(xn)‖1,∞.

Let us show that they are dual notions.

Proposition 3.5 Let 1 < a ≤ 2 and X be a Banach space. Then X has Bergman type

a if and only if X∗ has Bergman cotype a ′.

Proof Note first that

∞∑

n=0

〈x∗n , xn〉
n + 1

=

∫

D

〈 f (z), g(z̄)〉 dA(z),(16)

for any g(z) =
∑∞

n=0 x∗n zn and f (z) =
∑∞

n=0 xnzn.

Let us assume X has Bergman type a, take (x∗n ) ∈ `(a, a ′,X∗) and define f (z) =∑∞
n=0 x∗n zn.

Then, for any g(z) =
∑∞

n=0 xnzn ∈ Ba(X), using (16) one gets

∣∣∣∣
∫

D

〈 f (z), g(z̄)〉 dA(z)

∣∣∣∣ ≤
∥∥∥∥
(

xn

(n + 1)1/a ′

)∥∥∥∥
a ′,a

∥∥∥∥
(

x∗n
(n + 1)1/a

)∥∥∥∥
a,a ′

≤ C‖g‖Ba(X)

∥∥∥∥
(

x∗n
n1/a

)∥∥∥∥
a,a ′
.
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By the duality
(

Ba(X)
) ∗
= Ba ′(X∗) (see [5]) one has

‖ f ‖Ba ′ (X∗) = sup

{∣∣∣∣
∫

D

〈 f (z), g(z̄)〉 dA(z)

∣∣∣∣ : ‖g‖Ba(X) = 1

}
.

Therefore ‖ f ‖Ba ′ (X∗) ≤ C‖( x∗n
n1/a )‖a,a ′ .

Let us assume X∗ has Bergman cotype a ′ and take f (z) =
∑∞

n=0 xnzn.

For any (x∗n )n such that ‖(x∗n )‖a,a ′ = 1, using (16), we have

∣∣∣
∞∑

n=0

〈n−1/axn, x
∗
n〉
∣∣∣ ≤ ‖ f ‖Ba(X)

∥∥∥
∞∑

n=0

(n + 1)n−1/axnzn
∥∥∥

Ba ′ (X∗)

≤ C‖ f ‖Ba(X)

∥∥∥∥
(

n + 1

n
x∗n

)∥∥∥∥
a,a ′

≤ C‖ f ‖Ba(X).

Now use

∥∥∥
( xn

n1/a

)∥∥∥
a ′,a
= sup

{∣∣∣
∞∑

n=0

〈n−1/axn, x
∗
n〉
∣∣∣ : ‖(x∗n )‖a,a ′ = 1

}
,

to get that X has Bergman type a.

Let us recall a well known notion which is very much related to the previous ones.

Let 1 ≤ p ≤ 2. A Banach space X is said to have Fourier type p if there exists a

constant C such that

( ∞∑

n=−∞

‖ f̂ (n)‖p ′
) 1/p ′

≤ C‖ f ‖Lp(X)(17)

for all function f ∈ Lp(T,X).

It was first introduced by J. Peetre (see [29]). We refer the reader to the survey

[20] for a complete study and references about this property.

We just point out here the equivalent formulation:

There exists a constant C > 0 such that for all (xn) ∈ `p(X) the function f (t) =∑∞
n=−∞ xneint belongs to Lp ′(T,X) and

‖ f ‖Lp ′ (X) ≤ C‖(xn)‖p.(18)

It is not difficult to see that X has Fourier type p if and only if X∗ does have it.

The main examples are Lr(µ) for any p ≤ r ≤ p ′ or interpolation spaces between

any Banach space X0 and any Hilbert space X1, [X0,X1]θ where 1/p = 1− θ/2.

Theorem 3.6 Let 1 < p ≤ 2. If X has Fourier type p then X has Bergman type p and

Bergman cotype p ′.
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Proof Using Lemma 2.6 we have

∞∑

k=1

(∑

n∈Ik

‖xn‖p ′

np ′/p

) p/p ′

≈
∫ 1

0

( ∞∑

n=1

‖xn‖p ′rnp ′
) p/p ′

dr.

Since X has Fourier type p

( ∞∑

n=1

‖xn‖p ′rp ′n
) 1/p ′

≤ CMp( f , r),

which implies that
∥∥∥
( xn

n1/p

)∥∥∥
p

p ′,p
≤ C

∫ 1

0

M
p
p ( f , r) dr.

To get that X has Bergman cotype p ′, one can use either the dual formulation with

Bergman type of X∗ or repeat the previous argument using now Mp ′( f , r) ≤
C(
∑∞

n=1 ‖xn‖prnp)1/p.

Corollary 3.7 Let 1 ≤ p ≤ 2. Then Lr(µ) has Bergman type p and cotype p ′ for

p ≤ r ≤ p ′.

Let us state a little extension of Theorem 3.6 that we used later on.

Theorem 3.8 Let 1 < a ≤ 2 and let X be a Banach space with Fourier type a. If

p ≥ a then there exists a constant C > 0 such that

∥∥∥
( xn

n1/p

)∥∥∥
a ′,p
≤ C‖ f ‖Bp(X)

for all f (z) =
∑∞

n=1 xnzn.

If p ≤ a ′ then there exists a constant C > 0 such that

‖ f ‖Bp(X) ≤ C
∥∥∥
( xn

n1/p

)∥∥∥
a,p

for all ( xn

n1/p ) ∈ `(a, p,X) and f (z) =
∑∞

n=1 xnzn.

Proof We need only to use that
(∫ 1

0
M

p
a ( f , r) dr

) 1/p ≤ C‖ f ‖Bp(X) for p ≥ a or

‖ f ‖Bp(X) ≤ C
(∫ 1

0
M

p
a ′( f , r) dr

) 1/p
for p ≤ a ′ and then use (17) or (18) respectively,

together with Lemma 2.6 to get the result.

We shall first show an extension to the vector valued setting of one inequality due

to Hardy and Littlewood (see [16], [23]). Our proof is a modification of the one

given in Theorem 2.1 of [14] for the Hardy space H1(X), but we include it here for

the sake of completeness.
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Theorem 3.9 Let X be a Banach space and let 1 ≤ p < q <∞. Then

(∫ 1

0

∫ 1

0

(1− r)−p/qM p
q ( f , rs) dr ds

) 1/p

≤ C‖ f ‖Bp(X).

Proof We shall actually prove that

(∫ 1

0

(1− r)−p/qM p
q ( f , r) dr

) 1/p

≤ C‖ f ‖Hp(X),

where Hp(X) stands for the vector-valued Hardy space.

Let us first recall that if 0 < p ≤ q ≤ ∞ and g is an X-valued analytic function

then, using that g(r2eit ) = Pr ∗ g(reit), one gets

Mq(g, r2) ≤ C(1− r)1/q−1/pMp(g, r).(19)

Now let us take 0 < p1 < p < p2 < q, and apply (19) to get for i = 1, 2

(1− r)−1/qMq( f , r) ≤ C(1− r)−1/pi‖ f ‖H pi (X).

Hence

|{r ∈ [0, 1] : (1− r)−1/qMq( f , r) > λ}| ≤ C
‖ f ‖pi

H pi (X)

λpi
.

This actually gives that

f −→ F(r, eit ) = (1− r)−1/q f (reit)

defines a bounded operator from H pi (X) into the vector valued Lorenz space

Lpi ,∞
(

dr, Lq(X)
)

.

Now using the standard real method of interpolation for θ ∈ (0, 1) such that

(1− θ)/p1 + θ/p2 = 1/p we have (see [4])

(
Lp1,∞

(
dr, Lq(X)

)
, Lp2,∞

(
dr, Lq(X)

))

θ,p
= Lp

(
dr, Lq(X)

)
.

On the other hand, since the Banach space X is the same for both indices, it is not

difficult to extend the scalar-valued proof (see [15] and references there) to get

(
H p1 (X),H p2 (X)

)
θ,p
= H p(X).

Hence the operator is bounded from H p(X) to Lp
(

dr, Lq(X)
)

, that is

∫ 1

0

(1− r)−p/qM p
q ( f , r) dr ≤ C‖ f ‖p

H p(X).

Now the proof is finished by integrating over (0, 1).

An application of Theorem 3.9 allows us to improve Theorems 3.6 and 3.8.
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Theorem 3.10 Let 1 < a ≤ 2 and let X be a Banach space with Fourier type a.

If p < a and α = 1/p − 1/a then there exists a constant C > 0 such that

∥∥∥
( xn

nα+1/p

)∥∥∥
a ′,p
≤ C‖ f ‖Bp(X)

for all f (z) =
∑∞

n=1 xnzn.

Proof Since X has Fourier type a, we have

( ∞∑

n=1

‖xn‖a ′rp ′n
) 1/a ′

≤ CMa( f , r).

Using Theorem 3.9 and Lemma 2.6 we get

‖ f ‖Bp(X) ≥ C

(∫ 1

0

∫ 1

0

(1− r)−p/aM p
a ( f , rs) dr ds

) 1/p

≥ C

(∫ 1

0

∫ 1

0

(1− r)−p/a
( ∞∑

n=1

‖xn‖a ′ sa ′nra ′n
) p/a ′

dr ds

) 1/p

≥ C

(∫ 1

0

(1− r)−p/a

(∫ 1

0

( ∞∑

n=1

‖xn‖a ′ sa ′nra ′n
) p/a ′

ds

)
dr

) 1/p

≥ C

(∫ 1

0

(1− r)−p/a
∞∑

k=1

(∑

n∈Ik

‖rnxn‖a ′

na ′/p

) p/a ′

dr

) 1/p

≥ C

(∫ 1

0

(1− r)−p/a
∞∑

k=1

(∑

n∈Ik

‖xn‖a ′
) p/a ′

rp2k

2−k dr

) 1/p

≥ C

(
∞∑

k=1

(∑

n∈Ik

‖xn‖a ′
) p/a ′

(∫ 1

0

(1− r)−p/arp2k

2−k dr

)) 1/p

≥ C

( ∞∑

k=1

(∑

n∈Ik

‖xn‖a ′
) p/a ′

2−k(1−p/a)2−k dr

) 1/p

≥ C
∥∥∥
( xn

nα+1/p

)∥∥∥
a ′,p
.

4 Multipliers from Bp(X) to `q(Y )

In this section we analyze the vector-valued versions of (3) and (4).

Theorem 4.1 Let X and Y two complex Banach spaces, and let 1 ≤ q ≤ ∞. A

sequence (Tn) ∈
(

B1(X), `q(Y )
)

if and only if the sequence (nTn) defines a bounded

operator from X to `(q,∞,Y ).
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Proof Assume that (Tn) ∈
(

B1(X), `q(Y )
)

. Hence one has that
(

Tn(x)
)
∈(

B1, `q(Y )
)

for all x ∈ X. Now for each z ∈ D we define Kz(w) = 1
(1−wz)3 . Since

‖Kz‖B1
≈ 1

1−|z| , the assumption implies that

( ∞∑

n=0

n2q‖Tn(x)‖q |z|nq
) 1/q

≤ C

1− |z|

for each z ∈ D and ‖x‖ ≤ 1. Invoking now Lemma 2.4 for q < ∞ one gets that

(nq‖Tn(x)‖q) ∈ `(1,∞,Y ), or equivalently that
(

n‖Tn(x)‖
)
∈ `(q,∞,Y ), and that

x →
(

nTn(x)
)

is a bounded operator from X into `(q,∞,Y ). The case q = ∞
follows from Lemma 2.5.

Let us assume now, for q <∞, that

sup
‖x‖≤1

sup
k≥0

∑

n∈Ik

nq‖Tn(x)‖q
= Aq <∞.

Then, if f (z) =
∑∞

n=0 xnzn, using Theorem 3.2 one gets

∞∑

n=0

‖Tn(xn)‖q
=

∞∑

k=0

∑

n∈Ik

∥∥∥∥Tn

(
xn

‖xn‖

)∥∥∥∥
q

‖xn‖q

≤
∞∑

k=0

(
∑

n∈Ik

nq

∥∥∥∥Tn

(
xn

‖xn‖

)∥∥∥∥
q
)

sup
n∈Ik

‖xn‖q

nq

≤ sup
k≥0

∑

n∈Ik

nq

∥∥∥∥Tn

(
xn

‖xn‖

)∥∥∥∥
q ∞∑

k=0

(
sup
n∈Ik

‖xn‖q

nq

)

≤ Aq

( ∞∑

k=0

sup
n∈Ik

‖xn‖
n

) q

≤ Aq‖ f ‖q
B1(X).

The case q =∞ is immediate from Proposition 3.1.

Corollary 4.2 Let X a Banach space and let (x∗n ) be a sequence in X∗ such that

∞∑

n=0

|〈x∗n , xn〉| ≤ C

∫

D

‖ f (z)‖ dA(z)

for all f (z) =
∑∞

n=0 xnzn. Then there exists a constant C > 0 such that

sup
‖x‖=1

∑

n∈Ik

|〈x∗n , x〉| ≤ C2−k

for all k ∈ N and x ∈ X.
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Let us point out some necessary and some sufficient conditons for (Tn) to belong

to
(

Bp(X), `q(Y )
)

for 1 < p <∞.

Proposition 4.3 Let 1 ≤ p <∞, 1 ≤ q ≤ ∞ and 1/r =
(

(1/q)− (1/p)
)+

. Then

(
Bp(X), `q(Y )

)
⊂ {(Tn) ∈ L(X,Y ) : ‖Tn‖ = O(n−1/p)}

and

{(Tn) : (n2/p‖Tn‖) ∈ `r} ⊂
(

Bp(X), `q(Y )
)
.

Proof If we set un(z) = zn, then ‖un ⊗ x‖Bp (X) ∼ n−1/p‖x‖.
Now if (Tn) ∈

(
Bp(X), `q(Y )

)
then ‖Tnx‖ ≤ Cn−1/p‖x‖ for any x ∈ X, so that

‖Tn‖ ≤ Cn−1/p.

For the second embedding, Propositon 3.1 gives that

∥∥(Tn(xn)
)∥∥

q
≤
∥∥ (n2/p‖Tn‖)

∥∥
r

∥∥∥∥
( ‖xn‖

n2/p

)∥∥∥∥
p

≤ C‖ f ‖Bp(X).

A direct application of Theorems 3.2 and 2.3 produces better information on mul-

tipliers.

Proposition 4.4 Let 1 ≤ p <∞, 1 ≤ q ≤ ∞ and let X, Y be Banach spaces then

(
Bp(X), `q(Y )

)
⊂
{

(Tn) : (n1/pTn) ∈ `
(
∞, r,L(X,Y )

)}

and {
(Tn) : (n1/pTn) ∈ `

(
q, r,L(X,Y )

)}
⊂
(

Bp(X), `q(Y )
)

where 1/r =
(

(1/q)− (1/p)
)+

.

Let us show how to improve the previous propositions under certain assumptions

on X.

Theorem 4.5 Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞, 1 ≤ a ≤ 2 and let X be a complex

Banach space of Fourier type a. Put 1/s =
(

(1/q)−(1/a ′)
)+

, 1/t =
(

(1/q)−(1/a)
)+

and 1/r =
(

(1/q)− (1/p)
)+

.

If 1 ≤ p < a and α = 1/p − 1/a then

{
(Tn) : (nα+1/pTn) ∈ `

(
s, r,L(X,Y )

)}
⊂
(

Bp(X), `q(Y )
)
.(20)

If a ≤ p then

{
(Tn) : (n1/pTn) ∈ `

(
s, r,L(X,Y )

)}
⊂
(

Bp(X), `q(Y )
)
.(21)
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Proof By Theorem 2.3, `
(

s, r,L(X,Y )
)
=
(
`(a ′, p,X), `q(Y )

)
. Let us assume that

(nα+1/pTn) ∈
(
`(a ′, p,X), `q(Y )

)
or (n1/pTn) ∈

(
`(a ′, p,X), `q(Y )

)

for 1 ≤ p ≤ a or a ≤ p respectively where α = 1/p − 1/a.

Now Theorem 3.10 gives, for 1 ≤ p < a, that

‖(Tnxn)‖q =

∥∥∥∥∥

(
nα+1/pTn

(
xn

n1/p+α

))∥∥∥∥∥
q

≤ C‖(n−1/p−αxn)‖a ′,p ≤ C‖ f ‖Bp(X),

and Theorem 3.8 implies, for a ≤ p, that

‖(Tnxn)‖q =

∥∥∥∥∥

(
n1/pTn

(
xn

n1/p

))∥∥∥∥∥
q

≤ C‖(n−1/pxn)‖a ′,p ≤ C‖ f ‖Bp(X).

These two estimates give (20) and (21).

Theorem 4.6 Let 1 ≤ p ≤ 2 and let X be a complex Banach space. The following

statements are equivalent:

(i) X has Bergman type p.

(ii) For any 1 ≤ q <∞ and for any other Banach space Y ,

{
(Tn) : (n1/pTn) ∈ `

(
s, r,L(X,Y )

)}
⊂
(

Bp(X), `q(Y )
)

where 1/s =
(

(1/q)− (1/p ′)
)+

and 1/r =
(

(1/q)− (1/p)
)+

.

Proof Let us assume X has Bergman type p. Now (ii) follows from the embedding

Bp(X) ⊂ {(xn) : (n−1/pxn) ∈ `(p ′, p,X)}.
Assume (ii) for Y = C and q = 1. Then any (x∗n ) such that ‖(n1/px∗n )‖p,p ′ < ∞

gives a multiplier in
(

Bp(X), `1
)

. Therefore there exists C > 0 such that

∞∑

n=0

|〈x∗n , xn〉| ≤ C‖ f ‖Bp(X) ‖(n1/px∗n )‖p,p ′

for any f (z) =
∑∞

n=0 xnzn.

From duality now one gets ‖(n−1/pxn)‖p ′,p ≤ C‖ f ‖Bp(X).

Theorem 4.7 Let 2 ≤ p < ∞ and let X be a complex Banach space of Bergman

cotype p. Then for any 1 ≤ q <∞ and for any other Banach space Y ,

(
Bp(X), `q(Y )

)
⊂
{

(Tn) : (n1/pTn) ∈ `
(

s, r,L(X,Y )
)}

where 1/s =
(

(1/q)− (1/p ′)
)+

and 1/r =
(

(1/q)− (1/p)
)+

.
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Proof The assumption means that {(xn) : ( xn

n1/p ) ∈ `(p ′, p,X)} ⊂ Bp(X). Therefore

(Tn) ∈
(

Bp(X), `q(Y )
)

gives (n1/pTn) ∈
(
`(p ′, p,X), `q(Y )

)
. Now using Theo-

rem 2.3 the proof is finished.

Recall the well known notion of Rademacher type (see [27]).

For 1 ≤ p ≤ 2 a Banach space X is said to have Rademacher type p if there exists

a constant C such that

∫ 1

0

∥∥∥
n∑

j=1

x jr j(t)
∥∥∥ dt ≤ C

( n∑

j=1

‖x j‖p
) 1/p

for any finite family x1, x2, . . . , xn of vectors in X where r j stand for the Rademacher

functions on [0, 1].

It is known and easy to see that Fourier type p implies Rademacher type p.

Theorem 4.8 Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞, 1 ≤ a ≤ 2, and let X be a complex

Banach space of Rademacher type a and Y be any Banach space. Then

(
Bp(X), `q(Y )

)
⊂
{

(Tn) : (n1/pTn) ∈ `
(

s, r,L(X,Y )
)}
,

where 1/s =
(

(1/q)− (1/a)
)+

and 1/r =
(

(1/q)− (1/p)
)+

.

Proof Let T̃ : Bp(X)→ `q(Y ) the bounded linear operator defined by (Tn) as a mul-

tiplier, i.e., T̃ f = (Tnxn) for every analytic polynomial f (z) =
∑

n≥0 xnzn.

For any t ∈ [0, 1], let ft the polynomial given by ft (z) =
∑

n≥0 rn(t)xnzn, where

(rn) is the sequence of Rademacher functions.

It’s clear that ‖T̃ ft‖ = ‖T̃ f ‖ for every t , and then

‖(Tnxn)‖p
q = ‖T̃ f ‖p

q =

∫ 1

0

‖T̃ ft‖p dt ≤ ‖T̃‖p

∫ 1

0

‖ ft‖p
Bp(X) dt

=
‖T̃‖p

2π

∫ 1

0

∫ π

−π

∫ 1

0

∥∥∥
∑

n≥0

rn(t)xnrneinθ
∥∥∥

p

dt dθ dr.

Since X is of type a, we have for every θ that

∫ 1

0

∥∥∥
∑

n≥0

rn(t)xnrneinθ
∥∥∥

p

dt ≤ C
(∑

n≥0

‖xn‖arna
) p/a

,

and integrating this in [−π, π] we get

‖(Tnxn)‖p
q ≤ C‖T̃‖p

∫ 1

0

(∑

n≥0

‖xn‖arna
) p/a

dr.
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Now Lemma 2.6 yields

‖(Tnxn)‖p
q ≤ C

∫ 1

0

(∑

n≥0

‖xn‖arn
) p/a

dr ≤ C
∑

k

(∑

n∈Ik

‖xn‖a

na/p

) p/a

,

which gives ‖(Tnxn)‖q ≤ C‖( xn

n1/p )‖`(a,p,X).

We have thus shown that (n1/pTn) ∈
(
`(a, p,X), `(q, q,Y )

)
, and by Theorem 2.3

this gives (n1/pTn) ∈ `
(

s, r,L(X,Y )
)

.

Theorems 4.5 and 4.8 give a characterization of the multipliers from Bp(X) to

`q(Y ) for p ≥ 2 and X being isomorphic to a Hilbert space.

Corollary 4.9 Let 1 ≤ q ≤ ∞ and 2 ≤ p <∞. If X is isomorphic to a Hilbert space

then (
Bp(X), `q(Y )

)
= {(Tn) ⊂ L(X,Y ); (n1/p‖Tn‖) ∈ `(s, r)},

where 1/s =
(

(1/q)− (1/2)
)+

and 1/r =
(

(1/q)− (1/p)
)+

.

We have, in particular, that (Tn) ∈
(

B2(X), `q(Y )
)

if and only if the sequence

(
√

n‖Tn‖) ∈ `s.

5 Multipliers from Bp(X) to Bq(Y )

We now study the vector-valued versions of (6) and (5).

Theorem 5.1 Let 1 ≤ a ≤ 2 ≤ b ≤ ∞ and let X and Y be complex Banach spaces,

such that X has Fourier type a and Y has Fourier type b ′. If a ≤ p <∞ and 1 ≤ q ≤ b

then {
(Tn) : (n−1/rTn) ∈ `

(
α, β,L(X,Y )

)}
⊂
(

Bp(X),Bq(Y )
)

where 1/r = (1/q)− (1/p), 1/α = (1/a)− (1/b) and 1/β = (1/r)+.

Proof By Theorem 2.3, the hypothesis says that

(n−1/rTn) ∈ `
(
α, β,L(X,Y )

)
=
(
`(a ′, p,X), `(b ′, q,Y )

)
.

Let f be an analytic polynomial given by f (z) =
∑

n≥1 xnzn, xn ∈ X and g(z) =∑
n≥1 Tnxnzn, which takes values in Y . Since a ≤ p and q ≤ b, Theorem 3.8 implies

‖g‖Bq(Y ) ≤ C

∥∥∥∥
(

Tnxn

n1/q

)∥∥∥∥
b ′,q

≤ C

∥∥∥∥
(

n(1/p)−(1/q)‖Tn‖
‖xn‖
n1/p

)∥∥∥∥
b ′,q

≤ C‖(n−1/rTn)‖α,β
∥∥∥
( xn

n1/p

)∥∥∥
a ′,p

≤ C‖ f ‖Bp(X).
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Theorem 5.2 Let 1 ≤ p, q < ∞ and let X and Y be any complex Banach spaces.

Then (
Bp(X),Bq(Y )

)
⊂
{

(Tn) : (n−1/r‖Tn‖) ∈ `
(
∞, s,L(X,Y )

)}

where 1/r = (1/q)− (1/p) and 1/s = (1/r)+.

Proof It follows from Theorem 3.2 that

Bq(Y ) ⊂ {(yn) : (n−1/q‖yn‖) ∈ `(∞, q)}

and that

{(xn) : (n−1/p‖xn‖) ∈ `(1, p)} ⊂ Bp(X).

Hence (Tn) ∈
(

Bp(X),Bq(Y )
)

implies (n1/p−1/qTn) ∈
(
`(1, p,X), `(∞, q,Y )

)
and

the proof is finished.

Combining Theorems 5.1 and 5.2 we get the analogue to (6) for Hilbert valued

functions.

Corollary 5.3 If X and Y are both of them isomorphic to complex Hilbert spaces and

1 ≤ q ≤ 2 ≤ p <∞ then

(
Bp(X),Bq(Y )

)
=
{

(Tn) : (n−1/rTn) ∈ `
(
∞, r,L(X,Y )

)}
,

where 1/r = (1/q)− (1/p).

Let us now state several lemmas that we shall need in the sequel to get the analogue

to (5).

The next result can be carried over the vector-valued setting.

Lemma 5.4 (see [16, Theorem 5.5]) Let X be a complex Banach space, f be an X-

valued analytic function, q ≥ 1 and α > 0. Then Mq( f , r) = O( 1
(1−r)α

) if and only if

Mq( f ′, r) = O( 1
(1−r)1+α ).

Lemma 5.5 (see [8, Lemma 2.1]) Let X be a complex Banach space and f be an X-

valued analytic function. Then f ∈ Bq(X) if and only if

∫ 1

0

(1− r)qMq
q( f ′, r) dr <∞.

Lemma 5.6 (see [11, Lemma 5.2]) Let f be an X-valued analytic function and q ∈
[1,∞). Then the following are equivalent:

(i) Mq( f , r) = O( 1
(1−r)1+1/q ).

(ii) ‖ fs‖Bq(X) = O( 1
1−s

) where fs(z) = f (sz).

Let us now recall the definition of the Lipschitz classes in the vector-valued setting.
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Definition 5.7 Let 1 ≤ p ≤ ∞ and 0 < α < 1. The Lipschitz class Λ
p
α(X) is

formed by those functions φ ∈ Lp(T,X) such that

wp(φ, t) =

(∫ 2π

0

‖φ(ei(t+s))− φ(eis)‖p ds

2π

) 1/p

= O(|t|α), (t → 0).

Same proof as in the scalar valued case shows the following characterization of

analytic Lipschitz functions.

Lemma 5.8 (see [16]) Let 1 ≤ p ≤ ∞, 0 < α < 1 and let φ ∈ Lp(T,X) such that its

Poisson extension f is an X-valued analytic function. Then the following are equivalent:

(i) Mp( f ′, r) = O( 1
(1−r)1−α ).

(ii) φ ∈ Λp
α(X).

We shall use the following general result, that was used in [11] and [7] to get appli-

cations to multipliers, and whose vector-valued version was shown in more generality

in [6].

Theorem 5.9 (see [6, Theorem 2.1]) Let X, Y be complex Banach spaces. Let Φ be a

linear map from the X-valued polynomials into Y . Define Φn : X → Y by the formula

Φn(x) = Φ(x ⊗ un) and FΦ(z) =
∑∞

n=0 Φnzn. The following are equivalent:

(i) sup|z|<1(1− |z|2)‖F ′ ′
Φ

(z)‖L(X,Y ) <∞
(ii) Φ extends to a bounded operator in L

(
B1(X),Y

)
.

Moreover ‖Φ‖ ≈ ‖FΦ(0)‖ + ‖F ′
Φ

(0)‖ + sup|z|<1(1− |z|2)‖F ′ ′
Φ

(z)‖.

Theorem 5.10 Let X and Y be complex Banach spaces, a sequence of operators (Tn) ⊂
L(X,Y ) and 1 < q <∞. Then (Tn) ∈

(
B1(X),Bq(Y )

)
if and only if the map x→ Fx

given by Fx(z) =
∑∞

n=1 Tn(x)zn defines a bounded operator from X into Λ
q

1/q ′(Y ).

Proof If T̃ : B1(X) −→ Bq(Y ) is the operator corresponding to (Tn) by means of

T̃(un ⊗ x) = un ⊗ Tnx for every n ≥ 1 then

FT̃(z) =

∞∑

n=1

(un ⊗ Tn)zn.

In other words, according to Theorem 5.9, (Tn) ∈
(

B1(X),Bq(Y )
)

if and only if

sup
‖x‖≤1

sup
|z|<1

(1− |z|)
∥∥∥
∞∑

n=2

(n− 1)nzn−2(un ⊗ Tnx)
∥∥∥

Bq(Y )
<∞,

which is clearly the same as

sup
‖x‖≤1

sup
|z|<1

(1− |z|)
∥∥∥
∞∑

n=1

(n + 1)nzn(un ⊗ Tnx)
∥∥∥

Bq(Y )
<∞.
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But ∥∥∥
∞∑

n=1

(n + 1)nzn(un ⊗ Tnx)
∥∥∥

Bq(Y )
=

(∫ 1

0

Mq
q(Gx, r|z|) dr

) 1/q

,

where Gx(z) =
∑∞

n=1(n + 1)n(Tnx)zn.

From Lemma 5.6, (Tn) ∈
(

B1(X),Bq(Y )
)

if and only if

sup
‖x‖≤1

sup
0<r<1

(1− r)1+1/qMq(Gx, r) <∞.

Since Gx is the derivative of Ex where Ex(z) =
∑∞

n=1 n(Tnx)zn+1, and then, Lemma 5.4

shows that the condition of being a multiplier is the same as

sup
‖x‖≤1

sup
0<r<1

(1− r)1/qMq(Ex, r) <∞.

Finally noticing that Ex(z) = z2F ′x(z), and Mq(Ex, r) = r2Mq(F ′x, r), now a look at

Lemma 5.8 easily gives the final result.

Same proof as above gives the case q = 1 in the previous theorem.

Theorem 5.11 Let X and Y be complex Banach spaces and (Tn) ⊂ L(X,Y ). Then

(Tn) ∈
(

B1(X),B1(Y )
)

if and only if

sup
‖x‖=1

sup
0<r<1

(1− r2)M1(F ′x, r) <∞

where Fx(z) =
∑∞

n=1 Tn(x)zn.
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