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Abstract

The effectiveness of four techniques for producing wide sense stationary data with expo-
nential semivariograms is examined. Comparison is made primarily on the basis of the
observed semivariograms. The LU decomposition of the covariance matrix appears to
most accurately model specified semivariograms, whilst the more computationally efficient
Matrix Polynomial approximation and Turning Bands methods may be more useful in
practice.

1. Introduction

The production of spatially correlated data is an important tool for many simulation
applications. Agriculture, forestry, mining and petroleum geology all have profited
from being able to model the distribution of natural resources, using random function
theory. This paper compares four techniques for producing wide sense stationary data
with specified semivariograms. Of principal interest is the reliability of the technique,
expense and complexity being a secondary matter.

The semivariogram y, is an indicator of the correlation structure of a random
function Y(;), and is defined by

- def1 - -> -2
(< SE [[Y(x +h) — Y(x)] ]

where X and X + ; are two points in space separated by a displacement ;, and
Y(;) is a real valued function, in the case here the data generated, evaluated at
the point x. The dependence of y upon the position X is deliberately omitted in
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this definition to emphasise the commonly used assumption of stationarity. This
assumption requires that the probability distribution is translationly invariant. The
validity of the assumption of stationarity warrants careful attention; however it does
provide a useful working hypothesis and is often acceptable, if not on the full field
then upon subregions from which useful conclusions may be drawn.

The simulation of a random function Y which is consistent with a specified semivari-
ogram Y, is a computationally expensive process and a range of techniques exist for
generating data which honours y. This paper considers four techniques for generating
such data,

(i) The method of Turning Bands in Three Dimensions (Journel and Huijbregts

[51), TB3D. Only the case with 15 bands ([5]) is considered;

(ii) The method Turning Bands in Two Dimensions (Brooker [1]), TB2D, using
both 15 and 50 bands;

(iii) The Cholelsky, or LU decomposition of the Covariance Matrix (Davis [4]),
LU;

(iv) The Matrix Polynomial approximation of the square root of the Covariance
Matrix (Davis [3]), MPOLY, using both 8 and 15 coefficients (Brooker, Cock,
and Stewart [2]);

and makes comparison of the degree to which they honour an exponential semivari-
ogram on two dimensional data sets. It may be seen as an extension of [2], where the
same four techniques were studied in relation to specified spherical semivariograms.
The reader may refer to Mantoglou, and Wilson [6], and Tompson, Ababou, and
Gelhar [7], for other studies involving the Turning Bands methods.

2. Exponential model

The exponential semivariogram is :

y(h)=C0+C[1 —exp(%h)},

where a is a constant, being one third of the effective range ([S] page 508) of the

semivariogram, £ is the length of the displacement h, Cy + C is the sill, and C,
represents the short range variability known as the nugget effect. Since this nugget
may be added after the correlated component of the data is produced, Cy is set to 0. C
is also set to 1, for all calculations preformed here, since the resulting data can readily
be scaled to any other value of C.
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FIGURE 1. Individual models from the LU decomposition method, grid 30 x 30, effective range 10.

3. Results

This study investigates the effectiveness of each of the four techniques in generating
data sets honouring specified exponential semivariograms with a number of effective
ranges. The basis for comparison will be how reliably data generated on an L x L
square grid, by each of the four techniques, honours the specified semivariogram. To
perform this comparison an ensemble of 50 grids is generated for each effective range,
and grid size. For each data set the standard estimator

— 1 - - - 2
r@=—=3 [rG+mn-r&},
2N (h)

of the semivariogram, is calculated in the N-S, E-W, NE-SW, and NW-SE directions.
Figures 1 and 3 show four individual semivariograms for each of LU and TB3D,
30 x 30 grids with effective range 10, and include “ideal” and extreme examples.

From the resulting collection of experimental semivariograms the following calcu-
lations are made:
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(i) Foreach technique an averaged semivariogram y* is computed, by averaging

the values of the standard estimator of the semivariogram y* at each lag Z;
over the 50 grids (of specified range, and grid size).

(ii) Three measures of the degree to which the averaged semivariogram y* de-
viates from the specified semivariogram y are computed, by calculating the
average of the absolute difference between the averaged semivariogram y*
and the specified semivariogram y, in each of the four directions over the
ranges h € [1,3a], h € [1, L/2]),and h € (3a, L/2). L/2 is the recommen-
ded maximum lag ([5], page 194) if experimental semivariograms are to be
reliable.

(iii) At each of the lag distances k the standard deviation of the 50 values of the
standard estimators y* corresponding to grids of constant range, grid size and
method is computed.

(iv) Three measures of the variability in the experimental semivariograms y* are
computed by averaging the standard deviations computed above (iii) over the
ranges h € [1,3al,h € [1, L/2]and h € (3a, L /2] for all grid sizes, effective
ranges and methods.

Figures 2 and 4 depict the averaged semivariogram y*, for the full ensembles, four
of whose individual semivariograms are seen in Figures 1 and 3 respectively. The
average plus or minus one standard deviation (measure (iii)) is also shown. For all
six methods the averaged measures (ii) and (iv) are tabulated below, Tables 1 to 6.

4. Discussion

On the basis of the tabulated results, it can be observed that
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TABLE 1. Turning Bands in Three Dimensions (Using 15 lines): Exponential Model

grid range average standard deviation

LxL 3a (1,3al | Ba,L/2) | [1,L/2] || [1,3a] | (3a,L/2] | [1,L/2)
10 x 10 | 2.00 0.14 0.03 0.07 0.18 0.27 0.23
5.00 0.04 0.04 0.25 0.25

10.00 0.05 0.18

20 x 20 | 2.00 0.15 0.06 0.08 0.14 0.19 0.18
5.00 0.03 0.01 0.02 0.15 0.25 0.20

10.00 0.03 0.03 0.24 0.24

15.00 0.02 0.19

20.00 0.02 0.17

30 x 30| 2.00 0.14 0.04 0.05 0.12 0.17 0.17
5.00 0.04 0.05 0.05 0.12 0.19 0.16

10.00 0.04 0.06 0.05 0.16 0.26 0.19

15.00 0.03 0.03 0.17 0.17

20.00 0.04 0.19

30.00 0.02 0.16

60 x 60 | 2.00 0.13 0.04 0.05 0.07 0.10 0.10
5.00 0.02 0.04 0.04 0.09 0.13 0.12

10.00 0.01 0.03 0.02 0.11 0.18 0.16

15.00 0.01 0.02 0.02 0.12 0.19 0.15

20.00 0.02 0.04 0.03 0.13 0.24 0.16

30.00 0.04 0.04 0.17 0.17

40.00 0.04 0.19

60.00 0.02 0.16

1) Turning Bands in three dimensions performs poorly for small effective ranges,
characteristically having a higher variance than the other techniques and producing a
poor fit for small effective ranges. From inspection of experimental semivariograms
y* it was also seen that Turning Bands in three dimensions exhibits a tendency towards
anisotropic behaviour, particularly when the range is small compared to the grid size.

2) Turning Bands in two dimensions produces preferable results to Turning Bands
in three dimensions, in that it produces a better estimator of the mean and exhibits
smaller variation between the individual semivariograms. Increasing the number
of bands from 15 to 50 has the advantage of reducing the variability between the
individual semivariograms as well as reducing the level of anisotropic behaviour
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TABLE 2. LU Decomposition of the Covariance Matrix: Exponential Model

grid | range average standard deviation

LxL 3a || [1,3q] | (3a,L/2) | [1,L/2) || [1,3a] | (3a, L/2] | 1, L/2]
10 x 10 2 0.01 0.01 0.01 0.15 0.20 0.18
0.02 0.02 0.21 0.21

10 0.03 0.20

20 x 20 2 0.01 0.02 0.02 0.08 0.11 0.10
0.02 0.01 0.01 0.09 0.19 0.14

10 0.04 0.04 0.18 0.18

15 0.01 0.17

20 0.01 0.18

30 x 30 2 0.00 0.01 0.01 0.05 0.07 0.07
0.01 0.01 0.01 0.07 0.13 0.11

10 0.01 0.03 0.02 0.15 0.28 0.19

15 0.02 0.02 0.19 0.19

20 0.01 0.21

30 0.02 0.21

observed within the experimental semivariograms y*. For very small effective ranges
Turning Bands may be seen to break down (c.f. Tables 3 and 5 for an effective range
of 2).

Mantoglou and Wilson [6] (page 1382) give an Abel integral equation which must
be solved to find the one dimensional covariance structure. Importantly Brooker
[1] (page 85) published an analytic solution to this equation, expressing the one di-
mensional covariance structure as a function of the two dimensional structure. High
precision numerical approximations to this solution, in the case of the two dimen-
sional exponential model, are readily obtained by standard techniques for numerical
integration.

3) The LU, or Cholelsky, decomposition of the covariance matrix produced results
which may be used as a benchmark for comparison of the other techniques. The
LU decomposition produces data with the required structure, as opposed to the other
techniques, which are approximations. Implementations of the LU decomposition
are limited by the precision of the random number generator, and the accuracy of
the machine arithmetic (Wilkinson [8]). Errorsare smaller than the errors due to
approximation in the other techniques.

The LU, or Cholelsky, decomposition is not suitable for large grid sizes. To perform
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TABLE 3. Turning Bands in Two Dimensions (Using 15 lines): Exponential Model

grid range average standard deviation
LxL 3a [1,3a] | BQa,L/2} | [1,L/2) || [1,3a) | (3a,L/2] | [1,L/2]
10 x 10 0.06 0.03 0.04 0.18 0.31 0.26
0.03 0.03 0.19 0.19
10 0.01 0.23
20 x 20 2 0.09 0.02 0.03 0.08 0.12 0.12
5 0.04 0.02 0.03 0.12 0.24 0.18
10 0.04 0.04 0.18 0.18
15 0.02 0.18
20 0.03 0.19
30 x 30 0.10 0.03 0.04 0.07 0.09 0.09
0.02 0.02 0.02 0.07 0.13 0.11
10 0.01 0.02 0.01 0.12 0.22 0.15
15 0.01 0.01 0.17 0.17
20 0.02 0.19
30 0.03 0.16
60 x 60 0.10 0.03 0.03 0.05 0.06 0.06
0.02 0.02 0.02 0.05 0.08 0.07
10 0.01 0.02 0.01 0.07 0.15 0.12
15 0.01 0.01 0.01 0.08 0.18 0.13
20 0.03 0.05 0.04 0.13 0.25 0.17
30 0.02 0.02 0.20 0.20
40 0.01 0.17
60 0.01 0.18

a simulation on L x L grid the LU decomposition uses memory of order L* and has
a time complexity of order L®. This is in contrast to the method of turning bands
which has a time complexity and memory use of order L2. Computers with greater
than 2% bytes of resident memory are readily available and it is a simple matter to
produce 30 x 30 grids on such machines (Davis [3] recommended this as an upper
bound in 1987.) It is possible to produce larger grids by the LU decomposition using
larger machines, or secondary memory devices; the complexity and expense of doing

so would tend to preclude this as a viable technique at the present stage.
4) The Matrix Polynomial approximation performs well for small effective ranges.
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TABLE 4. MPOLY, Square Root Decomposition of the Covariance Matrix (8 coefficients): Exponential

Model
grid range average standard deviation

LxL 3a [1,3a] | Qa,L/2] | [1,L/2]) || [1,3a) | 3a,L/2] | [1,L/2]
10 x 10 2 0.02 0.02 0.02 0.15 0.20 0.18
0.03 0.03 0.21 0.21

10 0.03 0.21

20 x 20 2 0.01 0.01 0.01 0.08 0.11 0.10
0.03 0.02 0.02 0.09 0.19 0.14

10 0.10 0.10 0.18 0.18

15 0.03 0.18

20 0.03 0.20

30 x 30 2 0.02 0.02 0.02 0.05 0.07 0.07
0.03 0.02 0.02 0.07 0.14 0.11

10 0.06 0.06 0.06 0.15 0.28 0.19

15 0.02 0.02 0.18 0.18

20 0.05 0.20

30 0.16 0.21

A degradation of the reliability of the technique may be observed as the effective
range grows, this being less pronounced for the 15 coefficient case than the 8.

Davis [3] proposed the use of a polynomial of degree 8, being the solution of a
weighted minimax problem, but did not specify his weighting scheme. Here approx-
imations to unweighted minimax polynomials with 8 and 15 coefficients were used.
They were obtained by uniformly discretising the interval [0, An.«] and solving

min max |P(x) ~ Vx|

upon the discretised domain, using the exchange algorithm. Here A, is the maximum
eigenvalue of the covariance matrix, P is a polynomial of degree 7 or 14, and x is
in the discretised interval. This weighting scheme gives a solution which is scale
invariant, as opposed to that of Davis [3], which is not.

The Matrix Polynomial approximation has a memory complexity of order L? and a
time complexity of order L? log(L) both of which compare favourably with the other
techniques. It also complements the the techniques of TB3D and TB2D by producing
good results for small effective ranges. For these reasons MPOLY and TB2D would
be the recommended techniques, for the appropriate effective ranges.
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TABLE 5. Turning Bands in Two Dimensions (Using 50 lines): Exponential Model

grid range average standard deviation

LxL 3a (1,3a] | Ga, L/2] { [1,L/2]1 )| [1,3a) | 3a, L/2] | [1,L/2]
10 x 10 2 0.12 0.06 0.08 0.15 0.21 0.19
0.03 0.03 0.22 0.22

10 0.03 0.19

20 x 20 2 0.09 0.03 0.04 0.08 0.12 0.11
0.03 0.03 0.03 0.10 0.18 0.14

10 0.04 0.04 0.18 0.18

15 0.01 0.20

20 0.02 0.18

30 x 30 2 0.09 0.02 0.03 0.06 0.09 0.08
0.03 0.03 0.03 0.06 0.12 0.10

10 0.02 0.05 0.03 0.13 0.28 0.18

15 0.02 0.02 0.16 0.16

20 0.04 0.18

30 0.01 0.16

60 x 60 2 0.10 0.02 0.02 0.03 0.05 0.05
0.02 0.01 0.01 0.04 0.07 0.06

10 0.01 0.01 0.01 0.06 0.13 0.11

15 0.01 0.02 0.01 0.08 0.18 0.13

20 0.02 0.05 0.03 0.12 0.22 0.15

30 0.02 0.02 0.15 0.15

40 0.01 0.15

60 0.03 0.17

5) The amount of variation from the averaged semivariogram may be seen to grow
as the lag distances increase.

6) As the grid size increases, semivariograms of a specified range are better defined.

7) With the exception discussed above for very small effective ranges with the
turning bands algorithms, it appears that for a fixed grid size, L x L, data sets for
semivariograms with smaller ranges are more accurately simulated.

8) It is worth emphasising that the statistics tabulated above were calculated from
50 grids, and are subject to statistical fluctuation. Checks on ensembles of 200 grids
for several methods indicate that the results using 50 grids were reliable.
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TABLE 6. MPOLY, Square Root Decomposition of the Covariance Matrix (15 coefficients): Expo-

nential Model

grid range average standard deviation
LxL 3a [1,3a] | Q3a,L/2) | (1, L/2] || [1,3a) | (Ba,L/2] | [1,L/2]
10 x 10 0.01 0.01 0.01 0.15 0.20 0.18
0.03 0.03 0.21 0.21
10 0.03 0.21
20 x 20 2 0.01 0.01 0.01 0.08 0.11 0.10
0.01 0.02 0.02 0.09 0.19 0.14
10 0.06 0.06 0.18 0.18
15 0.03 0.18
20 0.02 0.20
30 x 30 2 0.00 0.01 0.01 0.05 0.07 0.07
0.01 0.01 0.01 0.07 0.13 0.11
10 0.03 0.03 0.03 0.14 0.27 0.19
15 0.02 0.02 0.19 0.19
20 0.01 0.20
30 0.04 0.21
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