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Abstract

The spatio-temporal dynamics of an outbreak provide important insights to help direct public
health resources intended to control transmission. They also provide a focus for detailed epi-
demiological studies and allow the timing and impact of interventions to be assessed.

A common approach is to aggregate case data to administrative regions. Whilst providing a
good visual impression of change over space, this method masks spatial variation and assumes
that disease risk is constant across space. Risk factors for COVID-19 (e.g. population density,
deprivation and ethnicity) vary from place to place across England so it follows that risk will
also vary spatially. Kernel density estimation compares the spatial distribution of cases relative
to the underlying population, unfettered by arbitrary geographical boundaries, to produce a
continuous estimate of spatially varying risk.

Using test results from healthcare settings in England (Pillar 1 of the UK Government test-
ing strategy) and freely available methods and software, we estimated the spatial and spatio-
temporal risk of COVID-19 infection across England for the first 6 months of 2020.
Widespread transmission was underway when partial lockdown measures were introduced
on 23 March 2020 and the greatest risk erred towards large urban areas. The rapid growth
phase of the outbreak coincided with multiple introductions to England from the European
mainland. The spatio-temporal risk was highly labile throughout.

In terms of controlling transmission, the most important practical application of our
results is the accurate identification of areas within regions that may require tailored interven-
tion strategies. We recommend that this approach is absorbed into routine surveillance out-
puts in England. Further risk characterisation using widespread community testing (Pillar 2)
data is needed as is the increased use of predictive spatial models at fine spatial scales.

Background

On 31 December 2019, the World Health Organization (WHO) was informed of a cluster of
cases of pneumonia of unknown cause detected in Wuhan City, Hubei Province, China. Since
the initial identification of SARS-CoV-2 as the cause of COVID-19, over 32 million cases have
been diagnosed globally, with >900 000 fatalities, as of 27 September 2020 [1]. The first labora-
tory confirmed case in England was reported on 31 January 2020. A series of interventions
designed to slow rates of infection followed, culminating in a partial lockdown announced
by the UK Government on 23 March 2020.

Understanding the spatio-temporal dynamics of COVID-19 helps to clarify the extent and
impact of the pandemic and can aid decision making, planning and community action
intended to control transmission [2]. It also provides an opportunity to assess the impact of
interventions over space and time.

One approach is to describe changes in infection rates within administrative boundaries in
England have been published widely. This approach expresses the disease risk per head of
population and assumes that risk is constant across space, i.e. the risk of disease does not
depend upon spatial location. This is rarely the case and the distribution of risk factors for
COVID-19 (e.g. population density, deprivation and ethnicity) are known to vary across
England so it follows that absolute risk will also vary spatially.

Another approach is to plot points to produce a spatial point pattern. This is useful for
small data sets, but as the number of points increases, over plotting makes it difficult to dis-
criminate between the relative densities of points.

Kernel density estimation (KDE), also known as kernel smoothing, is a flexible, non-
parametric method by which spatially varying risk may be estimated without the need to
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aggregate data. Smoothing a spatial point pattern (using an appro-
priate bandwidth) overcomes the over plotting problem by expres-
sing the number of points as an intensity function. Comparing
the intensities of two groups, e.g. those with an infectious disease
and those without, across a defined geographical area result in an
intensity (or risk) ratio. If the ratio is ∼1, this suggests that the risk
of infection is unrelated to spatial location. Evidence of spatial
variation in risk occurs where the intensities differ. Ratio values
>1 indicate an increased risk and values <1 indicate the lower risk.

As the COVID-19 outbreak progresses in England, KDE pro-
vides a scalable means to identify areas of significantly higher or
lower risk to inform national policy and local action.

Using established methods [3–5] and freely accessible software
[3, 6], we conducted a spatio-temporal point pattern analysis of
COVID-19 risk in England between January and June 2020.
Our aims were to describe the spatio-temporal dynamics of the
first 6 months of the COVID-19 outbreak and assess the potential
use of this method to inform and support public health policy
decisions as the outbreak progresses.

Methods

The method we followed is described in detail by Davies et al.
[3] and Elson et al. [7]. For the spatial estimates, each set of
points (case and control) was smoothed using an adaptive
[4, 8] bandwidth to determine the spread of smoothing kernels
centred on each point to produce a density surface. Adaptive
bandwidths account for greater uncertainty in areas with fewer
points (e.g. rural areas) so the bandwidth is large resulting in
greater smoothing. In urban areas, more data points mean the
bandwidth is smaller resulting in a surface with less smoothing.
Calculating the ratio of case and control densities provides a
continuous estimate of relative risk which can be plotted on a
map [4, 9, 10].

Case locations

We selected confirmed cases of COVID-19 reported to the PHE
Second Generation Surveillance System (SGSS) under Pillar 1 of
the UK Government testing strategy between 31 January 2020
and 30 June 2020. Pillar 1 includes tests only for those with a
medical need (symptomatic and seen by a clinician) but may
also include some healthcare workers and samples taken as part
of outbreak investigations [11]. The data were checked for dupli-
cates and the presence of a valid residential postcode. Postcodes
are like US zip codes and represent a single residential street or
group of houses.

The statistical methodology for spatial point processes are very
sensitive to duplicate data points [12]. We used unique control
locations, but included multiple cases with the same postcode
to account for sporadic and outbreak cases.

Population at risk (‘control’) locations

The underlying population at risk (‘controls’) was represented by
points randomly sampled from the National Population Database
(NPD). The NPD is a Geographical Information System (GIS)
data set that combines multiple layers of data (including popula-
tion) in a 100-mm by 100-mm grid [13, 14]. Based on the cen-
troid coordinates of each grid square, ‘control’ locations were
randomly drawn without replacement. The probability of a loca-
tion being drawn was weighted by the summed population of each

grid square to reflect the spatially varying nature of the underlying
population at risk. The number of controls was chosen to match
the number of cases.

For the spatial estimates, we attempted four bandwidth initial-
isation methods to set the ‘global’ and ‘pilot’ smoothing para-
meters needed to calculate the adaptive bandwidths themselves:
maximal smoothing [15], bootstrapping [3, 16], least-squares cross
validation (LSCV) [17] and likelihood cross-validation [18, 19].

The resulting bandwidths were used to produce density esti-
mates at all locations of a fine grid of co-ordinates laid within a
simplified polygon of the mainland boundary of England and
the Isle of Wight.

To explore the temporal variation in the spatial risk, we
marked each case with the date that their specimen was taken.
For cases with multiple test results, the specimen date that gave
the most recent positive result was used. We then calculated the
number of days that had elapsed from the specimen date of the
first confirmed case (31 January 2020) as the temporal event.
The spatio-temporal relative risk surface was then calculated using
the fixed estimator of Sarojinie Fernando and Hazelton [20].

All estimates are edge-corrected to account for kernel weight
lost over the boundary of the study region [21, 22] and, for the
spatial analyses only, are calculated as a symmetric adaptive risk
function estimates using the pooled case/control data and equal
global and pilot bandwidths [5]. Unless stated otherwise, results
are reported as log-relative risk surfaces.

Contours identifying areas of significantly higher risk were
superimposed at the 1% significance level for the spatial estimates
and 1% and 0.01% levels for the spatio-temporal estimates.
Wherever temporal results are referred to in terms of weeks,
this refers to the corresponding International Organization for
Standardization (ISO) week.

All analyses were performed using the contributed packages
sparr [3] and spatstat [12, 23] in the R language [6].

Results

Between 31 January and 30 June 2020, 160 976 cases of
COVID-19 were reported to PHE under Pillar 1 of the UK
Government testing strategy [11]. Of these, residential postcodes
were available for 154 210 (96%). Of these, multiple cases were
recorded at 44 989 (30%) postcode locations.

Bandwidth selection

The oversmoothed and bootstrap methods produced usable spatial
and space-time bandwidths. The LSCV approach did not provide a
result and the likelihood-based approach produced a very small
bandwidth that resulted in an under smoothed, ‘spiky’ surface.

Spatial risk

Figure 1 shows the areas in England classified as urban by the
Office for National Statistics (ONS) [24]. The relative risk across
England during the study period is presented in Figure 2. With
some exceptions, the areas with the highest risk tended to be
large urban areas.

Spatio-temporal risk

An animation of the spatio-temporal analysis combining an epi-
demic curve with the risk surfaces using the oversmoothed and

2 Richard Elson et al.

https://doi.org/10.1017/S0950268821000534 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268821000534


bootstrap estimators can be viewed here. The individual risk
surface for the oversmoothed version is here and the bootstrap
version is here. The 14-day space-time slices are presented in
Figures 3 and 4 for the oversmoothed and bootstrap estimators,
respectively.

Fewer than 20 cases were recorded between the confirmation
of the first case (week 5 commencing 27 January) and the end
of week 8 (23 February). Weeks 9 and 10 were characterised by
a greater geographical spread of small areas of elevated risk and
an increase in case numbers to ∼400 by the end of week 10
(8 March). Week 11 (commencing 9 March) saw a rapid increase
in case numbers and significantly elevated risk, particularly in the
cities of London and Birmingham. By the end of week 14
(5 April), 47 668 cases had been reported. From week 15 (com-
mencing 6 April) onwards, areas of significantly elevated risk
became more dispersed with some areas in the North and far
South East of the country experiencing sustained periods of
elevated risk, even as case numbers declined towards the end of
the study period.

Of note is the generalised increase in risk across the country
between weeks 13 and 19 and the abrupt change in risk seen in
London between weeks 13 and 15.

Discussion

To the best of our knowledge, this is the first description of the
spatio-temporal distribution of COVID-19 in England using
unaggregated data. As such, it defines the areas of statistically sig-
nificant high and low risk at a very fine spatial scale, unhampered
by administrative boundaries.

Taking into account a 7-day lag for the incubation period [25]
prior to sample collection, our results show that geographically
widespread transmission was underway at least 1 week prior to
the partial lockdown announced on 23 March 2020.

The rapid increase in cases and geographical spread of risk
coincided with the roll out of PCR assays to hospitals during
March resulting in greater ascertainment. However, intensive
sequencing of SARS-CoV-2 genomes revealed that there were
multiple introductions from European countries. The frequency
of these imports (introduced via multiple entry points by travel-
lers returning to the UK, predominately from Spain, Italy and
France) reached a peak in mid-March 2020 (week 12) and led
to widespread onward transmission within the UK [26].

The risk was greatest in some, but not all, large urban areas. At
the beginning of the outbreak, the risk in London was

Fig. 1. Urban areas in England.
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significantly elevated for a prolonged period, but changed
abruptly within the period of a single week (week 15). The reasons
for this are unclear, but may be related to the impact of non-
pharmaceutical interventions (social-distancing, reduced use of
public transport etc.) or factors related to immunity.

Seroprevalence of antibodies to SARS- CoV-2 in samples from
healthy adult blood donors in England showed that the prevalence
in London, adjusted for assay accuracy, age and sex, increased
from 1.5% in week 13–12.3% in weeks 15–16 and 17.5% in week
18. Given that the antibody response takes at least 2 weeks to become

Fig. 2. Log relative risk estimates for COVID-19 in England between January and June 2020 using different bandwidths: oversmoothed (left), likelihood cross validation
(centre) and bootstrapping (right). Tolerance contours indicating areas of significantly higher risk are superimposed as solid lines at the 1% confidence level.

Fig. 3. Log relative risk spacetime slices using an oversmoothed bandwidth (h = 15.4 km, lambda (λ) = 2.04) in 14-day periods from the date of the first case con-
firmed in ISO Week 5. Solid lines outline areas of significantly higher risk at the 1% confidence level.
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detectable, those displaying a positive result in week 18 are likely to
have become infected before mid-April. By the end of our study per-
iod (week 27), prevalence had dropped to 10% in London [27].

Large urban areas in England have higher population densities
and tend to have a higher number of black, Asian and minority
ethnic residents. They are also the areas with the highest depriv-
ation and air pollution scores: all factors associated with an
increased risk of infection and/or poorer outcomes following
infection with SARS-CoV 2 [28–30].

Selecting the ‘right’ bandwidth is crucial for this approach.
Calculation of the over smoothing bandwidth is extremely
quick, and the results provide a good overview of elevated risk.
However, this somewhat rudimentary approach is unlikely to
identify focused hotspots. The bootstrap method, whilst more
computationally intensive, produced a usable bandwidth in
<35 min for the spatial analysis and around 10 h for the spatio-
temporal bandwidth. The resulting output provides superior geo-
graphical detail allowing resources to be targeted more efficiently.
Notwithstanding this, too small a bandwidth results in an under
smoothed surface which can erroneously identify ‘significant’
peaks in risk as a result of increased variability of the kernel esti-
mator. The numeric stability of LSCV and likelihood based meth-
ods is known to be questionable in practice, with resulting
estimates often being under-smoothed [9].

There are some limitations to this analysis. First, our approach
was exploratory and does not account for groups more likely to
experience poorer outcomes following infection due to socio-
demographic, occupational and environmental factors. Also, the
data we used represents those who were symptomatic and sought
healthcare. In common with all surveillance systems, this is biased
towards the severe end of the disease spectrum. One way of over-
coming this bias would be to include results from the wider com-
munity testing performed under Pillar 2 of the UK testing regime.

We decided not to include this data because Pillar 2 testing was
introduced part way through the study and was also subject to
data quality issues until May 2020 [11]. The decline in cases
described here is likely to be an underestimate of the true commu-
nity incidence and may not reflect the spatial locations of cases iden-
tified under Pillar 2. This requires further investigation, however,
considering the way that SARS-CoV-2 is transmitted, we anticipate
that this will not differ considerably, and our analysis represents the
spatio-temporal ‘tip of the iceberg’ for COVID-19 in England dur-
ing the study period. Finally, the PCR assay used by hospitals was
rolled out nationally during March 2020 resulting in greatly
improved case ascertainment. This coincided with the rapid increase
seen during March 2020 so may be an artefact of improved surveil-
lance. However, this does not explain the spatial variation noted
beyond the end of March (when the assay was in widespread use)
nor the sudden decline in cases in Birmingham and London.

Our analysis demonstrates how KDE can identify areas of
England, where the risk of COVID-19 infection differs signifi-
cantly. In terms of controlling transmission, the most important
practical application is the accurate identification of areas within
regions that require improved public health messaging or tailored
intervention strategies. Spatial modelling can be used to the pre-
dict the spread of infection [31, 32] and the methodology to do
this has been available for some time [32, 33]. Such approaches
have already been applied to COVID-19 case data [34] and self-
reported symptoms [33]. It’s hoped that this will form part of the
UK response strategy in the coming months and will be most
informative at very fine spatial scales [33]. To harness the benefits
of such modelling approaches, public health organisations and aca-
demic centres must find ways to share information and promote
collaboration without compromising patient confidentiality.

To conclude, we present a spatio-temporal analysis of
COVID-19 in England covering the first 6 months of 2020. We

Fig. 4. Log relative risk spacetime slices using bootstrap bandwidth (based on cases only: h = 4.8 km, lambda (λ) = 3.2) in 14-day periods from the date of the first
case confirmed in ISO Week 5. Solid lines outline areas of significantly higher risk at the 1% confidence level.
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recommend that this approach is absorbed into routine surveil-
lance outputs and that ways to confidentially share patient data
with academic collaborators are explored. Further work using
Pillar 2 test data and the development of predictive spatial models
at fine spatial scales is needed.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268821000534.
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